
Zoning Aggregated Hypercolumns for Keyword Spotting

Giorgos Sfikas, George Retsinas, Basilis Gatos

Computational Intelligence Laboratory,
Institute of Informatics and Telecommunications,

National Center for Scientific Research Demokritos,
GR-15310 Agia Paraskevi, Athens, Greece
{sfikas, georgeretsi, bgat}@iit.demokritos.gr

Abstract—In this paper we present a novel descriptor and
method for segmentation-based keyword spotting. We intro-
duce Zoning-Aggregated Hypercolumn features as pixel-level
cues for document images. Motivated by recent research in
machine vision, we use an appropriately pretrained convolu-
tional network as a feature extraction tool. The resulting local
cues are subsequently aggregated to form word-level fixed-
length descriptors. Encoding is computationally inexpensive
and does not require learning a separate feature generative
model, in contrast to other widely used encoding methods
(such as Fisher Vectors). Keyword spotting trials on machine-
printed and handwritten documents show that the proposed
model gives very competitive results.

I. INTRODUCTION

In cases where full recognition is not necessary or

high-quality recognition is not feasible, keyword spotting

techniques allow the end-user to search a document for

instances of a specific word [1], [2]. Keyword spotting and

recognition, especially in handwritten documents, remain

significant challenges compared to other forms of text, albeit

also important recent advances [2]. The same is true for other

document understanding actions such as layout analysis or

text segmentation. Writing style variance and cursiveness

in the documents of a single author, and variance between

styles of different authors are important problems one has

to face in processing of handwritten text, not found in

machine-printed documents. Older handwritten manuscripts

are related with extra difficulties due to degradations in

quality of the digitized document, making all document

understanding operations even more difficult.

Segmentation of a document in text components has been

used in many document understanding systems as a basic

pre-processing step. Text components that are used routinely

as the target element of segmentation algorithms are text

lines and text words. Word spotting can then be formulated

as an image retrieval problem when the query is a word

image. Another vein of techniques assume that the user uses

a word string as a query. The two approaches are known as

1The research leading to these results has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation Programme (H2020-
EINFRA-2014-2015) under grant agreements n 674943 project READ.

Query-by-Example (QbE) and Query-by-String (QbS) in the

literature [2].

In this work, a novel QbE, segmentation-based keyword

spotting method is proposed. We use a deep Convolutional

Neural Network (CNN) pretrained for a character classifica-

tion task [3]. Instead of using the CNN for the task it was

originally trained for, i.e. character classification, we use it as

an off-the-shelf feature extractor. It has been shown that per-

layer activations can act as efficient local descriptors [4], [5].

The pool of resulting convolutional features is aggregated

to a single descriptor per word image. Aggregation is done

by combining simple sum-pooling, that has been recently

demonstrated to be an appropriate encoding technique for

convolutional features [6]. We combine this simple aggrega-

tion model with a zoning scheme, suitable for word images,

to create the fixed-length word-level feature vector. We shall

refer to this word-level descriptor as a ”Zoning-Aggregated

Hypercolumns” descriptor (ZAH). Querying with the pro-

posed descriptor is performed by nearest-neighbour search

in the (Euclidean) descriptor space. Numerical results show

that our approach leads to competitive KWS results.

The outline of the rest of this paper is as follows. In

section II we discuss related works in the literature. In

section III we present the proposed method in detail. In

section IV we present numerical results comparing our

method to other segmentation-based word spotting methods.

In section V we present final conclusions and thoughts about

future work.

II. RELATED WORK

Keyword spotting can be seen as a special form of an

image retrieval problem. Like in image retrieval, suitable

descriptors have to be created for the query and each word

image in the document to be searched. As in all image

understanding tasks, features matter, and powerful features

have been used to build good descriptors for word spotting

and recognition tasks. Such features range from low-level

column-based profiles to more elaborate shape-based or

patch-based features [1], [7], [2]. Given a dense set of feature

vectors per image, matching is performed either by dynamic

programming [7], direct comparison using a suitable metric

(often the Euclidean) [1] or using an encoding technique first

2016 15th International Conference on Frontiers in Handwriting Recognition

2167-6445/16 $31.00 © 2016 IEEE

DOI 10.1109/ICFHR.2016.56

282

2016 15th International Conference on Frontiers in Handwriting Recognition

2167-6445/16 $31.00 © 2016 IEEE

DOI 10.1109/ICFHR.2016.56

283

[8] before comparing the encoded vectors. Various state-of-

the-art models that are based on the encoding of patch-based

SIFT or HOG features have been proposed [2], [9], [8].

