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Abstract

This work reports on research conducted on the domain of multi-document
summarization using background knowledge. The research focuses on summary
evaluation and the implementation of a set of generic use tools for NLP tasks
and especially for automatic summarization. Within this work we formalize the
n-gram graph representation and its use in NLP tasks. We present the use of
n-gram graphs for the tasks of summary evaluation, content selection, novelty
detection and redundancy removal. Furthermore, we present a set of algorithmic
constructs and methodologies, based on the notion of n-gram graphs, that aim
to support meaning extraction and textual quality quantification.



Σύνοψη

Σε αυτήν την αναφορά περιγράφεται η έρευνα που διεξήχθη στα πλαίσια του διδακ-

τορικού μου στον τομέα της εξαγωγής περιλήψεων από πολλαπλά έγγραφα και τη

χρήση υποστηρικτικής γνώσης. Η έρευνα εστιάζει στην αξιολόγηση περιλήψεων

και την υλοποίηση ενός συνόλου γενικευμένων εργαλείων με εφαρμογές σε δι-

αδικασίες επεξεργασίας φυσικής γλώσσας, μέσα από ένα σύνολο τελεστών και

σχετικών μεθοδολογιών. Παρουσιάζουμε αυτές τις μεθοδολογίες στα πλαίσια της

αξιολόγησης περιλήψεων, της επιλογής περιεχομένου, της αναγνώρισης νεωτερ-

ισμού και αφαίρεσης πλεονασμού. Περαιτέρω, παρουσιάζουμε ένα σύνολο από

αλγορίθμους και μεθοδολογίες, με βάση τους γράφους ν-γραμμάτων, με σκοπό

την υποστήριξη της εξαγωγής νοήματος και της ποσοτικοποίησης της κειμενικής

ποιότητας.
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Chapter 1

Introduction

Since the late 50’s and Luhn [Luh58] the information community has expressed
its interest in summarizing texts. The domains of application of such methodolo-
gies are countless, ranging from news summarization [WL03, BM05, ROWBG05]
to scientific article summarization [TM02] and meeting summarization [NPDP05,
ELH+03].

Summarization has been defined as a reductive transformation of a given set
of texts, usually described as a three-step process: selection of salient portions
of text, aggregation of the information over various selected portions, abstrac-
tion of this information to a more general level, and finally presentation of
the final summary text [MB99, Jon99]. The summarization community nowa-
days includes a significant number of scientists with increasing interest in the
multi-document aspect of summarization. Major issues towards multi-document
summarization that have been identified by the researchers are the following.

• How can one detect and select salient information? How does the evalua-
tion of salient information change when the summarization task is driven
by a query?

• How can one condense or compress text preserving linguistic quality and
coherence? Furthermore, how can linguistic quality and coherence be
defined and measured?

• How can one assure that the final summary does not contain redundancy
or repeated information, especially when multiple documents are used as
input for summary composition?

• Can one develop methods that will be partially language-dependent or
fully independent from a specific language?

Up to date, many summarization systems have been developed and pre-
sented, especially within such endeavours as the Document Understanding Con-
ferences (DUC) and Text Analysis Conferences (TAC)1. The DUC and TAC
have strengthened the summarization community and have helped in identify-
ing tasks, problems and corresponding solutions concerning the summarization

1See http://duc.nist.gov/ and http://www.nist.gov/tac/.
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domain. Within these conferences and other related endeavours, such as NT-
CIR2, SUMMAC and TREC, the summarization process has grown more spe-
cific. However, a full set of new challenges has arisen and led to the update of
tasks that constitute the overall summarization process.

The summarization community appears to have moved from single to multi-
text input and has also studied opinion summarization and “trend” summariza-
tion, as in the case of NTCIR. However, evaluations performed in recent years
have proved that the summarization task is highly complex and demanding and
that automatic summarizers have a long way to go to perform equally well to
humans [Dan05, Dan06, DO08].

Furthermore, even the current methods for evaluating summaries are under
heavy criticism [Jon07, CD08, GKV08]. It has been shown by a number of
researchers that have faced the problems apparent in the evaluation process
that evaluating different aspects of a summary text is far from being a trivial
task — even if the evaluation is performed manually [VHT03, Nen06, LH02,
RJB00, Mar00, SL02]. The basic questions summarization evaluation research
needs to answer are:

• Which are the textual qualities of a summary, or the qualities of a good
text in general?

• How do humans evaluate a summary?

• Can there be an automatic grading that would correlate to human judge-
ment?

Within this thesis we present the results of a three year research endeavour,
that has made the following basic contributions.

• A statistical, language-neutral and generic representation — named n-
gram graphs — which offers richer information than widely used represen-
tations such as the vector space model. The representation is accompanied
by a set of theoretical tools and an implemented toolkit for the application
of the n-gram graph representation and algorithms in NLP tasks. (Part
I)

• An automated evaluation system, named AutoSummENG, aiming to cap-
ture the textual quality of given summaries in a language-neutral way,
by using the n-gram graph representation. AutoSummENG has achieved
state-of-the-art performance, while maintaining language neutrality and
simplicity. Contributing towards establishing quality-indicative measures,
we propose the String Sequence Statistical Normality, which is based on
the statistics of character sequences within a given text. (Part II)

• An automatic summarization system based on the use of n-gram graphs,
focusing on addressing the content selection and redundancy removal prob-
lems in a language-neutral manner. (Part III)

Throughout the course of the presented research a number of important by-
products were generated. Part IV of this thesis is dedicated to all the results
obtained and initiatives undertaken in parallel to the conducted research. For

2See http://research.nii.ac.jp/ntcir/

3

http://research.nii.ac.jp/ntcir/


instance, a part of the research was dedicated to promoting the collaboration
between summarization community researchers through common frameworks
and tools. Namely we present:

• The FABLE framework, aiming to support the AESOP (Automatically
Evaluating Summaries Of Peers) task of the Text Analysis Conference
upcoming in 2009, by providing a common framework for the integration
and evaluation of summary evaluation techniques.

• The JINSECT toolkit, which is a Java-based toolkit and library that sup-
ports and demonstrates the use of n-gram graphs on a whole range of
Natural Language Processing applications, ranging from summarization
and summary evaluation to text classification and indexing. The toolkit
is a contribution to the NLP community, under the LGPL3 licence that
allows free use in both commercial and non-commercial environments.

The first part of the thesis offers a literature overview, aiming to introduce
the reader to the important problems and existing research efforts rather than
to completely and elaborately review the domain. We then present the devised
representation, algorithms and tools and indicate their application potential
in NLP tasks. The second and third parts of this work are dedicated to the
summary evaluation part of our reseach and to the summarization system we
have implemented, correspondingly. The fact that the evaluation precedes the
summarization system was a strategic decision at the start of this research,
as it is very important to understand the qualities of a summary text, before
actually producing a summary. The ordering of the sections reflects this train of
thought and aims to provide the intuition for the evaluation of summarization
methods presented in the summarization system-dedicated part of the report.
We conclude this thesis with the discussion of secondary results and community-
oriented proposals, as well as the overall conclusions.

3See http://www.gnu.org/licenses/lgpl.html for more information on LGPL.
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Part I

Summarization and n-gram
graphs
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Chapter 2

Literature Overview and
Discussion

Software or human agents accessing a multitude of data sources for satisfying
specific information needs would be keen on a system that would retrieve and
sum up information for them in an effective and friendly way (what ever this
means). This is particularly useful for people who constantly need to be aware
of latest advances in their respective discipline, such as medicine or engineer-
ing. This need drives research towards information summarization in domains
ranging from news [Nen06, BM05, ROWBG05] to medical [AKS05a, ENW04]
and other areas of interest [SYGH05].

What has become obvious during the last decades is the overwhelming vol-
ume of information, either being structured or unstructured, appearing in all
domains of one’s e-life1. This has been termed to be the information overloading
problem, which indicates the huge amount of available information, the redun-
dancy of information, as well as the existence of possible contradictions and
apparent inconsistencies in information extracted from different sources. Along
with the ‘mushrooming’2 of information, the initial desire to extract information
was transformed into the need to acquire filtered, customized, pre-evaluated and
ranked information, in ways that satisfy people’s information needs: Automatic
summarization could be a solution to these problems, given that it satisfies
certain qualities, which are further discussed in the sections that follow.

The chapter begins with a brief overview of definitions for the summariza-
tion process (section 2.1). Following that, through a synthesis of approaches,
we specify the steps that the summarization process comprises and show how
these steps have been realized by existing research endeavours (section 2.2).
Then, the chapter elaborates on summarization from multiple documents (sec-
tion 2.4) and, in sections 2.5,2.5.1, we furthe examines in detail the incorporation
of background knowledge and meta-data into the process. Specifically, section
2.5.1 discusses current research efforts towards multi-document automatic sum-
marization with the use of background knowledge. Section 2.6 concludes by
indicating existing open problems for the multi-document summarization pro-

1E-life here is meant to describe the human activities utilizing electronic systems of infor-
mation and communication.

2Used in [MB97] to indicate sudden growth.
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cess and describes a visionary ‘gold standard’ for systems that consult ontologies
to enhance produced summaries, proposing directions on how this standard can
be approximated.

2.1 Definitions

Although the summarization process seems to be a commonly understood task,
appealing to our intuition, the formalization of this process and the definition
of what constitutes a summary is a complex issue. In this section we examine
existing definitions of summary, approaches to the summarization process and
we propose a generic specification of the latter.

2.1.1 Definition and Qualities of a Summary

Sparck Jones in [Jon99] defines a summary as ‘a reductive transformation of
source text to summary text through content reduction by selection and/or
generalization on what is important in the source’. According to [RHM02], a
summary is ‘loosely defined’ as a ‘text that is produced from one or more texts,
that conveys important information in the original text(s), and that is no longer
than half of the original text(s) and usually significantly less than that’. What
is established, is that summarization should indeed be regarded as a reductive
transformation. What is not final is the actual method by which this reduction
should be performed.

There are a number of major issues that need to be taken into account,
regarding the summarization process:

The source of a summary can be either single-modal or multi-modal. For
instance, there can be only textual documents, or mixed documents com-
bining text and images. The cardinality of input documents is also a
characteristic of the summarization process (see also section 2.4).

The content and form of a summary has its own aspects as well. According
to some researchers, a summary need not be in textual form. A tex-
tual summary would imply the need of qualities such as well-formedness,
coherence, understandability and informativeness of text. However, as in-
dicated in [RHM02], summaries may also include other modalities such as
speech, images, video, or other non-, semi-, or fully-structured text repre-
sentations. This indicates the necessity for advancing textual qualities to
summaries with multimedia content.

The purpose of a summary to satisfy specific communication or information
needs. In [Jon07] we find the purpose of a document to be specified by its
use, its intended audience and a set of other parameters. The purpose of
a summary is a factor that is very important when it comes to evaluating
a summary.

