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This paper describes a new method for multilevel threshold
selection of gray level images. The proposed method includes three
main stages. First, a hill-clustering technique is applied to the
image histogram in order to approximately determine the peak
locations of the histogram. Then, the histogram segments between
the peaks are approximated by rational functions using a linear
minimax approximation algorithm. Finally, the application of the
one-dimensional Golden search minimization algorithm gives the
global minimum of each rational function, which corresponds to
a multilevel threshold value. Experimental results for histograms
with two or more peaks are presented. © 1994 Academic Press, Inc.

1. INTRODUCTION

Thresholding is one of the most powerful techniques for
image segmentation. The application of the thresholding
technique is based on the assumption that object and
background pixels in a digital image can be distinguished
by their gray-level values [1]. In some cases, such as text
images, it is a priori known that the image contains only
two principal gray tones. The histogram of such an image
may be considered that it represents the distribution of
the image brightness. Using the histogram form, it is possi-
ble to determine an optimal threshold value for seg-
menting the image into the two brightness regions. The
result of this processing is an image with only two gray
levels, which correspond to the background and objects.
This approach is referred to as global (or bilevel) thresh-
olding. Over the past years, several techniques have been
proposed for automatic global threshold selection. For a
survey of thresholding techniques, see [2].

Global thresholding methods can be applied only to
some images, where a clear foreground—background rela-
tionship exists [3]. For the segmentation of more complex
images, however, it is necessary to resort to multilevel
threshold selection techniques. Generally, it is not a sim-
ple matter to determine multilevel threshold values. In
multi-object images there are several difficulties for multi-
level threshold selection that are associated with the gray-
level distributions, small objects, and object overlapping.
To overcome these difficulties, several techniques have

been proposed. Baukharouba et al. [4] first determine a
distribution rational function. Then, the multithreshold
values are defined as the zeros of a curvature function
derived from the distribution function. Many multithresh-
olding approaches are based on edge matching and classi-
fication. The methods of Wang and Haralick [5], Hertz
and Schafer 6], Kohler {3}, and Spann and Wilson [7]
belong to this category. These methods are applicable to
images with good edges. Additionally, they are not based
on histogram information for determination of the thresh-
old values. As a first step, in all these methods, the pixels
of the initial image are first classified as edge and nonedge
pixels by using an edge extraction algorithm. Conse-
quently, for the extraction of the best thresholds, compu-
tationally expensive recursive procedures are used. Dur-
ing each iteration, the threshold values are modified in
order to satisfy some edge characteristics.

Spann and Wilson [7] propose a hybrid multithreshold
selection method, which is based on statistical and spatial
information. Specifically, the method is a combination of a
quad-tree smoothing technique, a local centroid clustering
algorithm, and a boundary estimation approach. This
method is applicable under some conditions, such as re-
quiring that the histogram consist of only Gaussian distri-
butions.

Another category of multithreshold selection ap-
proaches involves methods that are only based on image
histogram. The methods of Reddi e al. [8], Kapur et al.
[9], and Carlotto [10} belong to this category. The method
of Reddi et al. is very fast and it is a version extended to
multithresholding of the global threshold method of Otsu
[11], which, according to [2], is probably the most power-
ful method for global thresholding. The criterion used is
the selection of the threshold so that the interclass vari-
ance between dark and bright regions is maximized. A
second interesting and effective multithreshold approach
is the method of Kapur et al., which is based on the
maximum entropy criterion. An interesting approach for
multithresholding has been proposed by Carlotto. Ac-
cording to this approach, the determination of the thresh-
old values is achieved by handling information derived
from the changes of zero-crossings in the second deriva-
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tive. This method gives good results only for the histo-
grams that satisfy the basic hypothesis that the histogram
consist of only univariate normal distributions.