Interest in neural networks has recently been rekindled,

with much effort being put to exploring their applicability

in various tasks that include word spotting and recognition

[10], [3]. Using activations of fully-connected layers given

a pretrained convolutional network and an unseen image

has been proved to be a powerful image feature extraction

technique [4]. Activations of convolutional layers have also

been used in this manner. The latter have been referred to

as deep convolutional features or deep patch-based features

[6] as opposed to shallow patch-based features (SIFT, HOG,

etc.). In [5], combinations of convnet layers are concatenated

into a single vector dubbed a ”hypercolumn”. Encoding of

convolutional features can be efficiently performed [11], [6].

A simple sum-pooling operation of convolutional features

has been shown to be appropriate to encode them into a sin-

gle, powerful descriptor (Sum-pooled convolutional features,

SPoC) [6]. This is an advantage over other encoders such

as the state-of-the-art Fisher vectors or VLAD, which are

comparatively more complex to compute. The former require

fitting training data to a generative model with unsupervised

learning. This process can be expensive and may also be a

source of errors for the processing layers that follow in the

event that the generative model is poorly estimated.

Motivated by the aforementioned results in machine vi-

sion, we propose a CNN-based feature extraction and encod-

ing scheme suitable for keyword spotting. In our work, each

word image is feed-forwarded through the CNN. The result,

after proper zero-padding of the input, is a pixel-level map

of hidden layer activations, that are aggregated in zones to

form a single word image descriptor. Encoding is easy and

fast since it only requires a sum-pooling operation.

Regarding to which of the layers should we use to

extract activations and construct features, it is well-known

that the deepest the layer, the lower-level and less task-

specific and more general information it encodes [12]. In

[12] for example, where a convnet trained for classification

on ImageNet is studied, it is shown that the first layers

are practically edge and corner detectors. Subsequent layers

detect more complex patterns such as texture. Layers close

to the output detect very high-level structure, like images

of dogs, keyboards, and other classes that are specific to

ImageNet.

In the current work we use convnets trained to classify

characters [3], in order to extract features. Concatenating

activations of multiple layers has been succesfully tried,

where concatenated vectors are dubbed hypercolumns [5].

Inspired by the work of [5], we experiment in concatenating

activations from multiple convolutional layers. As in the case

of the ImageNet-trained convnet, we can expect that moving

from deeper to shallower layers, corresponds to going from

lower to higher-level detectors. Our character classifiers

are pretrained mostly on ”street-view” text (fig. 2), which

can differ significantly from our test set (fig. 3). For this

reason we are not interested in using high-level activations,

neither activations that capture too low-level information.

Our experiments (sec. IV) confirm that intermediate layer

activations are more important for the task in question.

The authors of [3] use their character classifier to extract

outputs that are subsequently used for a different task

(recognition). The word-level map they propose is based

on the softmax response of the model instead of using the

hidden layers as done in this work. The hypercolumns used

in our work are much less task-specific and capture more

abstract information than softmax outputs. This enables us

to use the proposed model to perform KWS even on a

script different than the one that the original network was

pretrained with; we demonstrate this in section IV.

III. PROPOSED METHOD

In this work, we propose a new, fixed-length descriptor

for segmented word images. Each word image is first

partitioned into a number of vertical zones. For each of

the zones a set of local, pixel-level descriptors is extracted

using an appropriate convolutional network. These pixel-

level descriptors are called ”hypercolumns” in this work.

These are subsequently aggregated and concatenated into a

single, fixed-length, word-level descriptor. Keyword spotting

is then expressed as nearest neighbour search in the space of

the final descriptors. The processing pipeline is summarized

in fig. 1.