The presentation of a summary can vary. It can provide information through
various means, like coloring and structure. For instance multimedia [CNP06],
and in particular treemaps, have been used to present summarized infor-
mation. A treemap represents trees by using nested rectangles, where a
child-node linked with its parent node is illustrated by having a ‘child’
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rectangle contained within a ‘parent’ rectangle. Also information like the
colour and the size of a rectangle is used to code other features, such as
the type or the importance of a node. In [CNP06] this approach is used
to provide feedback on the intensity of an extracted (i.e. summarized)
subjective opinion, which is mapped to a rectangle in the treemap, on a
specific subject (e.g. customer review on a specific product), along with
the actual text extract expressing the opinion. We also find the notion
of thumbnailing [SDC04] introduced in the context of summarizing doc-
ument collections. Semantic thumbnails are defined as directed acyclic
graphs, where the set of nodes correspond to document terms and the set
of weighted edges reflects intra-sentential and inter-sentential significance.
Sengupta et al. argue that these thumbnails are a type of human-friendly
summary representation.

A thorough reference on the ‘context’ factors specifying the major aspects
of a summary can be found in [Jon07], where three main groups of factors
concerning the input, the purpose and the output are elaborated. According to
Sparck-Jones, these factors can be used to drive both the summary extraction
and the summary evaluation processes.

In our enquiry into the automatic summarization process we need to explore
the required summary qualities. Different researchers have posed during their
research a number of such qualities, which we briefly present in the paragraphs
that follow. Then, we aggregate these qualities and explain them to depict an
overall quality feature space aligned to what cited research has supported.

Throughout this document, we will mostly focus on the textual aspect of
summaries, but without ignoring features and issues that other modalities im-
pose. Due to this approach we may sometimes use the concepts text and data
interchangeably, even though text will emphasize the textual aspect of a docu-
ment, while data will emphasize the complex aspect of documents (e.g. images
and text).

Niggemeyer in [EN00], stating that ‘summaries are derived texts’, discusses
the ‘textuality’ (i.e. the quality of being textual) of automatic summaries, based
on the notion of text well-formedness. According to Niggemeyer, for a summary
to be textual, it needs to satisfy the qualities of

cohesion linguistic, syntactic and anaphoric integrity,

coherence semantic and functional connectedness, which serves communica-
tion,

acceptability the communicative ability of the text from the perspective of its
addressees,

intentionality the ability of the text to convey the intention of the writer, e.g.
exaggeration or question,

situationality the ability of the text to result into the expected interpretation
within a specific context,

intertextuality the ability of the text to link to other texts, preserving the
presented information) and

informativity the novelty of the textual information [Tai05]
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According to Niggemeyer, summaries being produced by automatic summariza-
tion systems do not satisfy several of these qualities, which seems to be a com-
mon ground, being evidenced by other research efforts as well [Dan05, Nen06].
This means that summaries produced by automatic summarization systems do
not have the traits people expect to find in a textual summary.

In the Document Understanding Conference (DUC)3 of 2005, qualitative
human-centered assessment emphasized on qualities such as grammaticality,
non-redundancy, referential clarity, focus (which refers to the relation of the
data to the subject of the summary), structure and coherence, as well as re-
sponsiveness [Nen06, Dan05]. Other required qualities for a summary include
predefined length, focus, granularity, coherence (also called cohesiveness) and
coverage as presented in [SS05]. Some of these qualities will be further discussed
in the section dealing with the evaluation of summaries (section 2.3).

According to the above, we consider a list of qualitative characteristics of a
textual summary. Although the list is not considered to be complete, it indicates
those qualities that are being emphasized in the literature and describe in an in-
tuitively sufficient way the qualities of a good (either manually or automatically
generated) summary:

Structural well-formedness which is analysed into length, grammaticality,
cohesion, referential integrity and syntactic quality. The length of the sum-
mary defines whether the transformation process was actually reductive
or not, and to what degree. Grammaticality and syntactic quality repre-
sent to which extent the text conforms to the grammatical and syntactic
rules of the required language. Referential integrity indicates whether any
anaphora within the span of text is clear. In other words the sentences
‘Me and John made a great discovery of an Indian manuscript and an
Egyptian mummy. It was more than 4,000 years old!’ have an anaphora
resolution problem: Is the mummy, or the manuscript very old? Such text
would score low on referential integrity. Cohesion is a somewhat overall
measure, indicating the existence of structural integrity of the text mostly
at a sentential level or at closely placed sentences. In [HMR05] we find
the following informal definition of a perfectly cohesive sentence:

‘This (perfectly cohesive) sentence is either fully related to the
previous one, or clearly indicates that it addresses a new topic.
The relationship of this sentence to the previous one is clear.
It can stand in the given position directly after the previous
sentence.’

This definition may seem to approximate what coherence (which mostly
stands for a meaningful train of thought) is thought to be. The main
difference between cohesion and coherence is at the level of analysis: the
former refers to local integrity, usually within a few sentences, whereas
coherence, emerges throughout the document as a whole. In [MH91] co-
hesion is described as a term for ‘sticking together’, while coherence refers
to ‘making sense’.

Informativeness which is analysed into focus, informativity, granularity, cov-
erage and non-redundancy. Focus defines the degree to which the text

3More at http://duc.nist.gov/.
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remains relevant to the required set of information. Informativity indi-
cates the novelty of presented information. Novelty is defined in [Tai05]
as a corpus-document relation, where the document contains propositions
that do not exist in the corpus. Non-redundancy indicates that there is
no repetition of information within the text.

Granularity refers to the specificity of information contained within a sum-
mary text. Granularity may be modelled by assigning a granularity value
to every term of a given text, given an underlying ontology. The depth
of terms within the given ontology can be an indication of specificity and,
thus, granularity. For example, the phrase ‘the results of the research were
excellent’ has lower granularity (i.e. more generality) than ‘the results
were 97 percent precision 95 percent recall after 5 well defined experi-
ments between January and March’.

Coverage refers to the percentage of desired information from the source
documents that is expressed in the summary.

Semantic quality which is analysed into intentionality, intertextuality and
coherence. Intentionality indicates the success of keeping the original au-
thor’s informative intention in the final summary. So, if the author wrote
‘It seems inadequate to say that the mummy was very old’, it is a fail-
ure to summarize by ‘The mummy was very old’. Intertextuality indicates
whether the arguments or facts in a text are well-founded on other sources,
and whether the text itself can be used as a reference to support a new
set of arguments or facts. Therefore, a text with low intertextuality does
not have adequately justified information and cannot be used as a source.
This criterion is mostly applicable in domains where justification is an is-
sue, like research or law papers. Consider the case where some documents
have been summarized, using different parts of argumentation from the
source documents. Even though the argumentation of each document can
be sufficient, the argumentation provided in the summary is not necessar-
ily sufficient, because some arguments apparent in the original documents
may have been omitted from the summary. This is a typical example of
an intertextuality problem in the summery text.

Representativeness [Tai05] is another semantic quality, which refers to the
ability of an abstract to convey the same meaning as its original sources.
Representativeness can be quantified by applying reasoning to the propo-
sitions contained in the summary and the original texts. For example, one
can model the meaning of a set of texts as a set of propositions. Applying
the same method to a summary, one can model representativeness as the
coverage of propositions found in the original texts by the propositions
contained in the summary.

Finally, semantic coherence is the quality describing overall quality of text
and is directly related to understandability (even though a highly technical
text can be cohesive but not easily understandable). Coherence actually
indicates whether the overall stitching of phrases, sentences, paragraphs
and larger parts of text makes sense. As already stated above, it surely
stands upon cohesion (see p. 428 [All87]), but refers to the overall text
and not at a local level (i.e. within a small number of sentences/phrases).
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Pragmatic quality which refers to the satisfaction of constraints implied or
explicitly set by the user or by the user’s environment. Such a quality
is situationality, which helps determine whether the information given
by the summary is indeed suitable for the target context (the context
comprises the triple ‘text, user, environment’ as indicated in [EN00]). In
other words, trying to use a multimedia summary in a text-only output
system, or using an English summary for Chinese users will score low in
terms of situationality. In [FRTF], the proposed system considers such
restrictions for the output form, either text, synthesized voice or audio
and video segment. Situationality mainly includes constraints on the size
and the presentation of a summary. The constraint on size is presented as
the ‘imperative’ for ‘succinct description’ in [YP06] to indicate the need
for compactness in data summarization. Pragmatic quality finally also
includes the usability of a given summary for a given usage requirement,
which is directly connected to the purpose of a summary.

For more information on the specifics of textual quality we suggest read-
ing [SS05, EN00, Nen06, Dan05]. Given these required qualities, we can evaluate
(as will be indicated in section 2.3) any given summary. However, there is still
an open question as to whether these qualities can be formalized quantitatively
and, thus, be measured.

Until today, there have been various efforts to quantify and measure tex-
tual quality, often outside the summarization community. Qualities that have
been quantified or approximated using automatic techniques include grammat-
icality [Kel00], coherence [LB05, MK04], responsiveness [Dan05, Dan06] and
overall responsiveness [DO08], which is a measure including an overall judge-
ment of quality and purpose completion (i.e. if the text does well in the task it
was judged on).

Types of Summary

There are many types of summaries, which can be viewed from many differ-
ent points of view. For a detailed overview of summary types one may con-
sult [Jon07, Jon99, SL02, AKS05a, BDH+00]. One could suppose that each
summary quality (as described in section 2.1) can provide a different dimension
for the categorization of summaries, but this is not true. Summary types, as
suggested by the existing bibliography, do not correspond to the aforementioned
qualities of texts.

Summaries, as already indicated, can be single- or multi-document, which
means they are derived from a single or multiple texts. On the other hand, they
can be categorized as informative, conveying the core data of their source(s), or
indicative, providing a ‘teaser’ reading to the reader, indicative of the content.

Another aspect that differentiates summaries is their extractive or abstractive
nature. Summaries of the former type, i.e. extractive, are entirely composed
of chunks of text from the original document(s), while abstractive ones may
comprise sentences that can not be found in the original text. Abstractive
summaries are much more difficult to create automatically [Nen06, Dan05].
Nevertheless there are a number of approaches that offer abstractive summaries;
for instance [BKM90], where a set of text-derived and world, i.e. common,
information are combined to retrieve and express questions to answers. Another
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abstractive method in the context of spoken dialog summarization can be found
in [RKEA00], where spoken dialog is recognized via a recognizer module and
through a set of intermediate steps the information communicated is represented
and integrated within the dialog context.

The true potential of abstractive summarization has yet to be discovered
and the ‘non-extractive’ methods, as Sparck-Jones refers to them in [Jon07],
are few. In 2002 the research community expressed its belief that abstraction
has a long way to go by such statements as ‘true abstractive summarization re-
mains a researcher’s dream’ [RHM02]. In recent research we see that the barrier
distinguishing extractive from abstractive methods appears to weaken, because
the meaning of ‘abstraction’ cannot be formalized easily (also see [Jon07]).

As already described in the introduction, abstraction presupposes some kind
of transformation, for example filtering, mix or generalization, or different inter-
pretation of the source data. Extractive summaries are more machine-oriented
(i.e. easily performed and evaluated by machines) while abstractive summaries
are more human-oriented. However, humans prefer (good) abstracts to (good)
extracts, and this is explained by the fact that humans mostly use abstrac-
tive methods [BV04]. This kind of categorization of summaries will be further
discussed in the evaluation section of the summarizing process.

