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Abstract 
 

Image segmentation is a major task of handwritten 
document processing. Many of the proposed techniques for 
image segmentation are complementary, in the sense that 
each of them using a different approach, can solve 
different difficult problems such as overlapping, touching 
components, influence of author style etc. In this paper a 
combination method of different segmentation techniques 
is presented. Our goal is to exploit the segmentation 
results of complementary techniques and specific features 
of the initial image so as to generate improved 
segmentation results. Experimental results on handwriting 
line segmentation methods demonstrate the effectiveness of 
the proposed combination method. 

Keywords: segmentation, handwriting, combination 
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1. Introduction 
Combining classifiers is a well researched topic in the 

pattern recognition community [1] [2] [3]. In classifier 
combination, rules are used to combine the outputs of 
multiple classifiers. The general objective is to exploit the 
complementary information between the classifiers and 
find the rules for building hybrid classifiers that 
outperform their constituent classifiers. In a sense, the 
different classifiers in a classifier combination can be seen 
as a collection of weak classifiers, where each classifier 
can solve some different difficult problems. Some of the 
most common classifiers combinations methods used in 
the literature include voting, and liner and logistic 
regression. 

With a similar way of thought we could combine the 
results of different segmentation techniques in order to 
achieve better segmentation results. Document 
segmentation into lines, words and characters is a major 
task in a document image analysis system [4]. There are 
many approaches in the literature for document 
segmentation which can be categorized in five major 

categories: projection profiles, smearing, grouping, 
Hough-based and stochastic methods. Techniques from 
each category can solve some specific problems such as 
overlapping, touching components, image degradations 
and others. Projection-based methods [5] are commonly 
used for printed document segmentation but can also be 
adapted to handwritten documents with little character 
overlap and they aren’t sensitive to writing fragmentation. 
Smearing methods, such as Run-Length Smoothing 
Algorithm [6], enriched by local considerations can solve 
specific problems including overlapping, touching strokes 
etc. Grouping methods [7] consist in building alignments 
by aggregating units in a bottom-up strategy and methods 
based on the Hough transform [8] can be applied to 
fluctuating lines of handwritten drafts. Finally, stochastic 
methods [9] are more robust, but their implementation 
requires great care, particularly regarding the initialization 
phase. 

In this paper, we propose a combination method of 
segmentation techniques. Our goal is to increase the 
efficiency and the accuracy of the segmentation result 
using (i) the results of segmentation techniques, which 
belong to different categories, as mentioned before, and 
(ii) specific features of the initial document according to 
the segmentation problem which we have to face, such as 
line, word or character segmentation. The rest of the paper 
organized as follows: In section 2 the proposed 
combination method for different segmentation techniques 
is detailed. In section 3 we present experimental results 
using two complementary handwriting line segmentation 
techniques which indicate the effectiveness of the 
proposed method. Finally, conclusions are drawn in 
Section 4. 

2. Combination Method 
Consider a binary image: 
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where 1 and 0 correspond to the foreground and the 
background respectively. 



  
 

Let 1 2( , ),  ( , ),..., ( , )NR x y R x y R x y  represent the results 
of N  different segmentation methods, which have been 
applied to the image ( , )I x y , and are defined as follows: 

Each value i in the set jA  denotes that a pixel belongs to 

the thi  segment according to the thj  method of 
segmentation. In figure 1 we see a specific example with 

3N =  segmentation methods. 
Our goal is to generate a new segmentation result 

( , )R x y : 

using the segmentation results 1( , ),..., ( , )NR x y R x y . For 
this reason, we define the following binary images: 
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where 1 ,  1,...,j jr n j N≤ ≤ = , which represents the 
intersection of the segmentation results with segment ids 

1 2{ , ,..., }Nr r r  (see Figure 1e), and  
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which represents the intersection of the image ( , )I x y  with 
the thi  segment according to the thj  method of 
segmentation (see Figure 1f). 

In order to represent the overlap between the 
segmentation results we define the following function: 

where 1,...,j N= . 
 
For example, in Figure 1, 
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which means that 81% of the pixels with value 3 in result 
1( , )R x y  have also value 5 in result 2 ( , )R x y  and value 4 

in result 3 ( , )R x y . 
Finally, we define the following function: 

V=FeatureExtraction [Q(x,y)]  (7) 

which receives as input a binary image Q(x,y) and returns 
a vector { }1 2, ,..., pV v v v= , where 0 1,  1,...,iv i p≤ ≤ =  
representing specific features of the image Q(x,y). We 
choose the features according to the segmentation problem 
which we have to face, such as line segmentation, word 
segmentation etc. In the Section 3 we describe specific 
features in order to combine line segmentation methods. 