Figure 1. Processing pipeline to construct ZAH features. From top to
bottom, we have: Input word image ; partition of image along its width
into Z = 6 zones, with each zone covering an area of h × wz pixels;
extraction of pixel-level hypercolumns, for each zone a h×wz×d, where
d is hypercolumn dimensionality; aggregation of hypercolumns into a single
1 × d hypercolumn per zone; concatenation of zone hypercolumns into a
single 1× Zd vector.

We continue with describing the proposed pipeline steps

in greater detail.

Zoning: The input is partitioned into Z vertical zones

(fig. 1); we used Z = 6 in this work. Each zone overlaps

283284

its neighbouring zones by a width equal to a 1
4Z fraction of

the total word width.

Setup of the pretrained CNN: To compute the proposed

descriptor, we make use of a pretrained deep Convolutional

Neural Network. We have used the character classifier CNNs

of [3]. In principle, we can use any off-the-shelf CNN that

has been trained to classify character images to character

classes. We have used the case-insensitive CNN character

classifier and the bigram classifier of [3], to which we shall

refer here as unigram CNN and bigram CNN. These nets

have been trained on a total of 186k and 92k samples

respectively, coming from various ”street-view” sources (see

fig. 2).

Figure 2. Samples of training images that the CNNs we use in this work
were trained with.

Feed-forward neural networks consist of a stack of layers,

each one forwarding output to the layer that follows, until

the output layer is reached. Consequently this applies also

to convolutional networks, i.e. the nets we use. Input is

pre-normalized so that the mean of the input is zero and

its standard deviation equal to one. The architecture of the

CNNs we have used in this work is as follows. Input is a box

of 24 × 24 pixels, containing a single unigram or bigram.

The output of the models contains 37 classes in the case of

the unigram model (26 latin characters, 10 digits and a class

for space) and 604 classes in the case of the bigram model.

Intermediate layers are either sets of convolutional or fully-

connected layers. We have three sets of convolutional layers

topped by maxout layers, and one set of fully-connected

layers topped by a maxout layer. The convolutional layers

have window side of 9, 9, 8 pixels respectively. We shall

refer to the maxout layers for each set as conv1, conv2,

conv3 and fc1 correspondingly. In maxout layers a point-

wise maximum over underlying layers of the same resolution

is taken. In each maxout layer the maximum value is taken

over tuples of 2, 4, 4, 4 underlying channels, respectively

for conv1, conv2, conv3, fc1. Each maxout layer applies

this operation over a number of input channels such that the

output channels are 48, 64, 128 total channels respectively

for the first three maxouts and 37(604) for the last maxout

layer of the unigram(bigram) model. The last layer fc1 is

followed by softmax activation to convert its values to a

probability vector of class responsibilites.

Extracting Hypercolumns using the CNN: In test mode,

the input can vary to any size larger than the size at training

time. We resize input word images so that their height h is

equal to a fixed number close to the original CNN input box

size (we used 30 as a default value), and width w is such that

the aspect ratio of the image remains fixed. With appropriate

zero-padding, the convolutional network gives output as a

30×w map. The amount of zero-padding necessary depends

on the number and size of the receptive fields of the net’s

convolutional layers. We zero-pad inputs with 11 zero pixels

per dimension. The resulting map is of size h × w × d,

where d is the total number of channels for all net layers.

For the unigram model, this would be d = 48 + 64 + 128 +

37 = 277 (we do not take into account maxout inputs). We

shall refer to this per-pixel concatenation of layer activations

into a single vector as a ”hypercolumn”, following [5]. In

practice, we do not concatenate all layers; concatenating a

subset of all layers tends to be more efficient (cf. [5], and

sec. IV in the current work).
Encoding Hypercolumns: Preprocessing and passing

each word zone through the CNN gives Z h×wz×d maps of

hypercolumns, one for each zone. 1. We proceed by encoding

each of the zone hypercolumns to a single descriptor per

zone. We used sum-pooling for aggregation, formally:

dz =
∑

x∈Wz

∑

y∈H
vxy (1)

where dz is the descriptor of zone d, set Wz contains all

possible width values of zone z, set H contains all possible

height values, and vxy is the hypercolumn computed for the

pixel with xy coordinates. We have also experimented using

a center prior with a weighted-sum version of sum-pooling

[6], formally

dz =
∑

x∈Wz

∑

y∈H
vxy exp

− 1
2λ(y−y0)