At DUC a different distinction between summaries was proposed, based
on summary granularity: summaries can be indicated to be either ‘general’
or ‘specific’ [Dan05]. However, this distinction is not well-defined (DUC has
decided not to use this distinction after DUC 2005). It seems that the level of
granularity of a summary depends on the information needs [Dan05], i.e. on the
needs related to the summary generation. Granularity provides an example of a
text quality that proved to be too ambiguous a criterion for the categorization
of summaries, and has been excluded from use.

2.1.2 Specification of the Summarization Process

Let us look at, what at first sight seems to be, a naive question: if someone had
me summarize, for example, a number of research papers, what exactly should
I do? It seems that summarization, according to Mani and Bloedorn [MB99]
is a three-step process (even though in the first footnote Mani and Bloedorn
indicate that this process is only a partial consensus between contemporary
researchers). Specifically, it is said that summarization consists of analysis,
refinement and synthesis steps. Analysis results into a representation of the
source text(s), refinement transforms the text into a summary representation
through the selection of salient information that needs to be communicated,
and synthesis renders the summary representation into natural language (or
any type of surface appearance4).

According to the view of Niggemeyer and Wansorra [ENW04], summariza-
tion is a cognitive task involving the mental representation of ‘a body of mostly
external information’, reduction of this representation to a set of most relevant
(information) items, and the generation of content. The relevance of the in-
formation items in the second step refers to the relevance of information with
respect to the information needs of the user. The cognitive aspect of this defi-
nition is based on the fact that the steps can be mapped to a set of empirically

4For more on surface appearance and Natural Language Generation see [All87, RD00]
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identified, human cognitive strategies that reflect the mechanics of summariza-
tion performed by humans. Niggemeyer and Wansorra argue that, having sys-
tems that imitate people in these methods can yield results similar to those
of humans. Sekine and Nobata in [SN03] have argued along the same line of
thought, supporting that one should study human behaviour to devise auto-
matic summarization strategies.

In our effort to find commonalities between the two process specifications,
we may match analysis with representation, refinement with reduction and syn-
thesis with generation. It is obvious that there is some serious overlap between
different definitions of the summarization process. However, the generality of
steps’ description does not offer a concrete specification, but only an intuitive
support on what the summarization process comprises. Of course, this gen-
erality allows most of the established existing approaches to be subsumed by
the specification, which is a useful if a specification is to be widely used. How-
ever, such a specification must also be useful to methodologically comparing,
implementing and further advancing the different aspects of the summarization
process.

Other approaches specify summarization as a more complex process at a
lower level of granularity. For example, the UAM system [TAGMS05] adopts the
newer Mani definition [Man01] of (multi-document) summarization including
five steps, which seem to be a more refined version of the ones in [MB99]:

• Identification of elements of information.

• Matching instances of these elements.

• Filtering of elements to keep the salient ones.

• Aggregation and generalization of the information from kept elements.

• Presentation of the results.

The aggregation and generalization step does not exist in Mani’s first, three-
step specification, implying the objective to produce extractive summaries. On
the other hand, Niggemeyer seems to have taken into account that it is not
only the selection of salient information (independently of the way this is im-
plemented) that transforms text; there can be other types of transformation.
Furthermore, the newer, five-step specification of the summarization process by
Mani indicates the problem of element identification, which the previous defi-
nitions ([MB99] and [ENW04]) seem not to take into account, although it can
be part of the analysis step. Also, in [MGB99] we find an elaboration of the
condensing (reductive) transformation of text, which is reported to involve the
following operations: selection of salient portions of text, aggregation of the
information over various selected portions and abstraction of information to a
more general level, as is also indicated in [Jon99]. The above indicate that, even
though there is serious overlap between definitions, there is no consensus over
the detailed description of the process. This lack of consensus has also been
noted at footnote 1 of [MB99].

To further support this argument, we have to point that Sengupta et al.
in [SDC04] describe summarization as ‘the process of extracting keywords or
potentially complete sentences that capture the text of the document’. In the
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aforementioned paper keyword extraction is described as a form of summariza-
tion process. But, is this what people think about what a summary should be
like? Probably, as stated in section 2.1.1, the answer is negative, as there are a
number of textual qualities that are not covered by simple keyword extraction.

Marcu in [Mar00] reduces the problem of summarizing documents to the
selection of those nodes (text spans) that form the nuclei in the rhetorical
structure of the source text. The rhetorical structure of a text has been modeled
using RST, which stands for Rhetorical Structure Theory (RST) [MT87]. RST
defines a framework for the description of intra-textual relations between text
spans, such as elaboration, justification, concession, evidence, contrast, and
others. Therefore, a text is mapped to a tree-structure based on the above
relations, with each span of the text being a leaf of the tree, while relations hold
inner positions. Some relations have child-nodes of equal importance, while
others have child-nodes of non-equal importance. For example the relation
contrast (e.g. ‘I am dumb but not that dumb’) has equally important children (‘I
am dumb’, ’but not that dumb’). On the other hand, the evidence relation (‘I am
dumb. See my school grades!’) does not have child-nodes of equal importance
(‘I am dumb’ is the important part, or nucleus, while ‘See my school grades!’
is the less important part, or satellite). What is important about Marcu’s
specification of the summarization process is that no rendering step exists: the
prevalent clauses are kept as-is. Thus, after locating the relations between text
spans, the rhetorical structure provides a representation which leads to direct
indication of salient parts of text.

A recent architecture of a general purpose summarization tool, indicative
of recent thoughts on the summarization process, has been defined in [FRTF],
where the three main components of the architecture are:

The Relevant Information Detector that returns a set of ranked Text Units
(TU), corresponding to chunks of text.

The Content Extractor that processes linguistically the TUs detected by the
previous module and selects some of them by means of the Candidates
Similarity Matrix Generator (CSMG) and the Candidates Selector (CS)
modules. The Extractor uses various analyses to determine the most ap-
propriate TUs for the final summary.

The Summary Composer that creates the final summary text, using one
of two approaches: lexical and semantic. The semantic approach uses
semantic information to avoid redundancy, whereas the lexical does not.

Concerning the specification of the summarization process, we would like
to have one that is detailed enough to indicate how a summarization system
can be implemented, but also general enough, to subsume existing established
definitions. We will attempt to describe summarization in a multi-layered fash-
ion, providing an overall specification of this process, and further elaborate on
its distinct stages. The specification, in order to be generic enough, must allow
steps to be omitted without harming the overall function summarization process
(an output summary would still be expected).
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2.2 The Summarization Process

We define summarization as a reductive process that transforms information
from a finite-information source to an output (surface appearance of a) repre-
sentation that:

• maximizes equivalence of meaning (semantic equivalence) between the rep-
resented information and the information from the source.

• maximizes textual quality and informativeness with respect to human
judgement.

• minimizes information redundancy, if such redundancy exists in the source.

• selects pieces of information indicated or implied by an information need
model (or profile).

The information need model represents a specification of the information
needs and preferences of the summary consumer (see section 2.2.2).

Our objective is to specify the concrete steps of the summarization process,
specifying those aspects that will drive the design of summarization systems,
for any modality, so that the output summary preserves required qualities. We
could then check our specification of summarization, making sure that it uses
and complies with knowledge from existing approaches, and that it also takes
into account views of the process that are novel or uncommon to existing speci-
fications and systems, such as the use of non-textual sources, or the production
of non-textual summaries.

The overall specification of the summarization process is meant to allow
for a deeper understanding of the problems one may face while developing a
summarization system, of existing solutions to these problems, and of open
questions requiring further research.

As Figure 2.1 depicts, we consider summarization as a multi-step process
involving domain definition, subject analysis and information retrieval, data
analysis, feature generation and representation, information aggregation and fu-
sion, summary representation, summary generation, summary reformulation,
and summary evaluation (see Figure 2.1). In brief we present each step:

Domain definition sets the context, i.e. data, information and supportive
knowledge sources, to be used throughout the summarization process.

Subject analysis and information retrieval processes the information need
of the user and retrieves information related to this need.

Data analysis processes the information gathered and extracts structures,
relations and features of varying complexity.

Feature generation and representation is the step where extracted struc-
tures, relations and features are used to derive more informative features,
that we will call elements. These elements may be represented by feature
vectors, graphs or other such formalisms.

Information aggregation and fusion is the step that combines generated
elements, so as to provide less redundant combined pieces of information.
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The aggregation and fusion further aims at creating enriched elements
that are more informative compared to each of their individual source
elements.

Summary representation determines the salience of different enriched ele-
ments, selecting a subset of the latter and binding them into a coherent
whole in a well-defined way.

Summary generation is the rendering of selected enriched elements into a
surface appearance, e.g. text.

Summary reformulation is a correcting step, aiming to enhance the pro-
duced summary, so that the text is of higher quality. We have integrated
this step as a separate subprocess, due to the fact that there is much work
dedicated to the reformulation process as part of extractive summarization
methods [MKH+99, KM00, HB08, HCGL08, Nen06]. In non-extractive
methods such a step can be omitted.

Summary evaluation is the step where the enhanced summary is evaluated
according to a set of given metrics, in order to determine its quality. The
results of the evaluation can then be used as feedback to previous steps.

Each step can have one or more inputs and one or more outputs, creating
a multiple pipeline-like structure. In each step, input comprises outputs of
previous step(s) as well as other supportive resources, such as domain knowledge,
information repositories, linguistic resources, etc. Examining how this generic
course of actions reflects specific approaches, some steps can be implemented
using the identity function, which means they will perform no transformation
or processing whatsoever. We claim that this model can describe most existing
approaches on summarization, simply by mapping the techniques used in each
approach to one or more specific steps in the model.

Subsequently, we introduce the steps that compose the summarization pro-
cess one by one. We attempt to provide examples that indicate the specific pro-
cessing at each step, indicating how the described process works. One should
note that most of the cited approaches, are derived from the domain of multi-
document summarization (which is the main focus of this section), but others
originate from single-document summarization research, where similar work has
been conducted.

What is also notable is that, although it would be useful to present evaluation
methods for each intermediate step in the process, this is not possible. The
reason is that in most summarization approaches we only find evaluations of
the final result. These evaluations are not necessarily indicative of the success
at the subprocess level. As we will discuss in part II of this work, evaluation
should focus more on the intermediate methods and results to optimize the
overall summarization process.

2.2.1 Domain Definition

Domain definition sets the overall domain of interest in which the summarization
process will be carried out. This means that the domain of interest (input)
leads to the selection of a set of data sources, metadata sources and probably
other information resources (output), that subsequent steps consult and process.
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Figure 2.1: The Summarization Process The output of each step is also con-
sidered input for the next step. Domain data and meta-data, as well as the
information need model are used throughout the process. Finally, evaluation
output can be used as feedback to improve previous steps by iteration.
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The documents to be summarized are being retrieved from the information
sources identified, while other resources aim to provide helpful information for
the summarizer to perform its tasks. The output of this step functions as input
for latter steps.

• Where The Data Come From — Data sources

Either manually or automatically, one should determine the source of doc-
uments as an early step of summarization. Systems aggregating news,
for example, give the user the option to select the primary sources of
news [ROWBG05]. In most systems, however, data sources are predefined
(e.g. DUC data).

Sources can vary in many attributes, like the subject in focus, objectivity,
style (e.g. of writing), content type (text or multi-modal), volume of
information, intention of communication (e.g. libel or praise, elaboration
on a previous text, support of an idea, news update) and others. This
original content limits the maximum informativeness or responsiveness5 of
the system, as existing systems cannot deduce new pieces of information.
They only make use of what information is contained within the source
documents. Therefore, the quality of the data sources may pose an upper
limit in summarization effectiveness, measured by means of the different
qualities introduced.