This paper proposes a new, histogram-based multilevel
threshold selection method that results in multilevel
threshold values. The proposed method consists of three
main steps. In the first stage, an efficient hill-clustering
technique is applied and the peak locations of the histo-
gram are approximately determined [12]. This technique
is iterative and converges if the number of peaks found
is less than or equal to the desirable maximum number
of peaks. The only input value needed is the number of
histogram peaks, or equivalently, the number of objects
that are possibly included in the image. In the second
stage, the histogram segments between the peaks are ap-
proximated by real rational functions using a fast linear
programming algorithm and the minimax criterion [13,
14). This method results in real rational functions which
optimally approximate the valley points of the histogram
by sufficiently small minimax approximation errors.
Therefore, with this procedure, the histogram segments
between the peaks are satisfactorily fitted by real rational
functions. Finally, the multilevel threshold values of the
histogram are defined as the global minimum values of
each rational function. To find these global optimal values,
the one-dimensional Golden search algorithm is applied
{15]. It is noted that the linear programming problem al-
ways has a global solution, and the approximation errors
are minimax.

To demonstrate the proposed method, experimental re-
sults for histograms with two or more peaks are presented.
In order to assess the performance of the algorithm, the
results are compared with those given by the methods of
Otsu [11], Reddi et al. [8), and Kapur et al. [9].

2. PEAK DETERMINATION BY THE
HILL-CLUSTERING METHOD

Let us consider a gray-level image that contains objects
and background. For this image each object corresponds
to a hill in the gray-level histogram. The histogram of
such an image is a nonnegative, real-valued function and
contains peaks and valleys. Pixels that lie in the neighbor-
hood of peaks are classified as object pixels, whereas
valley pixels are characterized as unclassified because
they do not belong positively to a specific object.

Let & be the set of the positive integers representing
the image gray levels, and f(x, y) the image function which
gives the gray-level value of the pixel with coordinates
(x, y). The histogram H(k) of this image is defined as

Hk)= 3 f(xy), kER M

Y (x,y)=k

The multilevel threshold selection can be considered
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as the problem of finding a set 7(/), [ =1, ..., L, of
threshold values, in order that the original gray-level im-
age be transformed to a new one with L + 1 levels. This
can be done by finding threshold values that are located
in valleys and between adjacent hills. More specifically,
if T(), ! = 1, ... 1, are the threshold values with 7T(1) <
T(2) < ... < T(L), then the resultant image is defined as

0, iff(x,y)=T(),

1, fT() =f(x,y)=TQ),

F(x,y)= 2

L, iff(x,y)=T(L).

The proposed multilevel threshold selection approach
consists of three main parts. The first part is based on
the hill-clustering method proposed by Tsai and Chen [12].
According to this method, the locations of the histogram
peaks can be approximately determined by an iterative
procedure. In each iteration the number of gray levels
(cells) is reduced by half. More specifically, this method
consists of the following steps:

Step 1. Give the value of M,,, where M, is the maxi-
mum number of desired histogram peaks. The iterative
clustering procedure converges when the total number of
determined peaks is less than or equal to M,. Also, set
ITER = 0.

Step 2. SetITER = ITER + 1 and the number of cells
equals to N¢ ;7zr = Neof2'™R1, where N, the number
of cells of the initial histogram. The frequency of each
cell f; is defined as g; ;e = 0.5(8i72r-1 + 8i-1.11ER-1)>
i=1,2,..., Ncrer-

Step 3. Establish the arrow directions. If d; is the
arrow direction at cell i, then

+1, (i >fid N =) #0,
-1, if(f;,>fi)Nf =) #0, (3

0, otherwise.

d‘,=

In the case of tie (i.e., fi_,= fi\), set d; = d,_,.

Step 4. Identify the peaks:

(@ if{d=0n(._=-1)nNd,
cell i is the peak of the hill; or

(by if (d;= —1) N (d;;, = +1), then a peak is also
identified between cells i and i + 1. Repeat Step 4 to
identify all peaks in the gray-level histogram.

Step 5. If the number of peaks identified in Step 4 is
less than or equal to the desired number of peaks, then
g0 to Step 6; otherwise, go to Step 2.

Step 6. Approximate the locations of the histogram
peaks and terminate the procedure. Specifically, if cell i
is a peak then its gray level is identified as the location
of the peak.