2

(2)

where λ is the precision (inverse variance) of the Gaussian

kernel and y0 is the height coordinate of the central hor-

izontal axis of the word image window. Setting λ = 0 is

equivalent to standard sum-pooling.

Zone-specific descriptors are then l2-normalized and con-

catenated to a single, fixed-length vector d:

d = [
d1

||d1|| ,
d1

||d1|| , · · · ,
dZ

||dZ ||] (3)

The full vector is itself subsequently l2-normalized 2.

IV. NUMERICAL RESULTS

A. Document sets

In order to test the proposed descriptor and method,

we have ran a set of keyword spotting trials on various

document datasets using a set of different model layouts. Our

collections are two machine-printed and three hand-written

sets, named here respectively ”French” [1], ”Gazette” [13]3),

1We actually feed the whole word image to the CNN and then split
into zones, which is more efficient; the two practices are in other respects
equivalent.

2Code is available at https://github.com/sfikas/zah .
3This set is named ”GR-POLY-DB-MachinePrinted-A” in its original

publication.

284285

”GW20” [14], ”Bentham” [15] and ”Modern” [15]. French
is part of a book written in French, and consists of 10 pages

segmented into 3258 word images 4. Gazette consists of

5 pages segmented into 5004 word images and is written

in polytonic Greek. GW20 is the well-known collection

of writings of George Washington, consisting of 20 pages

segmented into 4860 words. Bentham consists of 50 pages

segmented into 10648 words. Modern is a multi-writer,

multi-script collection, consisting of 100 pages segmented

into 14840 words. In figure 3 we show sample images from

the collections.

(a) French (b) Gazette

(c) GW20 (d) Bentham

(e) Modern

Figure 3. Samples from the document collections we used for evaluation in
this paper. (a) French (machine-printed) (b) Gazette (machine-printed, greek
script) (c) GW20 (handwritten) (d) Bentham (handwritten) (e) Modern
(handwritten, multiple writers, multiple scripts)

B. Experiments
We have computed Mean-Average Precision (MAP) val-

ues for QbE trials on French, Gazette and GW20. MAP was

computed as the mean over the result of querying selected

images from the respective sets. Regarding sets French and

Gazette, queries were selected according to a minimum

length and minimum frequency criterion, following [15]. All

instances of words with more than 5 letters and appearing

more than 6 times in the set were used as queries. trec eval
was used to compute MAP. For trials in GW20 we picked

query instances in the same manner as [16]. Regarding sets

Bentham and Modern, we used the automatic evaluation tool

provided in the competitions site [15] to compute MAP and

Precision at 5 (P@5) scores.
Choice of layers from which to extract features: We

have run tests on GW20, each with a different choice of

model parameters. We have experimented with using the

three (maxout) convolutional layers and the (maxout) fully-

connected hidden layer of the pretrained nets. We used

4In [1] a more extended version is presented. We used 10 pages out of
the total 153 pages, with ids: 416957, 416976, 417022, 417032, 416962,
416994, 416969, 416997, 416921, 416978.

the layer outputs by themselves, or concatenated in various

combinations to a single hypercolumn [5]. We used the

whole set for testing, and queries were chosen in the same

manner as [16]. All query instances are also part of the test

set. MAP results are reported in table I. We can conclude that

MAP(%)
Layer name unigram CNN bigram CNN

conv1 34.5 37.5
conv2 44.2 47.2
conv3 47.6 50.9
fc1 40.4 46.1

conv1+conv2 44.5 46.9
conv2+conv3 50.3 50.9

conv1+conv2+conv3 47.7 50.9
conv1+conv2+conv3+fc1 50.8 48.3

Table I
COMPARISON OF KWS RESULTS WHEN USING DIFFERENT CNN

LAYERS TO EXTRACT FEATURES. CONV1 IS THE DEEPEST, I.E. CLOSER

TO THE INPUT LAYER. FC1 IS THE CLOSEST TO THE OUTPUT.