• Metadata sources

Metadata are described in [BL97] as ‘machine understandable information
about web resources or other things’ or ‘information about information’.
If, for example, we have an image (which is a piece of information), a
machine understandable (i.e. conforming to some standards) description
of the image provides the metadata for the image.

Metadata, in general, are used to provide to the system such informa-
tion or knowledge that the system can exploit to perform reasoning tasks
(also see section 2.5). Another use for metadata would be the provision
of grammatical, syntactical or semantic information (e.g. [MBF+90]), to
support mechanisms for textual, or other types of, analysis. Lexica and
thesauri may contain metadata concerning. for instance, terms, meanings
of terms, semantic relations among them, etc. The provided information
and knowledge aid the summarization process to increase effectiveness in
such tasks as selection of salient information [WL03], or analysis of mean-
ing and verification of extracted meaning from analysed text [ENW04].

2.2.2 Subject Analysis and Information Retrieval

One of the major tasks of the subject analysis step is to specify the subject of
the needed summary. This can be done by means of a short query, a set of
queries, a narrative question, a relevant document, or by means of some other
form of subject specification: using keywords, indicating an event, or a time
duration. For indicative literature on the subject specification see Table 2.1.
The above facets of specification can form parts of the consumer information
need model.

5Responsiveness is a quality indicating how informative a summary is, given a question
(see [Dan05]).
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Method Indicative Literature
Short query [HMR05, CSS05, DIM05]
Set of queries [Sag05, DNS+05]
Narrative question [TAGMS05]
Relevant document [HS06a]
Other (keywords, time duration) [NPDP05]

Table 2.1: Subject Analysis - Subject specification approaches

Elaborating on the information need model of the user, the model can define
the user need using characteristics such as:

Length, or compression ratio indicating the required length or reduction
ratio of the summary.

Source requirements indicating criteria for source selection, e.g. scientific
journal news only.

Relevance requirements indicating criteria for the domain, the subject within
a domain, or more specific content requirements (e.g. by means of a
query).

Quality requirements referring to the summary qualities, as these have been
defined above.

Representational requirements concerning the output, like output format
(XML, text, image, treemap, etc.).

Use and purpose requirements indicating criteria, specific to the use of the
summary. Each different use can actually alter the rest of the requirement
set as an overall bias. For example the use of a summary as a scientific
report will have different quality requirements than a news bulletin.

Other requirements defining, for example, already acquired information, so
as to avoid information redundancy in a communication session.

The information need model can be augmented by other pragmatic (i.e.
user-context dependent) constraints, complementary to the above characteris-
tics. These may serve as a bias to the summarization subprocesses, driving the
satisfaction of specific qualities. Such constraints may be:

time constraints like a requirement for fast response.

space constraints like a constraint for minimal encoding size (due to low
speed network).

machine constraints indicating supported protocols like the final representa-
tion of the summary (HTML only, XML, etc..).

One should notice that by referring to ‘a source’ we do not affect the gener-
ality of the specification: all individual sources can be considered to be merged
into an ideal source, which in turns is provided as input to the summarization
process.
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It has been argued that users cannot effectively define or learn to define
specific information needs [SJWS02], which means that 100 percent of recall
(i.e. percent of desired information from the input that is contained in the
output) and precision (i.e. percent of the output information that accounts
for desired information from the input) of summary-contained information can
only be approached asymptotically. In other words, if the user is not sure about
what he wants (or he can not specify his needs in an adequate way), how can
the system produce satisfactory summaries? As we argue later (section 13.1),
the specification of information needs is more of an interface rather than an
algorithmic issue. However, the information need model supplies a specification
of how an information need can be defined and used.

In some cases, sources may be so comprehensive that some restriction has
to be put, in order a system to use only data that are useful or appropriate for
the purposes of the summary. For example, a system may get many interesting
pieces of information from the World Wide Web. In order to avoid huge amounts
of information that will make the summarization process too time-consuming,
we can use subject analysis, aiming to analyze the specification of the subject (as
described in the information need model), so as to retrieve only relevant pieces
of information. This technique is applicable even in cases where one requires
continuous summary updates evolved through time (e.g. on a news story and
its evolution). By retrieving only relevant documents, the use of extraneous
information is limited, probably resulting in a summary which is more focused
on the subject of interest.

To retrieve related documents or information, it is quite common to use
some kind of metric for content similarity. For instance, clustering methods (see
e.g. [DHS01] for background on clustering methods) exploit document feature
vectors (the process of feature vector creation is described in detail, along with
several applicable distance metrics, in sections 2.2.4, 2.2.6) to group documents
according to content similarity. The subject of interest can also be modeled
accordingly, for example using a feature vector. Doing so, the document cluster
that is closest to the subject in the vector space is the most relevant to the
purposes of summarization (for some examples consult [RBGZ01, ZSN05]). This
document clustering process locates, in other words, the best candidate subset
of documents to be used as the source of information for the summarization
process.

Another search and retrieval strategy is one retrieving texts based on the
existence of a keyword or key-concept within the examined text. As a matter
of fact, any document retrieval approach can be used to locate the required and
most appropriate subset of documents. The metrics and methods used in the
retrieval process can be identified within the information need model. More
specifically, appropriate restrictions could be declared within the model, aiming
at biasing the process towards a specific metric or retrieval and filtering method.

The subject analysis and information retrieval step outputs a set of docu-
ments that are to be used as source documents. We should note at this point
that all the analysis methods that we present thoroughly in the following data
analysis section, including morphological, syntactical and grammatical, seman-
tic and pragmatic analysis can be used in this subject retrieval step as well. We
do not delve further in the retrieval process, as the information retrieval domain
is a very broad scientific field.
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2.2.3 Data Analysis

After identifying and retrieving objects of interest, the system should analyse
them to extract useful information concerning structures, relations, and features
(i.e. attributes of the data). This step affects the summarization process in that
it provides the basis for the next steps to stand upon. For example, if a stemming
process is not successful, all the following steps will use wrong terms and the
summary text may be misleading as to the original text or meaning. Therefore,
each kind of analysis described, even though it is presented as a unitary process,
aims at extracting as much useful information from the source documents, with
the least amount of noise and errors inserted.

Morphological Analysis and Preprocessing

This type of analysis isolates and identifies features depending on symbols (e.g.
letters) appearing in a document. A method finding patterns of symbols, of
whatever length, is an instance of morphological analysis. Actual examples of
such analysis can take into account the word morphemes appearing within a
text, as in [BKM90]. Other examples are tokenization and chunking, substring
analysis, stemming and matching, as well as lemmatization and matching (e.g.
in [HMR05]).

Using tokenization and chunking the text is segmented in tokens of various
sizes, according to the intuition and theoretic approach (underlying hypothe-
sis) of the researcher. Usually we refer to tokens when we deal with words or
small complexes of words (e.g. phrasal verbs, named entities). For longer word
ensembles we usually use the term chunk.

Tokenization and chunking can be performed at any level6. One can find
in existing literature, as illustrated in Table 2.2, tokens that are single words ,
sentences , multisentential passages , or even entire texts — even though texts
are an extreme of the chunking process. It should be noted that in [FH03] there
is a preliminary study that indicates inter-human disagreement in the chunking
process, when trying to identify lengths of sentences indicative of an atomic
event.

In substring analysis different parts of a string are used instead of the original
string, e.g. the word ‘overload’ can be analysed into the representation array
(‘over’, ‘verl’, ‘erlo’, ‘rloa’, ‘load’). This kind of analysis offers flexibility in
such techniques as matching, because one can match two words even if they are
not identical. In [SHW06] such a technique is used for the indexing of concept
words (lexicalization of concepts) of an ontology. Also, it is rather obvious
that substring analysis can neglect noise within a string, like misspellings, as a
number of substrings will match despite the error.

Stemming and lemmatization is used in many systems [ZSN05, TAGMS05,
CSO07] to avoid differentiation of word forms of a single word. Stemming is
the process where a word is reduced to its ‘stemmed’ form, removing suffix. In
lemmatization the word is reduced to its lexicographic lemma, i.e. a canonical
form of the word, containing only its identifying part, irrespective of the actual

6In p. 398 of [All87] we find that selecting different granularity for segmentation appeared
to be a subject of controversy among researchers. It is no longer so, because varying granularity
allows different levels and types of analysis.
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Method Indicative Literature
Word tokens [WKB05, HMR05]
Sentence tokens [KM00, AGK01, RBGZ01, BM05, FH03, LOWS07]
Multi-sentential tokens [GMCC00]
Text tokens [HS06a]
Stemming and lemmatization [ZSN05, TAGMS05, CSO07]

Table 2.2: Morphological Analysis approaches

word form. The lemma usually corresponds to the string one would look up in
a dictionary to find the meaning of a word.

All the above methods, summarized in Table 2.2, have one main common
attribute: they do not infer or identify the semantics of words; they just use
pattern matching, pattern extraction or similar methods as a means to identify
symbolic features. These features are then used as either symbols (e.g. words)
of the output summary, or as input to other processes aiming at capturing the
semantics of the surface representation of the original texts. However, this shal-
low level of analysis can usually be performed with low complexity algorithms,
which makes it a useful tool in most cases. On the other hand, the language-
dependent nature of many parts of this analysis lessens the analysis’ importance
in multi-lingual domains. Furthermore, the preprocessing step which usually in-
volves stemming and stop-word removal is of argued value [Led08, LRPN07], in
conjunction to their implication for language dependency.

Within this thesis we present a set of methods for morphological analysis
(section 3) based on n-gram graphs that is language-independent, which also
offers high usability in a variety of summarization applications ranging from
content analysis and redundancy reduction to summary evaluation.

Syntactic and Grammatical Analysis

Syntactic analysis , as in [BM05], and grammatical analysis, as in [RJZ89], both
offer additional knowledge about tokens (or chunks), which can prove useful
in the attempt to reach for semantics. It is very common to apply Part-Of-
Speech (POS) tagging to the words of a text, as applied in [CSS05, ZSN05,
HMR05], with the aim to retrieve linguistic and functional information about
the words of a text. Thus, in [CSS05], the authors use gerund clauses, restrictive
relative-clause appositives, and other similar phenomena as an indication of
dispensability of a text chunk. Zhou et al. use POS tags in the clustering and
summarizing modules of their summarizer [ZSN05].

The features extracted by syntactic and grammatical analysis are of a higher
level than the morphological ones, given that they offer information concerning
the role and functionality of the terms they describe. Therefore the output
summary can make use of this information to create a plausible text in terms
of language use; however, syntactic and grammatical information cannot ensure
such qualities as cohesion, coherence or focus. Once more, dependence from
language is an issue for syntactic and grammatical analysis.
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Semantic Analysis

Semantic analysis is usually based on types of analysis like the ones mentioned
above, coupled with metadata. So, simple string matching between the nouns
of a text and the lexicalization of concepts in an ontology, qualifies as such an
analysis. In [ZSN05], we find a classification of analysis methods, in the context
of summarization, according to the level of semantic information extracted. This
classification proposes three categories:

extractive analysis, where a word-similarity measure is used along with salience
measures to decide the original sentences to appear in the output sum-
mary.

simple semantic analysis , where representations like chains (or trees) of
inter-related words appearing in a document are used to detect salient
chunks of text. The representation, according to Zhou et al., offers some
semantic information.

deep semantic analysis, where the analysis is deeper in the sense that it
extracts even more complex information, like the relations appearing in
RST, again aiming at salience detection.