= +1), then
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Hill-Clustering Method
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FIG. 1. An example of the hill-clustering method.

It is noted that the peak locations are only approxi-
mately determined. Also, the final number of peaks corre-
sponds to the total number of hills and consequently to
the total number of objects. Figure 1 shows the application
of the hill-clustering method to a histogram with only two
needed peaks.

3. MULTILEVEL THRESHOLDING
PROBLEM FORMULATION

In the second part of the proposed method, the problem
that must be solved is the optimum fitting of the histogram
data between the peaks. This approximation must satisfy
several characteristics such as small approximation er-
rors, global convergence to the optimum solution, and low
computational cost. To achieve these goals, we propose a
new technique that is based on the linear rational approxi-
mation (LRA) algorithm [13, 14]. With this algorithm we
can fit any set of data by a real rational function according
to the minimax criterion. Additionally, the optimization
technique that is used is the well-known linear program-
ming technique and specifically the revised simplex algo-
rithm [16]. The result of this procedure is the optimum
approximation of histogram segments by real rational
functions.

To clarify the approximation technique, let us consider
that hill-clustering method gives a total number of histo-
gram peaks equal to P, where (W,, G(W,)),n =1, ...,
P, are the coordinates of the peaks. This means that the
histogram has P — 1 valleys, which lie between the peaks.
For the nth valley let:

K be the total number of gray levels included;

« Gwy), k=1, ..., K, be the values of the histogram
at the w, gray level;

*w,, k=1, ..., K, be the gray-level values, with
W, =w, =W,

For each valley, the LRA algorithm can fit the histogram
points (w,, G(w,)), k = 1, ..., K, by a real rational func-
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tion of the general form

N
2o W™

M *
+ 2, b

Alw) _
B(w) 1

R(w) = 4

where a,,and b, are the unknown coefficients, and N and
M are integers that define the degree of the polynomials
A(w) and B(w). This approximation problem is solved by
a well-established linear programming approach based on
the minimax criterion. Specifically, for every point (w,,
G(w,)) the following objective criterion is defined:

Gw) — R(w,)— Ey, (5)
Here the E, are known quantities with small absolute
values.
Also, for every k the variables ¢, are defined as
&= (Gwy) — E)B(w,) — Alwy), (6)
which may also be written as

Gw) — E, = R(w,) + £,/B(wp). 7

According to the LRA method, the following approxi-
mation problem is formulated:

maximize d’
subject to:
|(Gw) — EQB(w,) — Aw))| < ¢ )
B(w,) =z d'¢, and
k=1,...,K,

where ¢ = max imum | ¢, | and 1/d’ is the minimax approxi-
mation error.

From the above formulation of the approximation prob-
lem, it is easy to prove that in the optimum solution the
following relation always holds:

|G ~E) = RO | < pEs=g O

Therefore, if the positive quantity 1/d’ takes a sufficiently
small value, then the fitting error is satisfactory.

Problem (8) is converted to a linear one by using the
following transformations:

d=1d,
b, = b,lE'.

£ =1¢,

ap = anlé’,

10)

Finally, the approximation problem takes the following
linear form:
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minimize d
subject to:

M
+HGwy) = EJE + (Gwy) — E) 2, bywi -

M
~(G0w) ~ Egt ~ (Glw) ~ E) 3, bwi +

The solution of the linear problem (11) is obtained by
using the revised simplex algorithm and the final value of
d represents the optimal minimax approximation error.
According to Eq. (4), the optimal values of coefficients
a,and b, form the approximated rational function.
Clearly, the initial specifications of the linear program-
ming problem (11) are the number of numerator and de-
nominator coefficients (the variables N and M) and the
values of £, (usually we take E, = E, Vk, where E is a
small positive value).

It is noted that in contrast to other similar approxima-
tion techniques, such as the Differential Correction Algo-
rithm [17], the LRA algorithm is not iterative; i.e., the
linear programming problem is not solved recursively.
The only iterations (loops) needed are those included in
the simplex algorithm. Although, if we want to adjust the
values of M and N in an adaptive scheme, then we must
solve iteratively the linear programming approximation
problem until, for example, the approximation error be-
comes sufficiently small. This case is unusual. As we can
see in the given examples, small predefined values for N
and M result to satisfactory approximation.

