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ABSTRACT
Keyword spotting (KWS) has drawn the attention of the
research community as the alternative means to solve hard
cases of handwriting text recognition. In this paper, a frame-
work is proposed that employs KWS to enhance the effi-
ciency in the manual transcription process, thus, reducing
drastically the cost of training data creation. The core prin-
ciple relies upon the ability of robust document-specific de-
scriptors to produce meaningful similarities between a cho-
sen word image for transcription and the corresponding word
images in the full dataset under consideration. In the pro-
posed framework, KWS is coupled with a relevance feed-
back mechanism which further enhances retrieval perfor-
mance while being independent to the chosen KWS algo-
rithm. The efficiency of the proposed pipeline is showcased
via a user-friendly web-based prototype1.

CCS Concepts
•Applied computing→Document analysis; Document
management and text processing; •Computing method-
ologies → Visual content-based indexing and retrieval;
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1. INTRODUCTION
In digital libraries, many historical manuscripts are still

unexploited due to the lack of proper browsing and indexing
tools. For many typical handwritten document images, tra-
ditional Optical Character Recognition (OCR) is simply not
usable since characters cannot be automatically segmented
and recognized very easily. Therefore, holistic Handwrit-
ing Text Recognition (HTR) techniques are applied which
do not require any explicit character segmentation. Current
technology for HTR employs methods as Hidden Markov
Models (HMMs) [16] and Neural Networks [23, 6]. Unfortu-
nately, the aforementioned approaches need a considerable
amount of training data. The common HMM-Based Hand-
writing Recognition Systems employ statistical language mod-
els which depend on the corresponding language, historical
time period, etc. and they are very costly to create as they
are requiring huge amount of manually transcribed data.

Ground-truth generation systems such as Aletheia [3] the
transcription text is entered manually for each segmented
word.

In this paper, a framework is proposed that employs key-
word spotting (KWS) to enhance the efficiency in the man-
ual transcription procedure thus, reducing drastically the
cost of training data creation.

KWS can be defined as the task of identifying locations on
a document image which have high probability to contain an
instance of a queried word, without explicitly recognizing it.
In this paper, we address the KWS query by example case
(QBE) that aims to search a word image from a set of unin-
dexed document images using the image content as the only
information source. As final outcome, the system returns to
the user a ranked list of document word images. The main
advantage of KWS/QBE systems is that they perform word
detection without any training data or any language model,
and thus it makes them ideal as recommender system for
helping the user transcribe the document.

The major achievement of the proposed framework is the
reduction in time expenses required to achieve transcrip-
tion data which could feed a Handwriting Text Recogni-
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Figure 1: Flow diagram of the proposed transcription pro-
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Figure 2: KeyWord Spotting Operational Pipeline

tion engine for training. Furthermore, the keyword spot-
ting pipeline is coupled with a relevance feedback mecha-
nism which introduces the user in the retrieval loop, thus,
improving the final retrieval performance.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the architecture of the proposed transcrip-
tion framework and its components, Section 3 presents the
experimental results while in Section 4 conclusions are drawn.

2. PROPOSED FRAMEWORK
The proposed framework comprises two components that

collaborate towards aiding the user to transcribe the docu-
ment. These components are (a) the KWS module and (b)
the Relevance Feedback module. A flow diagram of the pro-
posed transcription process is shown in Figure 1. It is worth
to note that a web-based prototype has been implemented2

that showcases the proposed pipeline.
Initially, the results of a word segmentation process is pre-

sented to the user who selects a word to transcribe, thus, the
KWS process is activated using the selected word as query
resulting in ranked results which are presented to the user
(Figure 3a).

Then, the user selects a positive word example from the
ranked list and it is transferred to a verified list. The words

2http://vc.ee.duth.gr/ws/

that are contained in this verified list are linked, thus, having
the same transcription text (Figure 3c). Simultaneously,
a relevance feedback process is initiated that improves the
KWS results.

Figure 3 shows the implemented interface for the above
process and Figure 4 shows a snapshot of the corresponding
transcription result.

2.1 KWS Module
The word spotting module is based upon a keyword spot-

ting algorithm [26]. It is responsible for the retrieval of the
visual similar words.

Although there is an abundance of systems suitable for
both modern [7, 24] and historical [9, 12, 28, 10] printed ma-
terial, very few of these systems are suitable to handwritten
documents [13, 25, 24, 26, 14, 22] due to noise sensitivity,
character variation and text layout complexity.

The keyword spotting in used [26] is chosen due to its suit-
ability for handwritten historical documents. Despite that,
the proposed architecture is suitable for any word spotting
algorithm. This generates the ability to change the KWS
method that fits better to a specific dataset.

A diagram of the chosen word spotting framework is il-
lustrated in Figure 2. It consists of two distinct steps: the
Offline and the Online. At the Offline step, which is executed
once, the document images are segmented to the word im-
ages for which, document specific local features (DSLF) are
extracted and indexed to a database. At the Online step,
which is the only visible operation to the user, the DSLF
are extracted for the query word image and a matching pro-
cedure is addressed between the features of the query and
each indexed word image. Finally, a ranking list of all the
word images are presented to the user.

2.2 Relevance Feedback Module
The relevance feedback is a post-query process that affects

the retrieval results using user involvement in the selection
of positive results. The object is to improve retrieval’s per-
formance by approximating user’s criteria on the concept
of similarity in a retrieval task, taking into account user’s
interaction.