The deep analysis of Zhou et al. corresponds to our view of semantic anal-
ysis. Approaches using semantic analysis include [BKM90, SDC04, WL03].
In [BKM90] the authors present a system that uses three main components
to get from the surface appearance of a text to a knowledge representation of
its facts, which includes discourse information. In [SDC04] the analysis per-
formed over terms’ frequency in source texts assigns values to relations between
terms to determine semantic connectedness and extract a graph of terms as a
document summary. In [WL03] an ontology, already containing semantic in-
formation, is used to determine the salient parts of a set of documents. This
method offers comparable but slightly better results than a generic statisti-
cal feature-based method presented within the same article. In [AKS05b], we
find an approach where the cross-document structure analysis, based on Cross-
document Structure Theory (CST) [Rad00], uses temporal semantics to locate
similarities and differences between documents, motivated by the approach of
Allan et al. [AGK01] and others. The basic notion behind the approach pre-
sented in [AKS05b] is that the facts (represented as what Afantenos et al. call
‘messages’, which are further described in section 2.2.4) comprising the descrip-
tion of a evolving event through time, have a time dimension that can function
as an axis for comparison. This means that two fact descriptions referring to
the same point in time, covering the same fact concerning an event can either
declare similar or dissimilar information. To compare the two fact descriptions,
one must have identified the time of reference for these descriptions, i.e. one
must have extracted their temporal semantics.

One can argue that specific approaches extracting structural information
of a text [Mar00] or between texts [Rad00, ADKK04] also perform semantic
analysis. For example, this is the case in [ZSN05], where the use of rhetorical
structure is described as an instance of deep semantic analysis. But is this kind
of analysis semantic? It seems to be, as the intra-document or inter-document
relations extracted have to do with the emergent structure of a document or
corpus, given some understanding or induction of the relation semantics. In
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simpler words, how can you say e.g. if a sentence (or document) elaborates
a statement in another sentence (or document), if you cannot extract, either
heuristically or otherwise, the semantics of elaboration from the given text(s)?

Semantic analysis, as can be derived from the definition of semantics in [All87],
should output pieces of information compliant with a predefined restriction of
roles. In other words, semantic analysis uses information about which word can
play which role – e.g. ‘freedom’ cannot be ‘colored’ but it can be ‘restricted’ –
and extracts relations between words that indicate plausible facts.

The predefined restriction of roles is the background knowledge this step
requires to complete. The validated pieces of information, on the other hand,
are the output of the step. This means that this step will extract validated in-
formation, as opposed to a simple mixture of salient (e.g. frequently appearing)
words or terms from the original documents [FRTF]. However, the complex-
ity of semantic analysis makes this step hard to accomplish and we find that
this semantic of analysis is under heavy research. On the other hand, simpler
forms of semantic analysis, for example using readily available resources like the
WordNet seem to be gaining in use. For example, in [LOSG06] the WordNet
is used as background knowledge, along with a function of similarity between
words, given existing WordNet definitions, to indicate similarity between the
summary query and candidate terms in documents.

Pragmatic Analysis

Pragmatic analysis is an effort to extract real world knowledge (i.e. pragmatics)
from the analysis of a document7. Such analysis should deduce knowledge of the
real world (i.e. its rules, facts and functions). Pragmatics is the type of informa-
tion Luhn, in [Luh58], referred to as ‘general familiarity with the subject’, when
he stated that ‘preparation of abstracts is an intellectual effort’. On the other
hand, [All87] describes pragmatic analysis as a process of using textual con-
text as a means to perform such tasks as anaphora resolution. In other words,
in [All87] pragmatic analysis is described as a method to identify and extract
information about inter-sentential relations, which allow for validity checking
of statements. The distinction between ‘world’ and ‘linguistic’ knowledge has
been used in [BKM90] as an integral part of the proposed KBNL system that
performs deep analysis and language generation to retrieve information.

The difference between pragmatics and semantics is that pragmatics take
into account the combination of both general truths and context information
within a source. Pragmatic analysis can determine the validity of a fact taking
into account all related knowledge, whether background, deduced, induced or
reviewed during earlier time in that same analysis process. Semantic analysis,
on the other hand, is not enough to handle inconsistencies appearing outside a
specific level, e.g. a sentence. Look at the following example:

Ilias is human and has three children. They are all green.

Using semantics, as defined in the domain of linguistics [All87], the above would
be accepted, as no inconsistency would be found. Remember that semantic

7In 1969, Edmunson described what we call cue words as pragmatic words, and used these
two terms interchangeably [Edm69]. The term pragmatic is not used in the same way here.
However, it is true that Edmunson’s pragmatic words usually point to real world situations
or contexts.
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Analysis Type Indicative Literature
Morphological [BKM90, HMR05, All87, WKB05, HMR05],

[KM00, AGK01, RBGZ01, BM05],
[FH03, GMCC00, HS06a, FH03],
[SHW06, ZSN05, TAGMS05, CSO07]

Syntactic and Grammatical [BM05, RJZ89, CSS05, ZSN05, HMR05, ZSN05]
Semantic [BKM90, SDC04, WL03, AKS05b, Rad00, AGK01]
Pragmatic [BKM90, NPDP05]

Table 2.3: Indicative approaches per analysis type

analysis takes into account only intra-sentential information (plus background
knowledge about the valid combinations of terms). Thus, one would not find
out that ‘they’ cannot be ‘green’. On the contrary, pragmatic analysis would
have first fathomed that ‘they’ are ‘children’ of ‘Ilias’ who ‘is human’, which
means (by common sense) that they should also be human, and thus cannot be
‘green’.

One should also examine carefully [NPDP05] to see that pragmatic analysis
may depend on the review of existing knowledge to assess the meaning of a token
within pragmatic context (which context in the case of [NPDP05] is a multi-
modal one). Thus, pragmatic analysis should output a number of information
nuggets that can be supported by background or inferred knowledge and would
be expected to be more accurate, i.e. close to the real world, than semantic
analysis. This is because the role restrictions apparent in pragmatic analysis
would be more numerous than in semantic analysis. More restrictions mean
more checking, more rejected information pieces and therefore higher precision,
even though recall may be lower. However, the modelling of pragmatics and
its extraction is non-trivial and requires complex methods of processing, which
makes it an open domain for research.

Overall, pragmatic analysis is expected to render more precise knowledge
about facts and events related to the original documents and will help produce
summaries that model information in the sources more precisely. Pragmatic
analysis is therefore expected to output a set of relations that abide by common-
sense rules, this way correcting meaningless relations extracted by other types
of analysis.

A summary of different methodologies based on the type of analysis they
use is presented in Table 2.3.

Analysis Methods

At this point we present a few, quite important methods (tools) for analysis,
namely probabilistic analysis, cognitive analysis, and structural analysis. We re-
fer to these analyses in a separate section to acquaint the reader to their utility
related to summarization. There are also many other kinds of analysis methods,
which are mostly based on heuristics, and will not be elaborated here. Prob-
abilistic, cognitive and structural analysis, can serve as basic approaches when
one has to decide upon the method of analysis. The types of analysis mentioned
above (morphological, syntactic and grammatical, semantic, pragmatic) differ-
entiate analyses by their goal, and can all be accomplished by means of the
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following methods.

The probabilistic analysis method applies statistical methods in order to
extract a set of statistical measures from input data. One such approach
would be to use the frequency of terms (which dates back to 1958 [Luh58]
and is used until today e.g. [SEKA05]) or of co-occurrence of terms as a
means to identify features of a text [MKH+99]. It should be noted that
Nenkova in [Nen06, section 4.1.1, p. 70-74] has studied whether high-
frequency of a term means that it will appear in a human written summary,
and supports that some humans use summarization strategies informed
by high frequency terms. On the other hand, she finds that the most fre-
quent terms within a set of documents are most probable to appear in the
final summary, while the ones with the lowest frequency are less probable
to appear. Thus, frequency may be a measure used by human summariz-
ers, but this is not definite. Consider that stopwords (having very high
frequencies) are usually removed by preprocessing, which means that be-
fore using frequency have already applied corrective measures, based on
heuristics, to improve the usefulness of the frequency measure.

Another measure similar to frequency is TF*IDF (term frequency — in-
verse document frequency) which is a measure of token importance, taken
by the multiplication of the frequency of a term within a document, indi-
cated as tf , by the inverse document frequency of the token in a reference
corpus (indicated as df ). TF*IDF appears as tf × 1

df or tf × log 1
df .

TF*IDF achieves to assign high values to words that appear often within
a text, but less often within a corpus. See [SM86] for more information on
this measure, which seems to correct the effect of stopwords, but there is
no definite answer about whether it correlates to human selection of words
in a summary.

Another family of probabilistic tools is that of topic models, including
a variation of the Latent Semantic Indexing method (LSI) [DDF+90]
called Probabilistic LSI (PLSI) [Hof99] and the Latent Dirichlet Allocation
(LDA) [BNJ03]. These methods attempt to capture the ‘latent semantics’
of a text by combining terms in higher level features. These features,
represented as distributions over words, use information derived from the
occurrences of terms within documents to determine relations and topics.
LSI uses the frequencies of terms in documents in a matrix to determine
latent topics, defined as a linear combination of term frequency features.
PLSI uses statistical methods and models the text generation process using
‘classes’ of words that can be used in a text to provide similar semantics.
This model manages to tackle such phenomena as synonymy and poly-
semy when analysing a text [Hof99]. LDA uses a probabilistic generative
process to model the generation of texts. This way it can infer the latent
topics the words are derived from. In this case, the complex features are
distributions over words and express the probability to use a given word
given a latent topic. Latent topics have been used in various summariza-
tion works to determine salience and to identify the underlying topics in
document sets for summarization and evaluation purposes [HMR05, SJ04].

The cognitive analysis method attempts to reformulate the extracted in-
formation, in accordance to background knowledge, into elementary facts
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that can be used as a repository for later phases of analysis in the summa-
rization process. The cognitive aspect of analysis aims at mimicking the
representation and reformulation methods supposedly used by humans,
instead of other, similar methods. The methods are experimentally dis-
covered, e.g. by monitoring expert human summarizers. In [ENW04] we
find such an approach, where agents are used to perform human-derived
subtasks of the summarization to finally create a summary. For exam-
ple, an agent is used to locate relevant context, another to represent text
into propositions and another to remove redundancy. In [SL02], Saggion
and Lapalme use conceptual information in terms of concepts and relations
which they have extracted from a large corpus of scientific interdisciplinary
articles and summaries. Cognitive analysis is also applied in [SYGH05],
where the analysis returns a taxonomy as the required cognitive model.
The result is that the summary is created based on either information
extraction and processing in a way similar to the human summarization
process.