 
Our goal is to find the segments where all the 

segmentation methods are in agreement and then, for the 
remaining segments, we use the features properly in order 
to decide which segments will be merged or splitted. The 
distinct steps we follow in order to generate the new 
segmentation result ( , )R x y are as follows: 

 
STEP 1: At this step we detect the regions in which all the 
segmentation results have high degree of overlap 
( 70%≥ ). Then, we extract the features of each region and, 
finally, we calculate the average value of these features 

1 2{ , ,..., }pAV av av av= . In this way, it is hoped that the 
vector AV  approximates the average features of the 
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                    (a)                                         (b) 

               
                     (c)                                       (d) 

              
                      (e)                                   (f) 

Figure 1. An example with three different segmentation 
results, where blank pixels represent the pixels of 
background (a) Binary image ( , )I x y , segmentation 
results (b) 1( , )R x y , (c) 2 ( , )R x y , (d) 3( , )R x y , (e) binary 
image {3,5,4}( , )C x y , (f) binary image 1 {3}( , )D x y . 



  
 
correctly segmented regions. In order to achieve that we 
use the following algorithm: 
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where  

and | |⋅  is the cardinality of a set. 
 
STEP 2: At this step we detect the regions in which all the 
segmentation results have very high degree of overlap 
( 90%≥ ), so we decide that segmentation regions have 
been detected correctly, so we add them to the new 
segmentation result ( , )R x y . In order to achieve that we 
use the following algorithm: 
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where 1,...,k z=  and  

 
Looking at the example of Figure 1, we can detect 

results {1,1,1}  and {4,6,5}  which satisfy the above 
criterion:  

1 2 3
21 21 21(1,1,1) 0.91, (1,1,1) 0.95, (1,1,1) 0.91
23 22 23

f f f= = = = = =  

and 

1 2 3
20 20 20(4,6,5) 0.9, (4,6,5) 0.9, (4,6,5) 0.95
22 22 21

f f f= = = = = =  

Figure 2 depicts the new segmentation result ( , )R x y  
after applying Step 2 to the example of Figure 1. 

 

 
Figure 2. New result ( , )R x y  after applying Step 2 to the 
example of Figure 1. 

 
STEP 3: At this step the combinations 1 2{ , ,..., }Nr r r , 
which have been used in the previous step or they have at 
least one common value 1 2,  ,..., Nr r r with them, don’t 
participate. In our example (see Figure 1), the 
combinations which don’t participate are the following: 
{1,1,1}  and {4,6,5}  because they have been used in Step 2 
and {1, 2,1}, {3,1, 4} , {4, 4,3} , {4,6,6}  and {6,6,5} since 
they have at least one common value with the 
combinations which have been used. 

We divide the remaining combinations 1 2{ , ,..., }Nr r r , 
where 

1 2{ , ,..., }
,

( , ) 0
Nr r r

x y

C x y ≠∑ , into groups , 1,...,iG i l= . 

Each group denotes a region of the initial image and each 
combination 1 2{ , ,..., }Nr r r  denotes a subregion of it. Our 
goal is to examine, at the next step, each group separately 
and decide which subregions of it will be merged or 
splitted in order to create correctly segmented regions. In 
order to create the groups we use the following algorithm: 
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where function 1 2[ ,{ , ,..., } ]i NJoinGroup G r r r  is a 
recursive function and it is defined as follows: 

1 2| { , ,..., } |Nm r r r=  where  
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In our example (see Figure 1 and 2), two groups will be 

created: 
1 {{2,3,2},{2,3,3},{2, 4,3},{3,4, 4},{3,5, 4}}G =  

and 
2 {{5,7,6},{5,8,6},{5,8,7},{6,9,7},{6,9,8}}G =  

Figure 3 depicts the regions of these groups and their 
subregions which are denoted from each combination. 
 

 

Figure 3. Regions and subregions of groups 1G  
and 2G . 