the last convolutional layer (conv3) is the most important in

providing a good result. In terms of compromising between

descriptor calculation speed and efficiency, using conv3
or conv2 + conv3 is perhaps the best solution. Also, the

bigram model gave in general better results than the unigram

CNN. It is clear for both models that layer conv3, i.e.

the last maxout/convolutional layer is the most important

to include for good results. This result is consistent with

our expectation that layer features coming from intermediate

layers would be the more useful in our setup.
Unigram model vs bigram model vs both: We have ran

trials using the best combination of layers in the previous

experiment, and using layers coming from the unigram

character model, the bigram model, or a combination of the

two. In the latter case we have concatenated layer outputs

of conv2 and conv3 into a single vector. This gives a very

slight boost to results, in particular the three corresponding

MAP figures on GW20 were 50.3%, 50.9% and 51.2%.

However, in the latter case feature-extraction is twice as

expensive, as twice the number of feed-forward passes are

required.
Input size: Before performing the feed-forward pass

for each word image, we resize it to a fixed size, keeping

fixed its aspect ratio. The larger this size, the smaller the

CNN receptive field becomes in comparison. We have found

that using results from forward-passing with a bigger resize

height does not improve results; this is not unexpected, since

the CNN is trained to detect characters that are around a

fixed size (in our case, a window of 24 pixels per edge.

However, concatenating layer output of two different sizes,

one at the standard character size, and one at a finer level,

can give a small improvement. We have used window edge

size of 30 and 60 pixels. The corresponding MAP results

on GW20 are 51.2% and 47.0%. Combining the two gives

53.1%. The intuition behind this is that since the CNN is

285286

no longer used as a character classifier but as a feature

extractor, using multiple input rescalings becomes tantamout

to looking for features at multiple resolutions. In our case,

size 30 represents the coarse level and size 60 represents the

finer level.

Using multiple window resizes requires multiple passes on

the convnet, thus is as expensive as the number of different

window sizes, as is using the unigram and the bigram model

together. Also, the reported improvement is only slight. For

this reason, for the remainder of this section we use a bigram

CNN and a single resize window of 30 pixels to extract

features.

Center prior: We have used a center prior to prioritize

pixels close to center height of the image. While such a prior

did not give better results for natural image-related tasks [6],

we felt that it could be appropriate for word images since

important information may lie closer to the word center of

mass. A Gaussian kernel is used to penalize hypercolumns

close to vertical edges. Instead of standard sum-pooling

(eq. 1) we used a weighted variant (eq. 2). Preliminary

results with a center prior were mediocre, possibly because

the center of mass of the segmented word does not always

coincide with the same relative height in the word image.

For this reason we have first normalized the input so that the

image main zone is centered and covers a fixed percentage

of the total height [17]. A comparative trial on the GW20
set shows a dramatic increase from 51.2% to 66.4% by

normalizing the main zone alone. Using a center prior with

λ = 6 improves results even further, to 72.7%. Tests on

other sets have shown that normalizing and prioritizing

hypercolumns on the main zone also improves results and

is always very time-efficient, the extend of the improvement

though is largely set-specific.

C. Discussion of results

We have tested the proposed ZAH method using the

bigram CNN to extract features, layer conv3, center prior

with λ = 2 and a resize window equal to 30 pixels. MAP and

Precision at 5 results can be seen at table II. The compared

methods are: ZAH (proposed), Adaptive Zoning [1], [13],

Profiles/DTW [14], [16], PAS features [16], Attribute-based

model [2], HOG/LBP-based method [9], Inkball model [18],

Projections of Oriented Gradients (POG) [17], BoVW-based

[8].