The structural analysis method has been used since the first steps of sum-
marization [Edm69] and has taken advantage of the formal structure of
specific types of documents. The structural components used in the sum-
marization process may consist of sentence positions in a text [Edm69,
Sag06], word positions in a sentence [Luh58], or other kinds of informa-
tion inherent in semi-structured documents, e.g. HTML, XML documents,
where the structure is defined in terms of tags and even paragraph or-
der [Ami01]. This kind of information may be depicted as formatting
variation when rendered, but relies on an underlying document structure
that can be easily extracted.

In [SL02] we find an approach extracting structural information, depend-
ing on the formalisms used in technical articles concerning content order.
This kind of formalism suggests that high level structure is in general Ab-
stract, Introduction, Previous Work and so on, while in-paragraph text
has a well-formed structure itself, with the first sentence being indicative
of the paragraph meaning, and the last being a concluding remark for
example. Structure can imply salience of specific information and it can
also suggest sentence and content ordering in the output summary.

2.2.4 Feature Generation and Representation

Using the above mentioned types of analysis a system extracts some features ei-
ther to be used as-is or to be combined into complex, more informative features.
Features extracted through grammatical and syntactical analysis offer relations
between words in the language model. Semantic analysis offers information
about the relations between the concepts the words represent. Pragmatic anal-
ysis offers information about things that hold, not because they are directly
expressed within a given text, but because they can be deduced through com-
mon knowledge and the facts within the text. It is clear that in our attempt
to summarize, we need to combine principal knowledge sources into more in-
formative ones to enrich the information we have at our disposal to form the
summary.
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As an example, having a grammatical analyser indicating that in the sentence
‘In this paper we define the problem of using background knowledge’, the word
‘of’ is a preposition by itself, could mean that this word is not important. Even
a ‘stopword’ strategy, excluding common words contained in an appropriate list,
would have done the same thing. Let’s now see the case of the ‘Lord Of The
Rings’ title. The ‘of’ in this case would again be omitted, even though it is an
indispensable part of the title. If a Named Entity Recognition (NER) process is
applied [FH03], it would possibly identify the whole of the title as a token and
prevent the harm done. NER is usually based on simple analysis (e.g. pattern
matching and simple list look-up), indicating informative features (i.e. whether
a list of words is a named entity, the type of this entity, etc.). This is the kind
of increase in informativeness we aim at by combining features and different
analyses.

Feature Vectors

An aspect of the summarization step at hand is how to actually represent the
features identified. It is very common to use what we call the vector space
approach (for example see [TAGMS05]), where each feature may be qualified
or quantified and appended to a vector as a new dimension. We will call the
quantified version of the feature, serving as a vector element, a vector feature.

Thus, the word ‘of’ from the example above, using this kind of representation
and having applied simple morphological / lexical analysis may correspond to
the uni-dimensional vector of [of]. A grammatical analysis might represent the
same word by the vector [preposition]. If we had also used a label indicating
indispensability or removability of a token, then the feature vector would have
two dimensions, and would be represented as [preposition, indispensable] if we
referred to the ‘Lord of The Rings’, while it would be [preposition, dispensable]
if we referred to the sentence ‘In this paper we define the problem of using
background knowledge’.

But how can we quantify features? One way to do it — amongst infinite
ones — is to map each feature value to a numeric representation. For example
preposition = 1, noun = 2, article = 3 and indispensable = 1, dispensable =
0 for the features accordingly. Then, the above vectors would map to [1,1],
[1,0]. And at this point we have managed to represent features as vectors and,
therefore, texts as sequences or sets of vectors.

Due to the fact that in many cases the dimensionality of the feature vector
(i.e. the number of features) is too high (even thousands or million features)
and not all features are of equal importance, some approaches apply dimen-
sionality reduction techniques, like LSI and Independent Component Analysis
(ICA) [DHS01]. Through LSI a document vector is mapped from the world
(vector space) of words into the world of topics or classes. In ICA one maps the
document vector to a vector in a feature space that attempts to represent (statis-
tically) independent aspects of the text representation as different dimensions.
Using these methodologies we keep what we consider to be the important fea-
tures or generate new (fewer) ones that somehow represent the original features
in an aggregated way.

So, what is the most indicative subset of (generated or predefined) vector
features that would allow us to directly differentiate between desired and un-
wanted data? Unfortunately, this is still an open question. It is common to
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see some features perform better given a certain task, and worse given another.
Thus, it is useful to use heuristics, trial-and-error efforts, information theo-
retic approaches or even compression techniques to ensure the most important
features are kept. For more on feature selection the interested reader may con-
sult [DHS01]. What should be kept in mind is that the evaluation of a feature
in the summarization process is not equivalent to the evaluation of a feature in
another feature-driven task, such as for example the classification task. This
happens because a single, common word (e.g. the word ‘not’) may carry im-
portant semantics (negation in this example), while a statistical method may
indicate that it is of no significance.

Relationships

Another approach on feature generation and representation is the one where
extracted features are relationships between information units (e.g. words or
sentences). In this kind of representation, features can consist of the structure
of relations interconnecting textual units of information, or both the struc-
ture and the information units. An instance of such a representation is that of
graphs [MB97, Mih04, Mih05, MR06]. In these graphs, units of information (en-
tities and relations in [MB97], sentences in [Mih05]) are interconnected to form a
graph based either on collocation (indicative, for instance, of context [MB97]),
or on sentence similarity (indicating for instance presumed semantic similar-
ity [Mih05, ER04a]). Trees, which are actually a subconcept of graphs, like
the dependency trees in [BM05], can be used as well to represent a sentence,
given the output of a syntactic parser and a set of rules. The representation
of structured relationships conveys information that has been utilized either for
salience indication and selection of sentences, or for reformulation of a summary.
Obviously, the underlying representation, e.g. graph or tree or vector, does not
define the semantics of the relationships. The semantics are defined by what is
contained within this representation. However, different representations allow
for the use of different tools when, for example, we want to match or cluster
extracted relations.

Regarding relationships, an approach may output intra-document, or inter-
document relations, as in [TM02] or [Rad00]. In the latter case, text chunks
are positioned in a cube representation according to their source (e.g. a news
site), their time of publishing (e.g. September 3rd) and their position within
the document. This offers a time-sensitive aspect to the text representation and
indicates temporal relations.

In [WKB06] authors propose the fuzzy coreference chain extraction method-
ology, which is applied to anaphora resolution and extraction of inter-document
and intra-document references. The underlying intuition is that correference of
noun phrases or verbal phrases in different sentences constitute indications that
two sentences refer to the same entity. Fuzziness is used to manipulate uncer-
tainty and allow for a less strict match between different references. Also ‘lexical
chains’, first proposed in [MH91] and used in [SM02, ZSN05], can serve as fea-
tures indicating relations between sentences. A lexical chain is a clustering (i.e.
grouping) of words sharing the same meaning or being part of a relation (for
example subsumption, synonymy, hypernymy) with each other. These chains
provide the vocabulary that is indicative of the topics present in a text.
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Other Feature Types

Beyond single words, or text spans, other types of features may also be used
as well. Cue phrases8 [Luh58] or lexical cues [CSS05] correspond to seemingly
important sentences (or variably sized tokens) and serve as features to the sum-
marization process.

Summarization content units (SCUs), defined in [Nen06], are another al-
ternative. They are annotated, semantically adequate fragments of a text, no
longer than a sentence and they are defined by humans. At DUC 2005 we find
the notion of Elementary Discourse Units (EDUs) [Dan05], which are subsen-
tential, automatically extracted fragments of a text. At TREC 2003 Voorhees
et al used the concept of information nuggets [Voo03]. These are defined to be
atomic facts (in contrast to SCUs, which are not necessarily atomic) for which
the (human) assessor can make a ‘binary’ decision on whether it is contained
in a response or not. These facts are identified based on previous research on
behalf of the assessor, i.e. are based on human semantic preprocessing and
conceptual representation.

All the information representations indicated in this section can also be used
at the evaluation step. Doing so, human-oriented features and their representa-
tions are of great value towards evaluating machine-oriented approaches. That
is why we also refer to types of output that can only be generated by humans.

Another representation is that of an event [AGK01, FH03], which is further
analysed in messages according to [AKS05b]. A message is an atomic fact
(much like the atomic event in [FH03]) concerning an event, with the latter
being composed of several facts. Messages appear in the form of a predicate-
like template: e.g.

performance(entity1 , in what , time span, value1 )

refers to the performance of a player or team during an event. Arguments take
valid values from instances of an ontology (more on ontologies in section 2.5).
A seemingly similar concept exists in [SL02], where we find the term template
describing a structure indicative of a category of predicates. The categories of
predicates and the templates themselves have been created using empirical ex-
amination based on a set of assumptions relative to the structure of technical
articles: they are supposed to map unstructured text to structured, semantically
important pieces of information. On the other hand, Daniel et al in [DRA03]
define the notion of a sub-event. This is an elementary event (e.g. a primitive
fact, an elementary action) which describes part of a composite event. The
example given by Daniel is one involving the event of the Gulf Air crash, which
is decomposed in the sub-events concerning the take-off of the plane, the sub-
event of something going wrong, the sub-event of the crash, the sub-event of
the release of information from Gulf Air and the sub-event of the government
agencies reacting. The factoid concept [VHT03] specifies ‘atomic’ pieces of in-
formation that can differentiate summaries in the way two different predicates
can differentiate knowledge bases: they declare different facts, or different in-
formation about partially matching facts. These factoids are of various lengths,
they are represented in a manner similar to First Order Predicate Logic, and
they are subjective in that there is no well defined way to identify them. In

8See also [All87], pages 401-403, for a different view of cue phrases.
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fact, the main directives on which factoid annotation was based, as indicated
in [VHT03], was that a factoid could generally be represented by a simple First
Order Predicate Logic predicate. Additionally, potential factoids (i.e. pieces
of information that appear to be factoids) always appearing together within a
(source) text were to be viewed as one, joined factoid, containing the union of
all corresponding information.

As far as the definition of the term event is concerned, we find that it is
usually presented more intuitively than formally [ACD+98]: an event is loosely
defined as ‘something happenning at a specific place in a specific time’.

To recapitulate, the output of the feature generation and representation
step consists of a set of features, either in vector form, or in some other, more
structured representation. This representation is supposed to be a better model
(i.e. better approximation) of the information contained in source texts than
the model of simple features extracted in the analysis step. The fact that we
have a better model will allow for better aggregation of the information at the
next step and, therefore, result to a better summary.

2.2.5 Information Aggregation and Fusion

The step of information aggregation and fusion corresponds to the process of
transforming elements of information to information chunks that are more in-
formative when compared to the individual originally extracted elements. This
increased informativeness may correspond, for instance, to a more complete view
of an event, additional information about people involved and so on. Although,
in an extractive summarization approach this step is implemented by an identity
function (i.e. omitted), in abstractive techniques it is very important.

Given the output of the previous steps, we will have an, either structured
or unstructured, set of features and we will refer to it as elements or element
set. The information integrated within these elements could be unique, fully
repeated, or partially redundant. These elements may also be structured includ-
ing information about different types of relations [Rad00, MT87], like identity,
paraphrasing, translation and subsumption. Some of the above relations allow a
number of elements to be aggregated or filtered, to make sure that the resulting
set of elements is more compact, less redundant, and equally informative. For
example, finding a paraphrase relation, which is the case when part of a text is
represented using different expressions, means that we can use either constituent
element of the relation to convey the meaning. In this case we may choose the
element with the most compact form.