 
STEP 4: At this step we process every group , 1,...,iG i l=  
independently. We start from a small subregion, in which 
the segmentation results have the highest degree of 
overlap, and then we merge other subregions with it until 
the features of the new region are closer to the average 
features AV  of the image. In order to achieve that we use 
the following algorithm: 
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and function 1 2[ , ,{ , ,..., }, ( , ), ]j i NMerge G Dif r r r M x y k , where 
1,2,...,j N=  is a recursive function and it is defined as 

follows: 
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Figure 4 depicts the distinct steps we follow in order to 

process 1 {{2,3,2},{2,3,3},{2, 4,3},{3,4, 4},{3,5, 4}}G =  in 
our example, (see Figure 1, 2 and 3):  

• Start from subregion{2,3, 2}  ( 3
4(2,3,2) 1
4

f = = ), 

add it to the new result ( , )R x y  (see Figure 4a,b) and 
calculate the difference between the features of it and 
average features AV  (let 1 0.5Dif = ).  

• Examine if we can merge with it the subregions 
{2,3,3}  and {2, 4,3}  (because 1 2r = , as {2,3, 2} ) 
(see Figure 4c), so we calculate the difference 
between the features of the new region and average 
features AV  (let 2 0.3Dif = ). 

• 2 1Dif Dif< , so we add them at the new result 
( , )R x y  (see Figure 4d). 

• Similarly, we examine if we can merge with it the 
subregion {3,4, 4}  (because 2 4r =  as {2, 4,3} ), 
calculate the difference ( 3Dif ) between the features 
of the new region and average features AV . (let 

3 0.6Dif = ). 
• 3 2Dif Dif> , so we don’t add this subregion to the 

new result ( , )R x y . 
With a similar process, we start from the subregion 

{3,5, 4} , then we add the subregion {3,4, 4} (see Figure 
4e), so we have the final result ( , )R x y  after the process of 
group 1G  (see Figure 4f). 

 
 

 

            
(a)                                         (b) 

          
(c)                                       (d) 

         
(e)                                       (f) 

Figure 4. Apply Step 4 at group 1G  (a) {2,3,2}( , )C x y  (b) 

new result with {2,3,2}( , )C x y , (c) {2,3,2}( , )C x y  

{2,3,3} {2,4,3}( , ) ( , )C x y C x y∪ ∪ , (d) new result with 

{2,3,2} {2,3,3} {2,4,3}( , ) ( , ) ( , )C x y C x y C x y∪  (e) {3,5,4}( , )C x y ∪  

{3,4,4}( , )C x y  (f) new result after applying Step 4 at 1G . 

 
STEP 5: At this step every pixel of the foreground, which 
doesn’t have a value at the final image ( , )R x y , inherit the 
value of the nearest pixel which has a value. 

3. Experimental Results 
To verify the validity of the proposed method we use 

two complementary line segmentation methods, projection 
profiles based on [5] and ARLSA based on [6]. 

We apply each method to a set of 20 handwritten 
documents, which are written in several languages. Then, 
using the two different segmentation results for each 
image, we generate a new segmentation result according to 
the proposed technique. For this reason we use the 
following features (see Eq. 7): 
• Length of the bounding box 
• Height of the bounding box 
• Height to length ration of the bounding box  
• Density of foreground pixels 

We manually marked the correct line segments in the 
set of 20 images. The performance evaluation was based 
on counting the number of matches between the lines 



  
 
detected by the individual algorithms and the lines in the 
ground truth [10]. The performance was recorded in terms 
of detection rate (DR) and recognition accuracy (RA), 
while as an overall measure we used the F-measure (FM): 

2  DR RAFM
DR RA

=
+

 (11) 

As depicted in Table 1, the new segmentation result 
outperforms the two others methods and it increases the 
overall evaluation measure about 21%. Figure 5 depicts an 
example of the proposed combination method. 

Table 1. Comparative results 

 DR RA FM 

Projection Profiles 75,1% 69,1% 71,9% 

ARLSA 74,8% 71,1% 72,9% 

After Combination of 
Projection Profiles 
and ARLSA 

94,4% 93,7% 94,0% 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Segmentation results with the bounding boxes: 
(a) Projection Profiles (b) ARLSA (c) Final result after 
combination.  

4. Conclusion 
This paper proposes an efficient combination method 

of segmentations techniques. The proposed method 
combines the segmentation results of different techniques 

in order to increase the efficiency and the accuracy of the 
segmentation result. Also, it uses specific features of the 
initial document depending on the segmentation problem 
which we have to solve, such as line, word or character 
segmentation. Our future research will focus on the 
application of the proposed method using more 
segmentation techniques and in different segmentation 
problems, such as word and character segmentation. 
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