It is worth noting that even the ”easiest” of all databases,

i.e. the machine-printed, latin-script French, is already dif-

ferent in many aspects than the sets that our convnets were

pretrained with (fig. 3), i.e. street-view text. However, the

proposed method manages to work well even though no

extra refining of the net has been performed on any of the

test sets. We tested the descriptor’s robustness to handling a

script different than the one the related CNN was trained

with. In our case, the language of training was English,

and we tried testing the proposed descriptor in the polytonic

Greek Gazette set. These result validates our expectation that

the deep layers encode task characteristics that are abstract

enough to be transferred succesfully to even a different

script.

We show keyword spotting results also on the two datasets

of the ICFHR 2014 KWS competition, Bentham and Mod-
ern, in table II. The proposed method compares fairly against

other reported results. While the benchmark is learning-

free, the winning attributes/SVM-based model of [2] does

require offline learning. Both results of [2] were achieved

using training sets that are very close to the test sets

(GW20 and IAM). In comparison, our method is trained

on a very generic set of word images, that is not even

handwritten. In other words, our method requires no test

set-specific finetuning, unlike [2]. In general, the proposed

method attains results in the same ballpark as most other

reported results of the ICFHR 2014 sets. In terms of P@5
in particular, in Bentham we are second only to the recent

POG method [17], with a difference of only 0.7%.

V. CONCLUSION AND FUTURE WORK

We have presented a novel descriptor for word images,

and used it succesfully for segmentation-based keyword

spotting. The proposed descriptor is computed as a function

of a pretrained CNN and the input word image. No extra

finetuning of the CNN on the test set is required. While

convnets have been used in numerous task and various setups

in document processing, the novelty of the current work

lies in that we use the convnet’s hidden layer activations,

instead of using its output, to extract features suitable to

describe document / word images. We adapted this paradigm

from generic machine vision into word spotting by combin-

ing CNN feature extraction with sum-pooling aggregation

and vertical zoning. Extensive trials on a variety of both

machine-printed and handwritten documents have validated

the method’s usefulness.

In our model, activations of layers are combined to form

pixel-level cues that are called hypercolumns. We used a

simple sum-pooling and zoning scheme to encode hyper-

columns to a single word-level descriptor. Compared to other

state-of-the-art encoding schemes (such as Fisher vectors),

our approach is extremely fast and requires no extra learning

procedures, like training a GMM for FVs.

We used the pretrained CNNs largely as off-the-shelf

models, in the sense that any other classifier could have been

used in their place. Various other layouts for the pretrained

CNN could be investigated. A straightforward extension

could follow the trend of trying to use even deeper models

[19].

In [19] it has been shown that training a useful CNN-

based classifier is possible even when available training data

are scarce. With respect to our model, this result may be

interpreted as motivation for one to use a CNN trained

directly and specifically on the style of the document of

286287

%
ZAH (proposed) [1] [14] [16] [2] [9] [18] [17] [8]

French 91.5 81.2 89.7 − − − − − −
Gazette 92.4 68.2 89.8 − − − − − −
GW20 71.1 22.5 22.1 37.5 ∗ ∗ − − −

Bentham 53.6 − − − 51.3 52.4 46.2 57.7 46.5
Bentham(P@5) 76.4 − − − 72.4 73.8 71.8 77.1 62.9

Modern 32.1 − − − 52.3 33.8 27.8 35.5 38.9
Modern(P@5) 56.0 − − − 70.6 58.8 56.9 61.3 61.9

Table II
COMPARISON OF SPOTTING RESULTS USING THE PROPOSED ZAH DESCRIPTOR AGAINST OTHER METHODS IN THE LITERATURE. REPORTED RESULTS

ARE MAP FIGURES UNLESS DENOTED OTHERWISE. SEE TEXT FOR A DISCUSSION OF RESULTS. (* [2] AND [9] REPORT RESULTS ON GW20, BUT THEIR

RESULTS ARE NOT COMPARABLE TO OURS; [2] USES A FOLD FROM THE SAME SET FOR TRAINING, AND [9] USE A DIFFERENT EVALUATION

PROTOCOL).

interest, instead of using a generic pretrained CNN. We leave

this line of research as future work.