The rational function R(w) is real and continuous. To
find its minimum in the region [W,, W, ], the one-dimen-
sional Golden search algorithm is applied. The inputs of
the Golden search algorithm are only the limits of the
interval. In our case, the limits are defined by the W, and
W,.\, while the one-dimensional function for each region
is the real rational function R(w). To ensure that the
Golden search algorithm always converges to the global
minimum, we use the following procedure.

Step 1. Find the minimum R, of R(w).
Step 2. Define the function Y(w) according to the re-
lation

R(w), ifR(w)=Ry,,
Y(w) = , (12)
Ryin, otherwise.
Step 3. Find the minimum Y, ;, of Y(w).
Step 4. If Y., = R, 20 to Step 5; otherwise put

Rin = Yoin and go to Step 2.
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3
M=
2
ol
<
~3
IA

3
M=
1>
2
S
>3
IA
N

. (1)

Step 5. The global minimum solution is equal to R
Terminate the procedure.

min *

The result of the above minimization procedure is the
minimum value of R(w) and its position. This minimum
is taken as a threshold value of the histogram.

4. EXPERIMENTAL RESULTS

The proposed multilevel threshold selection method
was tested using a variety of digital images. In order to
have some comparative results with other existing similar
techniques, we have implemented the methods of Otsu,
Kapur et al., and Reddi et al. It is noted that the results
given by the LRA algorithm are referred to normalized
histogram values, that is, 0~1 for the x-axis and 0-1 for
the y-axis. Here we present three characteristic examples
that describe the application and the effectiveness of the
proposed method to three images.

Example 1

In the first example, the method was applied to the badly
illuminated text image that is shown in Fig. 2. Because this

FIG. 2. Text image for Example 1.
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TABLE 1
Histogram Values for Example 1

i h(i) i k(i) i h(i) i h(i) i h(i) i h(i) i h(i) i h(i)

1 2 | 33 1762 | 65 356 | 97 145 | 129 235 ] 161 0 | 193 0 | 22 0
2 11 34 | 3712 | 66 0 | 98 326 | 130 0 | 162 0| 194 0 | 22 0

3 81 35 | 5851 | 67 366 | 99 166 | 131 211 | 163 637 | 195 0 | 227 0

4 0] 3 1985 | 68 310 | 100 0 | 132 250 | 164 626 | 196 0 | 228 0

5 170 | 37 | 6138 | 69 579 | 101 0 | 133 263 | 165 0 | 197 0 | 229 0
6 631 38 4193 70 338 102 175 134 258 166 608 198 0 230 0

7 354 | 39 0 | 71 o | 103 157 | 135 o | 167 499 | 199 0 |23 0
8 417 | 40 | 2150 | 72 459 | 104 143 | 136 279 | 168 0 | 200 0 | 23 0

