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This article presents a novel algorithm for feature selection applied to the land
cover classification based on multi-band remotely sensed images. The algorithm is
based on information theory, greedily select features with no redundant information,
avoiding however evaluations in the joint space of features. Experimental comparison
with texture features extracted from 14 bands shows the efficiency of the algorithm
with respect to plain greedy feature selection

1 Introduction

In this article, we examine the efficiency of a novel information-theoretic based fea-
ture selection technique for selecting suitable bands of multispectral images, used for
landscape classification.

In the first section we briefly review feature selection and describe its utility in
the context of remotely-sensed data. In the second section we present theGreeNRed
algorithm, which effectively selects useful and non-redundant features with respect to
a specific classification task. In the third section we describe experiments done using
multispectral images obtained from the Compact Airborne Spectrographic Imager
(CASI).

2 Background

Multispectral sensors have been widely used since the 1960’s. These sensors collect
spectral data up to 20 bands and observe Earth’s surface providing useful information
for Environmental monitoring. The increasing availability of multispectral data and
images has enriched us with better data for environmental monitoring. Currently, im-
ages obtained from multispectral sensors such as CASI are used for forest fire cam-
paigns, agricultural and forestry activities and inventories, protected area, analysis
of the quality of coastal waters, land use, etc. Multispectral data undoubtedly pos-
sess a rich amount of information. Nevertheless, redundancy in information among
the bands opens and area for research to explore the optimal selection of bands for
analysis. Theoretically, using images with more bands should increase automatic



classification accuracy. However, this is not always the case. As the dimensionality
of the feature space increases subject to the number of bands, the number of training
samples needed for image classification has to increase too. If training samples are
insufficient for the need, parameter estimation becomes inaccurate. The classifica-
tion accuracy first grows and then declines as the number of spectral bands increases,
which is often referred to as the Hughes phenomenon ([4]).

Generally speaking, classification performance depends on four factors: class sep-
arability, training sample size, dimensionality, and classifier type [9]. To improve
classification performance, our attention in the paper is focused on dimensionality
reduction. Dimensionality reduction can be achieved in two different ways [13]. The
first approach is to select a small subset of features which could contribute to class
separability or classification criteria. This dimensionality reduction process is re-
ferred to as feature selection or band selection. The other approach is to use all the
data from original feature space and map the effective features and useful information
to a lower-dimensional subspace. This method is referred to as feature extraction.

In feature selection, features that do not contribute to the discrimination of classes
can be removed by assessment of specific criteria. Feature selection can not be per-
formed indiscriminately. Methods must be devised that allow the relative worth
of features to be assessed in a quantitative and rigorous way. A procedure com-
monly used is to determine the separability of different classes ([11]). Separability
is a measure of probabilistic distance or within classes. The separability commonly
used in feature selection is Mahalanobis, Divergence, Transformed Divergence, Bhat-
tacharya, or Jeffries-Matusita, etc ([10]).

A separability analysis can be performed on the training data to estimate the ex-
pected error in the classification for various feature combinations ([12]). Supposing
that the number of spectral bands is n, the problem of feature selection is to select
the optimal subset of m withm < n. The number of feature combinations that
need to be considered equals n!

(n−m)!m! . This number is too large for hyper spectral
data and yields low efficiency in computation. Some algorithms such as the Branch-
and-Bound algorithm, Sequential Backward and max-Min Feature selection which
can determine the optimal or suboptimal feature set have been proposed to reduce
the computational burden ([13]). For an overview of these approaches, see [5] or
[6]. The algorithm presented here can be considered to be a member of the Forward
Sequential Selection algorithm family.

3 The Greenred Algorithm

TheGreeNRed (GREEdy Non REDundant) feature selection algorithm is an informa-
tion - theoretic based algorithm that efficiently searches for a minimal set of features



of non overlapping information. The feature efficiency is measured as the mutual
information between the feature and the classification variable. In the context of
multi-band remotely sensed images, each feature, denoted henceforth byxi, corre-
sponds to one band, whereas the classification variable, denoted henceforth byΩ,
corresponds to the land usage.