REFERENCES

[1] B. Gatos, A. L. Kesidis, and A. Papandreou, “Adaptive zoning
features for character and word recognition,” in International
Conference on Document Analysis and Recognition (ICDAR),
2011, pp. 1160–1164.

[2] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word
spotting and recognition with embedded attributes,” IEEE
Transactions in Pattern Analysis and Machine Intelligence,
vol. 36, no. 12, pp. 2552–2566, 2014.

[3] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Deep features
for text spotting,” in IEEE European Conference in Computer
Vision (ECCV). Springer, 2014, pp. 512–528.

[4] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky,
“Neural codes for image retrieval,” in IEEE European Con-
ference in Computer Vision (ECCV), 2014, pp. 584–599.

[5] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hy-
percolumns for object segmentation and fine-grained localiza-
tion,” in IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 447–456.

[6] A. Babenko and V. Lempitsky, “Aggregating local deep fea-
tures for image retrieval,” in IEEE International Conference
on Computer Vision (ICCV), December 2015.

[7] T. M. Rath and R. Manmatha, “Word image matching using
dynamic time warping,” in IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), vol. 2,
2003, pp. 521–527.

[8] D. Aldavert, M. Rusiñol, R. Toledo, and J. Lladós, “A study
of Bag-of-Visual-Words representations for handwritten key-
word spotting,” International Journal on Document Analysis
and Recognition (IJDAR), vol. 18, no. 3, pp. 223–234, 2015.

[9] A. Kovalchuk, L. Wolf, and N. Dershowitz, “A simple and
fast word spotting method,” in International Conference on
Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 3–
8.

[10] V. Frinken, A. Fischer, R. Manmatha, and H. Bunke, “A novel
word spotting method based on recurrent neural networks,”
IEEE Transactions in Pattern Analysis and Machine Intelli-
gence, vol. 34, no. 2, pp. 211–224, 2012.

[11] Y. Kalantidis, C. Mellina, and S. Osindero, “Cross-
dimensional weighting for aggregated deep convolutional
features,” arXiv preprint arXiv:1512.04065, 2015.

[12] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in IEEE European Conference in
Computer Vision (ECCV). Springer, 2014, pp. 818–833.

[13] B. Gatos, N. Stamatopoulos, G. Louloudis, G. Sfikas,
G. Retsinas, V. Papavassiliou, F. Sunistira, and V. Katsouros,
“GRPOLY-DB: An old greek polytonic document image
database,” in International Conference on Document Analysis
and Recognition (ICDAR). IEEE, 2015, pp. 646–650.

[14] V. Lavrenko, T. M. Rath, and R. Manmatha, “Holistic word
recognition for handwritten historical documents,” in Pro-
ceedings of the First International Workshop on Document
Image Analysis for Libraries. IEEE, 2004, pp. 278–287.

[15] I. Pratikakis, K. Zagoris, B. Gatos, G. Louloudis, and
N. Stamatopoulos, “ICFHR 2014 competition on handwritten
keyword spotting (h-kws 2014),” in International Conference
on Frontiers in Handwriting Recognition (ICFHR). IEEE,
2014, pp. 814–819.

[16] A. P. Giotis, G. Sfikas, C. Nikou, and B. Gatos, “Shape-based
word spotting in handwritten document images,” in Inter-
national Conference on Document Analysis and Recognition
(ICDAR). IEEE, 2015, pp. 561–565.

[17] G. Retsinas, G. Louloudis, N. Stamatopoulos, and B. Gatos,
“Keyword spotting in handwritten documents using projec-
tions of oriented gradients,” in International Workshop on
Document Analysis Systems (DAS). IAPR, 2016, pp. 411–
416.

[18] N. R. Howe, “Part-structured inkball models for one-shot
handwritten word spotting,” in International Conference on
Document Analysis and Recognition (ICDAR). IEEE, 2013,
pp. 582–586.

[19] S. Sudholt and G. A. Fink, “PHOCNet: A deep convolutional
neural network for word spotting in handwritten documents,”
arXiv preprint arXiv:1604.00187, 2016.

287288