9 163 | 41 | 6447 | 73 o | 105 361 | 137 0 | 169 0 | 201 0 | 233 0
10 201 42| 4359 74 197 | 106 184 | 138 289 | 170 0 | 202 0 | 234 ]
1 0 | 43 | 2138 75 425 | 107 0 | 139 23 | 171 0 | 203 0 | 235 0
12 97 1 44 | 6502 76 194_| 108 0 | 140 305 | 172 372 | 204 0 | 236 0
13 104 | 45 | 414 77 200 | 109 203 | 141 29 | 173 229 | 205 0 | 237 0
Iz} 235 | 46 0 78 182 | 10 185 | 192 0 | 174 0 | 206 0 | 238 0
15 180 | 47 | 2058 79 363 | 111 173 | 143 0o | 175 136 | 207 0 | 239 0
16 367 | 48 | 3950 | 80 o | 112 179 | 144 310 | 176 0 | 208 0 2% 0
17 523 | 49 | 3604 | 81 174 | 113 150 | 145 379 | 177 0 | 209 0 | 241 0
18 0 50 3288 82 179 114 0 146 0 178 91 210 0 242 0
19 478 | 51 | 3040 | 83 185 | 115 o | 147 377 | 179 0o 211 0 | 243 0
20 581 52 0 | & 183_| 116 189 | 148 0 | 180 2 |20 0 | 244 0
21 755 | 53 | 2638 | & 330 | 117 302 | 199 0 | 181 0 | 213 0 | 245 0
2 1493 | 54 1255 | 86 178 | 118 209 | 150 363 | 182 0 | 214 0 | 246 0
23 118 | 55 | 2164 | 87 0 | 119 19 | 151 378 | 133 0 | 215 0 | 247 0
24 1540 | 56 1886 | 88 o | 120 164 | 152 109 | 184 0 | 216 0 | 248 0
25 0 | 57 85 | 8 333 | 121 0 | 153 402 | 185 14 | 217 0 | 249 0
26 | 2776 | 58 1592 1 % 153 | 122 0 | 154 0 1 18 o | 218 0_| 250 0
27 1050 | 59 0o | o1 153 | 123 228 | 155 o | 187 5 |2 0 | 251 [
28 | 3595 | o0 1290 | 92 164 | 124 198 | 156 492 | 138 o | 220 0_| 252 0
2 | 2763 | 61 1201 93 158 | 125 196 | 157 0 | 18 0 | 221 0_| 253 0
30 2963 62 0 94 0 126 236 158 0 | 190 0 | 222 0 | 254 0
31 4973 | 63 948 | 95 154_| 127 225 | 159 544_| 191 0 | 223 0 | 255 0
32 0 | 64 837 | 96 157 | 128 ) 536 ]| 192 0 | 224 0 | 256 0

image includes only text, it is obvious that the suitable tion of the new method. Specifically, the hill-clustering
number of histogram peaks is equal to 2. Table 1 gives algorithm converges to the 39 and 151 peak locations. The
the histogram values. histogram of this image is approximated in the interval

Figure 3 describes the results obtained from the applica-  [39, 151] by a rational function R(w) with M = 4, N = 2,

39, 151

Threshold value:

Histogram

103

210
220
230
240 -1
250

FIG. 3. Application of the new method to the image of Fig. 2.
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Example 2

As a second example, let us consider the application
of the new multilevel threshold method to the image of
Fig. 6. This image consists of five colors and the back-

Select To

Other _ List last iogin, whether user

Information | is a console operator
(p18), and disk space as-
signed and being used

Security Lists users and groups the

Equivalences | user is security equivalent
fo

Directory View, add (<Ins>), or de-

Trusfee 1efe dimry WSfeeS,'

Assignments maodify (<F3> and then
<Del> or <Ins>} trustee as-
signments {p52}

FIG. 4. Image of Fig. 2 after global thresholding.

and E = 0.0. The solution of the linear minimax approxi-
mation problem (11) gives the following optimal values:

£ = 0.0554956, & = 0.338864,
a, = 0.107191, b, = —9.80346,
a, = 0.65468, b, = 28.729.

a, = —5.2217,

a, = 8.17153,

As we can observe from the above results and from Fig.
3, the histogram fitting is satisfactory between the peaks
and the rational function has only one minimum. By using
the Golden search technique, the location of this minimum
was found to correspond to the 103 gray level, which
is taken as the threshold value. Therefore, according to
relation (2), the final binary image has been obtained and
it has the form of Fig. 4.

For comparison, we apply to the same histogram, the
methods of Otsu, Kapur et al., and Reddy et al. Otsu’s
method, using the maximum {o }/o}} criterion, converges
for a threshold equal to 86. Additionally, the method of
Kapur et al., based on the maximum entropy criterion,
gives a threshold value equal to 64, which corresponds
to maximum entropy equal to 7.821075. Finally, the
method of Reddi et al., after four iterations, converges
to a threshold value equal to 87. Figure 5 shows the seg-
mented images resulted by using the methods of Otsu and
Kapur et al.