The main characteristic of the algorithm is that it focuses not only on finding useful
features, but also on ensuring that the selected features are as much “independent”
as possible, i.e. they don’t contain overlapping information concerning a specific
classification task. This is important, since it allows for further reducing the total
number of features to be selected. Most importantly, the search for independent
features is done by evaluations in each feature space, without needing to consider at
all their joint space, thus ensuring algorithm robustness and efficiency.

In the following we will assume that the reader is familiar with information theory,
and especially with Shannon entropy and mutual information. For an introduction to
information theory see, for instance, [1] or [3].

3.1 Locally Sufficient Features

The central concepts on which the algorithm is based are the concepts of redundancy
and local sufficiency, expressed via information measures. Now, given two features
x1, x2 and the class variableΩ, all considered as random variables, featurex2 is said
to belocally redundantwith respect tox1 in the regionA of the observation space, if

IA(x1, x2;Ω) = IA(x1;Ω)

i.e. the mutual information of the joint features with the class equals the information
of the first feature with the class. Extending this concept for many features{xi}, we
call featurei locally sufficientatA with respect to featuresj 6= i, if

IA({xj}, xi;Ω) = IA(xi;Ω)

Local sufficiency implies that, in the specific region, we can discard all but one feature
without loss of discriminative information. The aim of the algorithm is to effectively
partition the observation space in a suitable way, such that a minimum number of
sufficient features can cover the whole region of interest.

By considering the mutual information criterion, the algorithm gains two important
benefits. First, mutual information is closely connected to the optimal misclassifica-
tion error, or Bayes error, by means of lower and upper bounds

H(Ω|X)− 1
log(K − 1)

< Pe(X,Ω) <
1
2
H(Ω|X) (1)



The lower bound is known as the Fano inequality.
Second, the selected features are optimal, regardless of the specific classifier that

will be used later for the classification process. This implies a clear distinction be-
tween the feature selection and classification processes, that allows a liberty of choice
of a more or less sophisticated classifier, whose training is likely to be greatly facili-
tated by the reduction of the input space dimension.

Mutual information has been used in the past as a criterion for feature selection
[2], [7], though its use may be considered as limited because of complexity and lack
of robustness in its evaluation via numerical methods. However, our algorithm min-
imizes the implications of these issues by considering only one-dimensional mutual
information evaluations with the class, which make evaluations both robust and linear
with respect to the number of samples.

3.2 Greedy Feature Selection

An important characteristic of the algorithm is its greedy nature with respect to the
number of features to be found. At each step, features are examined, one by one, for
their suitability for discriminating the classes in the region of the observation space
which is not yet covered, and the best one is chosen. This is repeated until enough
features are found.

The greedy approach offers three advantages. First, it allows us to control the
number of features to be selected, as features are selected, by inspection of their clas-
sification ability. Second, it ensures linear algorithmic complexity with respect to
the number of features to be selected. This complexity is far more satisfying than
an exhaustive search of all the feature combinations. Finally, and most importantly,
the greedy approach guarantees effectiveness and self-containment of the features.
Indeed, one should notice that not only should the selected features be locally suf-
ficient but, also, the total of the selected features should determine the limits of the
sufficiency regions, since otherwise the discrimination information will be lost. This
can be better seen by denoting local mutual information as

IA(xi;Ω) = I(xi;Ω|X ∈ A)

which implies that local mutual information exists only by knowledge of the suffi-
ciency regions. Thus, at each step of the incremental algorithm, the local sufficiency
regions are required to be defined via the feature to be selected and the already se-
lected features, which guarantees that the limits are indeed defined by the selected
features.

As a price to pay for these benefits, it should be stressed that the greedy search
is not guaranteed to provide the optimal minimum feature set, although it is very



Algorithm 1 Greedy Forward Selection Sufficient Feature Procedure

1: F ← {xi}Ni=1, S ← ∅
2: A← X , j ← 1
3: repeat
4: xj ← argmaxxi ∈ FIA(xi;Ω)
5: F ← F \ xj , S ← S ∪ xj

6: Aj = {x : x ∈ A, i(xj ;Ω) > isuf}, Ac
j = A/Aj

7: A← Ac
j , j = j + 1

8: until Ac
j < Aε or j = M

probable that the set of sufficient features selected will include most of the optimal
sufficient features.