Also consider the case where there is an elaboration relation, where an el-
ement is an elaboration of another, giving more specific information: ‘many
people’ and ‘200 to 250 people including a 20% adults and 80% children’. In
this case, according to our communication intention, i.e. what we aim at suc-
ceeding by communicating9, we may merge the two in a single element, including
all the information from the sources, but avoiding redundancy: e.g. ‘up to 250
people including about 50 adults’. It should be noted that the communication
intention may be part of the information need model of a user. The user may,
for instance, require that the summary provides argumentation or proof for ev-
erything it states, or that the text is just a juxtaposition of phrases existing

9Also see intentionality and situationality in [EN00].
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in the original text, aiming at content of high novelty with respect to a set of
pre-existing information.

Information fusion comes in many shapes, ranging from the selection of a set
of most prominent elements [FL03] and their ordering, to the addition of outly-
ing information from other elements [MLDBGH04], to sentence fusion [BM05]
or paraphrasing (see [ZLMH06] for paraphrasing detection).

In sentence fusion, as presented in [BM05], common information between
sentences is identified using parse trees’ alignment10. Then, what is called a
fusion lattice11 is calculated. The lattice elements are selected based on common
information. The ordering in the lattice is based on the normality of the selected
sentences, as well as the length of each proposed alternative. Normality of a
sentence was measured upon a language model created through analysis of a
corpus of texts. Generation of the text is the next step, which is actually a
part of what we call summary generation (section 2.2.7). In paraphrasing, the
aggregation process attempts to locate paraphrases of the same information, and
select the most promising one, so that the least loss of information is conceded
and redundancy is minimized. It is obvious that in this case the criterion for
information fusion is not only the minimal size.

Filatova et al in [FH03] compose atomic, that is to say elementary, events by
fusing previously extracted information on relationships between named entities,
accounting for location, participants and time data types.

Information fusion may also offer an aggregation of information concerning
numeric estimates [WKC+00]. These estimates are derived via information
extraction techniques from a multitude of sources, referring to specific events.
Then, the numeric estimations, which can appear in either literal numeral (e.g.
18, 34, etc..) or descriptive form (e.g. less that half, more than double, more
than 15) are categorized according to the following categories:

• Range, indicating numeric range. For example ‘ten to fifteen people’.

• Specific, usually indicating literals. For example ‘ten men’.

• Incomparable, which refers to expressions like ‘more than half of the re-
gion’s residents’.

Then, estimates are selected according to specificity and novelty, the latter
being decided by time of publication of the source document containing the
estimate. Finally, these estimates are encoded by extraction of the minimum
reported numeric value, the maximum reported numeric value and any estimates
between these extremes. This kind of fusion, thus, aims to offer the most novel
and complete set of information for a given numeric estimate.

The output of the aggregation and fusion step of the summarization process
is a set of enriched elements, that increase informativeness and reduce redun-
dancy of the elements generated in previous steps.

2.2.6 Summary Representation

During this step the system has to select and represent the most salient elements,
producing a coherent representation of the summary to-be. The selection pro-

10A parse tree is a tree structure generated by means of a (syntactic) parser, and represents
the (syntactic) structure of a chunk of text (see [All87] for more on parse trees).

11A lattice is a partially ordered set, or poset.
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cess is in some way similar to the feature selection step in section 2.2.4, in that
it would be ideal to keep all the important information, while filtering out the
rest without ignoring the user information needs.

How can one define important information? It seems that the notion of
salience is heavily related to the information need model of the summary re-
cipient. In other words, salience is related to the subject analysis step (sec-
tion 2.2.2), even though we will argue later (section 13) that there are other
characteristics that identify importance, like the communication intention, the
point-of-view (POV) of the summary recipient12 and other pragmatic aspects
concerning the information.

The selection of salient information also depends on the representations used
in the previous steps. Therefore, in the feature vector space representation it
is quite common to create groups of feature vectors based on topic clustering,
i.e. clustering of the sentences (or documents) according to the features that
are indicative of their subject. Then some kind of distance metric between a
vector representative of the cluster and of the element of the selected granu-
larity (e.g. a sentence), is used to get a metric of the coverage or similarity
between the topic and the element. This metric can simply be the Euclidean
distance, as is used in [SEKA05] for the clustering of paragraphs, or the cosine
distance (e.g. in [Sag05]). The representative vector of the selected cluster is
usually the centroid of the cluster [RJB00]. Therefore, salience of textual units,
such as sentences or phrases, is determined based on the textual units’ vector
representation distance from the cluster representative vector.

For representations based on structural traits, like the ones using rhetorical
structure, the distinction between important and less important parts of text can
be inherent in that structure. For example, in RST in most cases the important
part of a text element is the nucleus and the less important part, the satellite,
can be omitted [Mar00]. In graph models, it is argued that the most salient
elements tend to be those that correspond to nodes with the highest degree
for undirected graphs or in-degree (number of edges leading towards them) for
directed graphs, when elements are mapped to nodes [Mih05, MB97].

For other types of representation, like for instance the Summarization Con-
tent Units, the Elementary Discourse Units and other (already described in
section 2.2.4), there seems to be no direct indication of importance. On the
contrary, salience is evaluated by transforming the information to a different
type of representation and using measures applicable to that representation. It
would be very interesting at this point, if we could measure importance based
on pragmatics. This approach will be further discussed in section 2.6.

To determine salient sentences researchers have used either positional and
structural properties of the judged sentences with respect to the source texts, or
relation properties of the sentences. Positional and structural properties include
the sentence position in its containing text or the fact that a sentence is part of
a title or abstract [Edm69, RJST04]. Relation properties of the sentences have
to do with the sentence’s relation to a user-specific query or to a topic appearing
in a document set [CSS05, VH06, PLA+06].

The properties usually used to determine sentence salience include the dis-
tance between the representation of the judged sentence and the representation

12The terms recipient and consumer used instead of the term reader, also cover the cases
where the reader is a system that uses (consumes) the output.
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of the document set, single document, or sentence they are matched against. A
sentence is represented as a word-feature vector called a bag-of-words represen-
tation, e.g. [TAGMS05], where the sequence of the represented words is ignored.
The vector dimensions contain such values as the word frequency or the Term
Frequency – Invert Document Frequency (TF-IDF) value of a given word in
the source texts. In other cases, an analysis is performed prior to the vectors’
generation in order to produce vectors in a latent topic space [SJ04, FGFdC08],
which we consider to encapsulate semantic similarity information.

More recent applications use machine learning techniques and sets of dif-
ferent features to determine whether a source text sentence should be included
in the output summary. In that case the feature vector calculated for every
sentence may include information like sentence length, sentence absolute posi-
tion in the text, sentence position within its corresponding paragraph, number
of verbs and so forth (e.g. see [TM02]). It has been shown that for specific
tasks, like the news summarization task of DUC, simple positional features for
the determination of summary sentences can offer very challenging baselines for
summarization systems [Dan05]. However, this may falsely lead to the expecta-
tion that the ‘first-sentence’ heuristic, i.e. the use of any sentence that appears
to be similar in content and properties to the first sentences of a set of training
instances in the output summary, can be used as a universal rule. Therefore,
experiments in generic text collections have to be conducted, as happens in the
case of the opinion track of TAC 2008, to determine features of general use,
regardless of the text genre. Moreover, one should try to test the transferability
of algorithms and criteria over different languages, which is non-trivial.

In multi-document summarization, different iterative ranking algorithms like
PageRank [BP98] and HITS [Kle99] over graph representations of texts have
been used to determine the salient terms over a set of source texts [Mih05].
Salience has also been determined by the use of graphs, based on the fact that
documents can be represented as ‘small world’ topology graphs [MOI01], where
important terms appear highly linked to other terms.

The step of summary representation as described here relates to the content
determination step of Natural Language Generation (NLG) Systems [All87],
where the salient information is decided upon and selected. Later on we will
find more steps than can be mapped to NLG processes.

Redundancy and Novelty

A problem mostly apparent within multi-document summarization is that of
redundancy detection. Whereas salience, which is a wanted attribute for the
information in the summary, can be detected via similarity to a query for ex-
ample, redundancy indicates the unwanted repetition of similar or identical
information. Research on redundancy has given birth to such measures as the
Marginal Relevance [CG98] and the Maximal Marginal Relevance (MMR) selec-
tion criterion, which argues that ‘good’ summary sentences (or documents) are
sentences (or documents) that are relevant to the topic without repeating infor-
mation already used in the summary. The derived MMR measure is a generic
linear combination of any two principal functions that can measure relevance
and redundancy. Another approach to the redundancy problem is that of the
Cross-Sentence Informational Subsumption (CSIS) [RJB00], where one judges
whether the information in a sentence is contained in another sentence, that
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may have already been added to the summary. The informationally subsumed
sentence can then be omitted from the summary without problem. The main
difference between the two approaches is the fact that CSIS is a binary deci-
sion on information subsumption, whereas the MMR criterion offers a graded
indication of utility and non-redundancy.

Other approaches, overviewed in [AWB03], use statistical characteristics of
the judged sentences with respect to sentences already included in the summary
to indicate repetition. Such methods are the NewWord and Cosine Distance
methods [LAC+03] that use variations of the bag-of-words vector model to de-
tect similarity between all pairs of candidate and summary sentences. Other,
language model-based methods create a language model of the summary sen-
tences, either as a whole or individually, and compare a corresponding language
model of the candidate sentence to the summary sentence model [ZCM02]. The
candidate sentence model with the minimum KL-divergence from the summary
sentences’ language model is supposed to be the most redundant.

2.2.7 Summary Generation

This part of the summarization process consists of the steps matching the rep-
resentation of a summary to the actual summary text. Of course there are ap-
proaches where the summary representation and the final text can be the same.
Such approaches include extractive approaches and other text-to-text views of
the summarization generation process, like the one presented in [BM05]. How-
ever, the overall structure of the generated document, even for instance the
order of elements’ appearance, has to be decided.

This step, along with the next one, corresponds approximately to some of
the usual steps of Natural Language Generation, according to p. 491 of [All87],
and specifically to the transformation of the semantic content into sentences.
According to [RD00] this would include discourse planning, where the overall
organization (i.e. ordering and structure) of the information is decided, the
lexicalization process, where words are chosen to represent concepts, and the
linguistic realization process, where syntax, morphology and orthography are
assured. In extractive summaries, the lexicalization part of the step is usually
not needed, as the actual lexicalization is the one used in the original source.

In the multi-document summarization literature there have been a number
of studies concerning the ordering of salient sentences in the output summary.
It has been shown that reordering can prove useful [BEM02]. In [BEM02] two
ordering strategies are presented, namely the Majority Ordering (MO) and the
Chronological Ordering (CO) algorithm.

Majority Ordering is based on the ordering of themes — themes are sets
of sentences from different source documents that contain repeated information
— extracted from the summary source texts to determine the proposed output
sentence ordering. In particular, sentences in the summary are ordered accord-
ing to how their corresponding themes were ordered within the original texts.
Theme ordering, in turn, is based on the order of its sentences in original texts:
if most sentences from theme T1 were found to be after sentences from theme
T2 then in the output summary sentences from T1 will also come after those of
T2.