Select To
Other _ List last login, whether user
Information | is a console operator
{p18}, and disk space as-
signed and being used
Security Lists users and groups the
Equivalences | user is security equivalent
fo
Directory View, add (<ins>), or de-
Trustee lete directory frustees;
Assignments | modify (<F3> and then
<Del> or <Ins>} trustee as-
signments (p62)
@
- To
List last login, whether user
is a console operator
(p18), and disk spoce as-
signed and being used
Security Lists users and groups the
Equivalences | user is security equivalent
to .
Direciory | View, add {<ns>), of de-
'rmrzry lete direciory frustees;
Assigmrnents mﬁl‘y (<F3> Cind ﬂ'uen
| <Deb or <ns>) trustes as-
r? : 2,;:: 'é?'\ ﬁg _W’i‘lﬁ ‘i\ Bet

(b)

FIG. 5. Thresholding by using the methods of (a) Otsu [11] and

(b) Kapur et al.[9].
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FIG. 6. Image for Example 2. FIG. 8. The final segmented image of Fig. 6 with only four gray
levels.

Peaks:

39,71, 151, 215

Threshold values:

56, 111, 175

=z oy
T P

b

S
L
b

=
v

| L L L L A RO N B
S2RB9RBR838288838R2838288¢283%
- - o o - - - - = - o N N

Gray Level

FIG. 7. Application of the new method to the image of Fig. 5.
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TABLE 2
Histogram Values for Example 2

i ki) i ki) i hi) i h(i) i hi) i k(i) i ki) i h(i)

1 0 | 33 0 | 65 550 | 97 22 1129 37_| 161 0_| 193 138_| 225 0
2 0 | 31 0 | 66 0 | 98 66 | 130 0| i62 0| 194 0 | 226 0
3 0_| 35 137 | 67 514 |9 34_| B3I 48| 163 10564 | 195 202 | 227 0
4 0o | 36 200 | 68 440 | 100 0 | 132 40 | 164 1618 | 19 0 | 22 13696
5 0 |37 | 40027 | 69 902 | 101 0 | 133 41| 165 0_| 197 0_| 220 0
[; 0 ) 8| 32| 70 867 | 102 28 | 134 76 _| i66 124_| 198 0 | 23 ]
7 0 | % 0 | 71 0 | 103 29 | 135 0| 167 61 | 199 490 | 231 0
8 0 | 40 | 1770 | 72 709 _| 104 28 | 136 77_| 168 0 | 200 0 | 23 0
9 0 | 41 | 6681 | 73 0_| 105 64 | 137 0_| 169 0 | 201 0 | 233 0
10 o | 42 | 2828 | 74 | 268 | 106 29 | 138 9 | 170 0 | 202 0 | 234 0
i1 0 | 43 | 1027 | 75 356_| 107 0 | 139 136|171 0_| 203 0 | 235 0
12 0 | 44 | 1481 | 7 103|108 0 | 140 206 | 172 62 | 204 0| 23 0
13 o | 4 81| 77 69 | 109 0| 141 351 | 173 49 | 205 d_| 237 0
14 0_| 46 0_| 78 58| 10 29 [ 142 0_| 174 0| 206 719 | 238 0
5 0| 47 147 |79 118|111 32 |43 o 1175 73| 207 0 | 23 0
16 0 | # 199 | 80 o | 112 33 | 144 681 | 176 0_| 208 g | 240 0
17 0| 49 137 |81 44| 113 32 145 197 | 177 0 | 209 1280 | 241 0
18 0_| 50 95 | & 37 | 14 0 | 146 0 | i78 56 | 210 0 | 242 0
19 0_| 51 75 | 83 38 | 115 0 |14 93 | 179 o | 211 0 | 213 752
20 0 | 52 0 | 84 29 | 116 4 | 148 0_| 180 66 | 212 0 | 244 0
21 0 | 53 531 & 68 | 117 64 _| 149 0_| isl 0 | 213 3348_| 245 0
22 0_| 54 26| 36 40 118 32 | 15 151 _| 182 0 | 214 0 | 246 0
23 0 | 355 43 | &7 0 | 19 32 | 151 624_| 183 g | 215 0 | 247 0
24 0 | 36 25 | 88 0 | 120 35 | 152 2270 | 184 0| 2is 0 |24 0
25 0_| 57 9 | & 61 | 121 0 | 153 5869 | 185 63 | 217 0 | 249 0
26 0 | 58 46 | 90 3 | 122 0 | 154 0 | 1% 0 | 28 16682 | 250 0
27 o | 59 0 | o 36 | 123 39 | 155 o | 187 80 | 219 0_| 251 0
28 0 | 60 40|92 30 | 124 28 | 156 1332 | 188 0 | 220 0 |22 0
20 0 | el 7i1_| 93 34| 125 27 | 157 0| I8 122 | 221 0_| 253 0
30 0 | 62 0_| 94 0_| 1% 35 1158 0 | 1% 0 | 222 25105 | 254 0
31 0 | 63 | 1587 | 95 33 | 127 34_| 159 15743_| 191 0 | 223 0 | 255 0
32 0 | 64 | 1618 | 9 32 | 128 0| is0 17085 | 192 0 | 224 0 | 25 0