The greedy procedure is outlined in Algorithm1.

3.3 Sample-Based Sufficiency Region Specification

The implementation of the local sufficiency feature search with the greedy approach
described above requires a way of finding the limits of sufficiency regions. The algo-
rithm we propose effectively deals with this issue by indirectly specifying the regions
by means of the samples in a smooth way. Namely, each region is determined as a
set of weights{wp} corresponding to the samples{xp}, p = 1 . . . P . A weight equal
to zero for some sample, means that the region around this sample is not included in
the considered region, whereas a weight equal to one, implies maximum inclusion of
the region around the sample to the considered region.

This way of specifying regions has two important advantages. First, it provides a
smooth partitioning of the space, which gives the algorithm robustness. Second, it
allows for implicitly defining the regions, without the need of denoting the limits in
terms of feature coordinates. Thus, it allows the implicit presence of the limits, even
when evaluating the local suitability of features which are not by themselves, or only
by themselves, defining these regions.

The last observation is a key observation for evaluating local mutual information
with the class in one dimension : Mutual information is evaluated asIA(xi;Ω) =
Iw(xi;Ω), i.e regionA is specified by weights, and,

Iw(xi,Ω) =Hw(xi)−Hw(xi|Ω)

=−
∫

pw(xi) log pw(xi) +
∑

k

∫
pw(xi|ωk) log pw(xi|ωk)



Algorithm 2 TheGreeNRed Feature Selection Algorithm

1: D ← {xp}P1
2: W ← {wp}P1 , ∀wp ∈W,wp ← 1/P
3: F ← {xi}Ni=1, S ← ∅.
4: repeat
5: ∀xi ∈ F,xp ∈ D, Iip ← IW (xi

p;Ω)
6: ∀xi ∈ F, Ii ←

∑
p Iip

7: X̂← argmaxxiIi, F ← F \ X̂, S ← S ∪ X̂
8: ∀wp ∈W,wp ← 1−max i ∈ FIip.
9: ∀wp ∈W,wp ← wp/

∑P
i=1 wp

10: until enough features are selected

wherepw is a parzen estimate of the probability density function evaluated as

pw(x) =
∑
allp

wpN (x|xp, σp)

and
pw(x|ωk) =

∑
p7→Ωk

wpN (x|xp, σp)

where theσ is automatically adjusted for each sample,N (·,m, σ) denotes the normal
probability density function with meanm and standard deviationσ, and{ωk} are the
set of values the classification variable takes (i.e “forest”, “urban area” etc).

3.4 Outline of the algorithm

The algorithm is outlined in Algorithm2. In words, it consists of the following
steps: The set of features under consideration and the selected features are initialized
to contain all the features and no feature respectively. Each sample is initially given
a weight 1

P , whereP are the number of samples. Then for each feature to be selected
the following are done.

1. The Suitability of each feature under consideration is evaluated as the mutual
information of the feature with the class variable, given the weighted samples

2. The best feature is added to the selected features and removed from the features
under consideration



TopMap CASI Common
North 4677010.00 4675200.25 4674990
South 4663000.00 4663300.25 4666850

East 459000.00 458200.00 457540
West 453000.00 455750.00 455980

TopMap CASI Common
Resol. 30 x 30 3.5 x 3.5 5 x 5
Pixels 467 x 200 3400 x 700 1628 x 312

Table 1: Map Coordinates and Image Sizes

3. The cover of the region with respect to the classification is evaluated as the
local mutual information at the sample. New weights are given to the sam-
ples, according to how “uncovered” they are from the already selected features.
Weights are normalized, so that they sum up to 1.

When the “covering” of the region is judged adequate, according to the local mutual
information around the samples, the algorithm stops.