Generally, relevance feedback schemes are divided into
two distinct categories, those that aim to modify the ini-
tial query [18, 4, 11, 5, 1, 25] and those that mainly intend
to alter the similarity measure handling the ranking of the
results [20, 27].

The proposed relevance feedback method falls under the
query modification category and it is transparent to the un-
derlying KWS algorithm. The novelty introduced here is
that instead of directly change the query descriptor, each
user selection is executed as a query to the dataset and the
results are fused and presented to the user. Figure 5 shows
the architecture of the proposed relevance feedback algo-
rithm.

The steps of the proposed relevance feedback are:

Step 1 The system presents an initial retrieved ranked list to
the user.

Step 2 The user provides a positive judgement on the dis-
played results as to whether are relevant to the cur-
rently transcribed word by selecting one or more of
positive words.
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Figure 3: The steps for the proposed transcription method (a) Word selection for transcription : 1. The transcription text. 2.
The ranking list from the KWS method. 3. The verified list which contains words that correspond to positive user selected
samples. The initial word is only the currently transcribed word. (b) Selecting a word from the ranking list, it is transferred
to the verified list. (c) The user can continuously select similar words (d) until there are no other to select from the ranking
list.

Step 3 The system queries the database for the more similar
words to the user selection.

Step 4 The results are combined based on a fusion strategy
and then, the newly created ranking list presented to
the user.

In Step 4, multiple basic combination strategies [21, 8] are
explored:

• CombSum: It combines the relevance listings by adding
their corresponding relevance scores.

• CombMin: It combines the relevance listings by se-
lecting the minimum relevance score.

• Probabilistic model: It combines the relevance list-
ings by multiplying the corresponding relevance scores.

3. EXPERIMENTAL RESULTS
The dataset that is employed for the presented experi-

ments is the Bentham Dataset [15]. This dataset is used in
ICFHR 2014 Competition on Handwritten Keyword Spot-
ting (H-KWS 2014) [19] and particularly for TRACK I. It
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Figure 4: Results from the proposed automatic transcription of the word ”pleasure” after the steps shown in Figure 3 (in blue
rectangles)
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Figure 5: The architecture of the proposed relevance feed-
back process

consists of 50 high quality (approximately 3000 pixels width
and 4000 pixels height) handwritten manuscripts.

Initially, the different fusion strategies are explored. In
order to emulate the user involvement, three iterations are
applied. For each iteration, two additional positive samples
are chosen and the relevance feedback algorithm is applied.
The performance evaluation is based on the following two
measures:

(i) Precision at Top 5 Retrieved words (P@5)

(ii) Mean Average Precision (MAP)

In particular, Precision and P@k are defined as follows:

P@k =
|{relevant words} ∩ {k retrieved words}|

|{k retrieved words}| (1)

Precision is the fraction of retrieved words that are rele-
vant to the query, while in the case that precision should be
determined for the k top retrieved words, P@k is computed.
In particular, in the proposed evaluation, P@5 is used which
is the precision at top 5 retrieved words. This metric defines

how successfully the algorithms produce relevant results to
the first 5 positions of the ranking list.

The second metric used is the Mean Average Precision
(MAP) which is a typical measure for the performance of
information retrieval systems [17, 2]. It is implemented from
the Text REtrieval Conference (TREC) community by the
National Institute of Standards and Technology (NIST). The
above metric is defined as the average of the precision value
obtained after each relevant word is retrieved:

AP =

n∑
k=1

(P@k × rel(k))

{relevant words} (2)

where:

rel(k) =

{
1, if word at rank k is relevant
0, if word at rank k is not relevant

(3)

As shown at Figure 6, at each iteration an improved re-
trieval performance is achieved for all the fusion strategies.
The best performance is achieved with the combMin.

Next, in order to measure the speed up of the transcription
time for our proposed architecture, we implement three dif-
ferent transcription strategies for the above historical hand-
written dataset:

• The Conventional Method by using the Aletheia
tool [3]

• Segmentation guided Conventional Method by
using the implemented web-based prototype without
the KWS and its corresponding Relevance Feedback
method. This speeds up the transcription procedure
as the words are already detected

• The Proposed Architecture using the web-based
prototype as appears in http://vc.ee.duth.gr/ws/.

Table 1 shows the experimental results that demonstrate
time costs improvement in transcription process. Particu-
larly, 80% improvements over the conventional transcription
and 55% over the segmentation-based approach.

4. CONCLUSIONS
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Table 1: Transcription Time Expenses

Total Time (hours) Minutes per Document (m/d) Seconds per Word (s/w)

Conventional Transcription 116.1 69.66 21.32

Segmentation guided Conventional
Transcription

52.1 31.26 9.55

Proposed Transcription Framework 23.2 13.92 4.21

combSum

Probabilistic

combMin

MAP P@5 MAP P@5 MAP P@5 MAP P@5

Initial Retrieval First Iteration Second Iteration Third Iteration

0,4085

0,6213
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0,7919
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Figure 6: Performance for each relevance feedback fusion strategy

In this paper, a framework is proposed that employs word
spotting algorithm in conjunction with a relevance feedback
algorithm in order to speed up the manual transcription pro-
cess and consequently reduce the creation cost of the train-
ing data. The experimental results in a publicly available
dataset show the improved performance.
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