ground. The values of the histogram are given in Table T "
2. Figure 7 shows the approximated results derived for pr= p; and pp = > p (14)

this example by taking four peaks, N = 3, M = 4, and
E = 0.0. The three threshold values were found to be
equal to 56, 111, and 175, and the final segmented image
is shown in Fig, 8. Table 3 gives the approximation errors
and the coefficients for the three rational functions.

For comparison, we apply in the same image the multi-
threshold selection methods of Kapur et al. and Reddi et
al. The method of Kapur et al., in its multithresholding
version, tries to find the threshold values by maximizing
the total entropy. Generally, for & thresholds 7, 75, .. .,
T,, the algorithm maximizes the evaluation function

T T
i D; P i
YT, Ty Ty == f—m(ﬂ—)— D ——m(:;)

i=1 Py T, i=Ti+1 Pr, T,

Ty
el S By, (f“)
i=T_+1 Pr, T,
S/ m(pm)
=T+l Pry, Tt ,

(13)

where

T

+1 =T, +1
For this example, the method of Kapur et al. converges
for y = 11.2691 and for the threshold values 75, 105, and
138. The segmented image in this case is shown in Fig. 9.
The method of Reddi et al. starts from the threshold
values 86, 138, and 190 and converges to the threshold

TABLE 3
Experimental Results for Example 2

First rational Second rational Third rational

function function function
I3 0.000248 0.01027 0.00131
d 0.056778 0.03637 0.17681
b, 0.0113275 0.21621 0.37733
b, -0.103184 —1.0144 —-1.07743
by 0.234564 1.13972 0.766917
by -27.595 104.296 50.3737
a, 258.465 —682.056 —232.963
a, —1000 1443 .08 342.531
ay 1375.8 ~1000 ~164.502
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FIG. 9. Application of the Kapur er al. [9] method to the image of
Fig. 6.

values 54, 112, and 188 after six iterations. Figure 10
shows the segmented image for this case.

Example 3

In the third example, we examine the more complex
image of Figure 11. This image contains overlapping ob-
jects. The application of the proposed method to this
image with three peaks, N = 4, M = 3, and E = 0, results
in threshold values equal to 28, 59, and 140. Table 4
gives the approximation errors and the coefficients of the
rational polynomial. Figure 12 depicts the histogram and
its approximation by the rational functions, whereas Fig.
13 shows the final segmented image.

We apply, as in the previous examples, the methods of
Kapur et al. and the method of Reddy et al. For the image
of this example, the method of Kapur gives threshold
values equal to 46, 91, and 136 that correspond to y(46,
91, 136) = 13.4732. Figure 14 shows the segmented image.
Also, the method of Reddi er al. results in the threshold
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FIG. 10. Application of the Reddi e al. {8] method to the image of
Fig. 6.

values 50, 106, and 158 after four iterations and gives the
segmented image of Fig. 15.