4 Experiments

4.1 Preparation of the data

The images come from the project of “Parc Natural de la Garrotxa” and date from
23/07/98. The Institute Cartografic de Catalunya provides us with CASI flight images
together with a tagged image (topographic map) of a region around the city of Olot.
The flight images came in 14 bands, whereas there were 8 different tags. Some of the
tags were not sufficiently represented on the image, and hence a merging of classes,
resulting in 5 different classes, was done.

The coordinates of the flight image on which we focused and the tagged image are
different. Since the coordinates where known, we made an alignment of images. The
topological map has been cropped, since it corresponded to a wider region. Tables
4.1, 4.1 and4.1 show respectively the maps coordinates, the digital image sizes for
each feature and the possible values for the classes.

4.2 Texture Features

Raw intensities are usually not sufficient for successful land use classification. To
this end, for each band, and for each pixel, we additionally evaluated a number of



Tag Name
1 Forest
2 Continuous urban fabric
3 Non-irrigated arable land
4 Industrial or commercial units
5 Green urban areas

Table 2: The Categories Tags

texture features on a sliding window centered around each image pixel.
The features we use are functions of the co-occurrence matrixPφ,d(a1, a2), which

is a matrix describing how frequently pixels with intensitiesa1 anda2 appear in the
window of sizeh × w around the pixel, with a specified distanced in directionφ
between them. In our setting, we found that a window of32×32 pixels together with
8 distinct levels of intensity and2 pixels distance in both horizontal and vertical axes
gave the best results.

Based on the co-occurrence matrix, the extracted features were :

• theenergy, suma1,a2P
2
φ,d(a1, a2)

• theentropy,
∑

a1,a2
Pφ,d(a1, a2) log Pφ,d(a1, a2)

• thecontrast,
∑

a1,a2
(a1 − a2)2Pφ,d(a1, a2)

• the inverse different moment
∑

a1,a2,a1 6=a2

Pφ,d(a1,a2)

(a1−a2)2
and

• the correlation
∑

a1,a2
[a1a2Pφ,d(a1,a2)]−µa1µa2

σa1σa2
whereµa1 , µa2 , σa1andσa2 are

1st and 2nd order -based statistcis of the co-occurrence matrix.

Hence there are in all 10 texture features per band (5 for vertical and 5 for hori-
zontal displacement for the formation of the co-occurrence matrix). Adding the pixel
intensity value as an 11th feature, we end up with a feature vector for each pixel
composed by a total of11× 14 different features.

5 Results

The evaluation of the feature selection procedure was conducted by measuring the
classification rate of a plain K-NN classifier. K-NN was chosen because of its sim-
plicity and because it makes no assumption over the underlying pdf of the data. The
training and a test sets were formed by randomly extracting4000 pixels from the
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Figure 1: Performance of theGreeNRed algorithm. The straight line denotes the correct rate obtained
using the whole set of features

image.80% of the selected pixels were used for training and20% for testing. In the
selection procedure we made sure that each class was equally well represented.

Figure 5 shows the performance of theGreeNRed algorithm together with the
performance of a plain greedy search of features using mutual information and the
well-known t-test statistic. Furthermore, the straight line shows the performance of
the K-NN using the full set of features, which was91%. The x-axis shows the number
of features used to train and test the K-NN. Only the 20-best features for each method
are shown, since for more than to 20 features, there is no significant difference of the
methods. The y-axis shows the correct rate obtained using K-NN, withK = 3.
For theGreeNRed and simple greedy method, mutual information approximation
was done using only up to 2nd order statistics to speed up the computation and to
increase robustness, as it is discussed in [8]. Furthermore, mutual information was
computed as an average of mutual information evaluated for every pair of classes.

Experimenting with the dataset revealed that there exist an important overlap of
information among the features, which is, however ”spread” among the features.
Hence, since no feature combinations are done, there doesn’t exist a compact set of
features that containsall the classification information. However, as it is seen from
the graph, one can attain90% correct classification rate by keeping the first13 fea-



tures found by theGreeNRed algorithm. Notice that plain greedy feature selection
as well as the t-test statistic do not attain theGreeNRed performance.
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