We will note that the least-squares algorithm can substi-
tute for the rational approximation method as the approxi-
mation procedure. However, there are some significant
‘*quality’’ differences and disadvantages using the least-

TABLE 4
Experimental Results for Example 3

First rational Second rational Third rational

function function function
£ 0.168475 0.001464 0.000758
d 0.168491 0.14871 0.011734
b, 0.596715 0.05355 -0.06118
b, 27.6382 -0.62694 0.388558
by —622.309 2.39339 -0.797522
a 2967.02 —2.87871 0.544024
a, —0.00451 —14.9706 ~5.75590
a 0.06731 70.7315 11.4808
a, —0.28732 -99.0335 -7.33152
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FIG. 11. Image for Example 3.

Peaks:

11, 35,99, 187

Threshold value:

rrnrrr——————ree_.

28, 59, 140

28rE582 8B TS EEREIRELE

Gray-Leve!

FIG. 12. Histogram and approximation results for Example 3.
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FIG. 13.

squares method. Specifically, the rational approximation
technique is less sensitive to noise because it minimizes
the maximum absolute differences instead of the sum of
the squared differences. Also, clearly a rational polyno-
mial can more efficiently fit difficult data because it has
numerator and denominator. Therefore, for equivalently
fitting results, rational functions need fewer coefficients
than do polynomials. Additionally, the coefficients de-
rived from the least-squares method are unstable in magni-
tude if the order of the polynomial exits an upper bound.

5. CONCLUSIONS

This paper introduces a new methodology for multilevel
threshold selection. The proposed approach consists of
three main steps. Initially, a hill-clustering method is used
to approximately determine the histogram peaks. Next,

Segmented image of Example 3.

a fast linear rational approximation algorithm is applied
and the histogram segments are approximated by real
rational functions according to the minimax criterion. Fi-
nally, the one-dimensional Golden search method finds
the global minimum values of the rational functions. These
minima are specified as the multilevel threshold values of
the histogram.

Experimental results show that for certain types of im-
ages the proposed method produces satisfactory multi-
thresholding results. The proposed technique was com-
pared, using experimental results, with other well-known
approaches and specifically, with the methods of Otsu
{11], Kapur e al. [4], and Reddi et al. [8]. In comparison
with the above techniques, the new multithresholding ap-
proach has the main qualitative difference that it is based
on and uses the morphology of the histogram and it is not
only a statistical procedure. In Example 2, it is obvious
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FIG. 14. Segmented image by using the method of Kapur er al. [9].

that we have three well-discriminated valleys. However,
the method of Kapur et al. fails because it results in
thresholds belonging to only one valley. In the same exam-
ple, the proposed approach and the method of Reddi et
al. give similar results. In Example 3, both the methods
of Kapur et al. and Reddi et al. fail because they do not
give a threshold value in the first valley. Additionally,
in comparison to the least-squares algorithm, the linear
rational approximation technique is more effective and
gives better approximation results.

H(k)
flx, y)

Ck)

APPENDIX: NOMENCLATURE

image histogram

image function: gives the gray-level value of the
image at the (x, y) pixel

total number of pixels that have gray-level val-
ues equal to k

I(m)

L
F(x,y)
M,

f;
8i,I1TER

[

P
K

G(w,)
W,
R(w)
A(w)
B(w)

the mth thresholding value

the total number of threshold values

the image after multilevel thresholding

the maximum number of desired histogram
peaks

the gray-level i of the histogram

the frequency of the cell i

arrow direction at cell i

total number of histogram peaks

total number of gray levels in a specific histo-
gram segment

the normalized frequencies of the histogram

the kth gray-level value

limit of a histogram segment

rational function

numerator of the rational function

denominator of the rational function

coefficients of A(w)
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FIG. 15.

coefficients of B(w)

auxiliary variables with small absolute values

auxiliary variable of the rational approxima-
tion problem

the minimax approximation error

number of cells in each iteration of the hill-
clustering algorithm
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