Chronological Ordering, on the other hand, uses the temporal references in
articles to deduce the temporal ordering of events described by the summary
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sentences (see also [BME99]) and orders the sentences based on this temporal
dimension, as well as on their original presentation order when ties are found.

An approach based on the probability of the next sentence, given the se-
quence of already selected sentences in a summary is presented in [Lap03].
The described methodology represents every sentence in a given training corpus
based on various set of ‘informative features’, i.e. verbs in lemmatized and non-
lemmatized versions, nouns as named entities of groups like ‘company’, ‘person’
and ‘location’, date references and so forth. A probabilistic ranker orders candi-
date sentences according to the probability of seeing such a candidate sentence
after the sentences that have already been selected.

A Hidden Markov Model-based alternative for sentence ordering [BL04] uses
a probabilistic model to iteratively create topic clusters based of text spans
with similar word distributions in the original documents. Then, it models
topic transitions in source texts based on the extracted clusters and determines
optimal summary ordering based on this learnt model.

Up to this point we have not talked about extractive approaches that change
the extracted text, as for instance happens in [CSS05]. And how about the use
of anaphora and sentence aggregation as is defined in the NLG domain? Well,
this is where summary reformulation comes in.

2.2.8 Summary Reformulation

The process of reformulation as part of the summarization process is composed
of corrective and enhancing transformations that can be applied to the summary
text, so that the output is more cohesive and coherent. Also, this step of the
summarization procedure attempts to maximize performance related to other
qualities of the summary presented in section 2.1.1.

Mani et al. in [MGB99] speak of the usefulness of reformulation and im-
plement a text revision mechanism using elimination of sentence constituents,
aggregation of sentence constituents and smoothing (which is analysed into ref-
erence adjustment and reduction of text within sentence limits).

Another similar approach is found in [Nen06], where rewrite techniques for
noun phrases and references to people are described. For the part of rewriting
noun phrases (NPs) Nenkova suggests that the shortest of the available versions
of (co-referring) NPs should be preferred in the summary. As far as it concerns
references to people, the paper focuses on the ‘cognitive status’ of the reader to
decide upon the rewrite rules of a person reference within an output summary.
Specifically, Nenkova supports that a person reference should be reformatted
according to whether the consumer of the summary has already read about
that person (hearer-old) or not (hearer-new), and whether that person appears
to be important (major) for the event at hand or not (minor). These criteria
map to specific aspects of background knowledge and pragmatics that help the
reformulation step.

In [ORL02] we find a very interesting taxonomy of reformulation and revision
strategies, based on the pragmatic (i.e. actual) concerns these strategies aim to
tackle. More specifically, we find five major categories of pragmatic concerns:

Discourse refers to problems in inter-sentential relationships or sentence-to-
document relationships. Such problems would be indicated by seemingly
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incoherent, or out-of-place sentences with respect to adjacent ones, or by
the document structure.

Identification of entities mainly refers to anaphora resolution problems in
the summary.

Temporal refers to correct temporal ordering and relationships between events.
One should not ignore the reformulation aspect of temporal ordering,
which is a serious issue especially in multi-document summarization [ORL02,
Rad00].

Grammar problems are mostly due to erroneous juxtaposition of sentences.

Location, setting refers to problems in the indication of the spatial context
of an event. For instance, having a summary that indicates the Olympics
of 2004 took place in Corinth instead of Athens is such a problem.

Otterbacher et al. uses these concerns as a guide to problems where reformu-
lation and revision can be applied [ORL02]. Thus, the aforementioned list of
concerns indicates the set of problems reformulation should address.

From a different point of view, in [KM00] we find the reformulation problem
to be modeled as a compression problem assuming a noisy channel. The noisy
channel approach considers the summarized version of a sentence to be the
original (desired) signal and all additional (unwanted) information to be the
noise. The problem is to get the noise-free (clean) signal, i.e. the summary
text. There is no actual representation of the initial text (other than the text
itself), and the aim is to remove as many words as possible, without harming
the integrity of the text. In the statistical version of the process, a number
of statistically determined transformations are applied on the original text to
achieve compression. The most probable compressed versions of sentences for a
given parse tree probabilistic model derived from a training corpus are used to
form the final text.

In a second approach presented in [KM00], we find the compression process
to be modeled by a rewriting process of the original text into reduced parse trees.
The parse tree is reduced, according to [KM00], to a smaller version of itself by
using a sequence of shift-reduce-drop operations, using a decision-based model.
In this case too, there are only operations at a shallow level of processing.

What the described summarization step aims to offer is an enhanced ver-
sion of the initial output summary, optimized over a set of desired qualities.
The judgement of how well the output summary conforms to quality rules is
performed by the summary evaluation step.

2.3 Summary Evaluation

The step of summary evaluation in most automated methods is very important,
because it allows us to identify errors and reiterate or reformulate certain as-
pects of the process to optimality. While this is common ground, the notion
of automatic evaluation is not. For some time now, the domain of automatic
evaluation of summaries was only superficially addressed, because many of the
required summary qualities could not be automatically measured. Therefore,
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human judges have been widely used to evaluate or cross-check the summariza-
tion processes [MB97, ACD+98, Dan05]. This is obviously a fine way to perform
evaluation. But what about automatically computed measures? Which is the
feature space describing desired and required qualities of a summary? Can all
the desired qualities be measured so as to facilitate comparison between per-
formances of summarization systems? And what about cases where humans
themselves have different opinions on the quality of a summary; what should a
machine decide? Within this work there will be references to both manual and
automatic evaluation methods, in order to indicate the benefits and drawbacks
of each approach.

In our quest to answer the above stated questions we need to make sure
that we consider all the specific categorizations of evaluation methods. In-
deed, an evaluation process may be specified to be either intrinsic or extrinsic
(e.g. [MB97, VHT03]). Intrinsic evaluation operates on the characteristics of the
summary itself, trying for example to capture how many of the ideas expressed
in the original sources appear in the output. On the other hand, extrinsic eval-
uation decides upon the quality of a summary depending of the effectiveness
of using the summary in a specific task. For example, when using summaries,
instead of source texts, to answer a query and expecting that the results will be
equally well to those derived from source texts, we have an extrinsic evaluation
case. On the contrary, using a gold standard summary, i.e. a human-generated
summary viewed as the perfect output, and estimating the similarity of the
summary to the gold standard, this is an intrinsic evaluation (e.g. [LH02]).

Sparck Jones in [Jon07] argues that the classification of evaluation methods
as intrinsic and extrinsic is not enough and proposes an alternative schema of
evaluation methods’ classification. This schema is based on the degree to which
the evaluation method measures performance, according to the intended purpose
of the summary. Therefore, defining new classes that elaborate on the definitions
of extrinsic and intrinsic, Sparck Jones classifies evaluation methodologies as:

• semi-purpose, e.g. inspection of proper English.

• quasi-purpose, based on comparison with models, e.g. n-gram or informa-
tion nuggets.

• pseudo-purpose, based on the simulation of task contexts, e.g. action
scenarios.

• full-purpose, based on summary operation in actual context, e.g. report
writing.

The higher in the above list an evaluation method is mapped, the more it
appeals to the notion of intrinsic, while the lower it maps the more it would be
considered extrinsic.

In [BDH+00] we find a comment (part 3.4) referring to intrinsic evaluation,
where the authors suggest that ‘only humans can reliably assess the readability
and coherence of texts’. This statement indicates the difficulty of that kind of
evaluation. But do humans perform perfect in the evaluation of summaries?
And what does perfect account for?

The qualities of a summary, as we have already discussed in section 2.1.1
include:
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• structural well-formedness measures, involving length, grammaticality, co-
hesion, referential integrity and syntactic quality.

• informativeness measures, involving focus, informativity, granularity, cov-
erage and non-redundancy.

• semantic quality measures, involving intentionality, intertextuality and
cohesiveness.

• pragmatic quality measures, corresponding to situationality and usability.

Humans tend to be able to identify good texts, in a qualitative manner.
There is an issue of how to make human assessors grade the quality of a text
in uniform and objective ways (see for instance [VHT03, LH02] for indica-
tion of the problem). At this point numerous efforts have been attempted
(e.g. [Nen06, RJB00, Mar00, SL02]) all of which pointed out the inter-judge
agreement problem. In other words, there seems to exist only statistical simi-
larity measures that indicate the well-formedness of summaries. People tend to
have similar, but surely not too similar opinions. This led to looking for subjec-
tive measures correlated to human subjectivity. In other words, if our measures
behave similarly to human evaluation, we will have reached an adequate level of
acceptance for our (automatic) quality measures. In [LH02] partial inter-judge
agreement is illustrated among humans, but it is also supported that, despite
the above, human judgements generally tend to bring similar results. Thus,
perfection is subjective in the abstractive summarization process, which means
that we cannot identify the perfect summary: we can only identify good enough
summaries for a significant percentage of human assessors.

Then, what about other alternatives? Even though we find evaluation mea-
sures similar to recall and precision from information retrieval (e.g. [Mar00,
section 9.2.2] and [LH02]), these measures seem to be rather inadequate and
difficult to use in an automated evaluation process. The problem is that we do
not know the best means to compare summary semantics to the original seman-
tics of the source documents: shall we look for same words, sentences or shall
we look for the ‘actual’ meaning? And if we shall work using the meaning, how
can we automatically compare the meaning of two different pieces of text, if we
cannot analyse or represent it uniquely and with clarity?

An approach found in [Nen06] makes use of a human-based evaluation pro-
cess, named pyramid evaluation, which consists of a multiple step process. This
process tries to identify the segments of the original text, from which pieces of
the summary are semantically derived. In other words, the method makes use of
a supposed (and argued) mapping between summary sentences and source doc-
uments, where summarization content units (SCUs) are identified. We remind
the reader that SCUs are minimal units of informative ability that also appear
in the summary output. According to the number of human judges agreeing
on the origin of an SCU (i.e. the text span that corresponds to the SCU), the
SCUs are assigned weights, corresponding to pyramid layers. Thus, the SCUs
higher in the pyramid are supposed to be the most salient pieces of information
in the original sources. A summary is then evaluated by locating the SCUs
present in the summary output and using a summing function to account for
the weights. Doing so, two measures are defined: the pyramid score, which
corresponds to precision, and the modified pyramid score, which corresponds to
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recall. Nenkova argues that the above evaluation process can suppress human
disagreement and render useful results. Pyramid evaluation was also applied in
DUC and TAC, and the use of a new set of directives for evaluators in DUC
2006 provided better results than DUC 2005 [PMSG06], though not reaching
the effectiveness of automatic methods. This indicates that manual evaluation
methods can be highly dependent on the instructions given to the evaluators.

Measuring Correlation – Evaluation Method Performance

In the automatic evaluation of summarization systems we require automatic
grades to correlate to human grades. The measurement of correlation between
two variables provides an indication of whether two variables are independent
or not. Highly correlated variables are dependent on each other, often through
a linear relationship. There are various types of correlation measures, called
correlation coefficients, depending on the context they can be applied. Three
types of correlation will be briefly presented here, as they are related to the task
at hand:

• The Pearson’s product moment correlation coefficient reflects the degree of
linear relationship between two variables13. The value of Pearson’s prod-
uct moment correlation coefficient ranges from -1 to 1, where 1 indicates
perfect positive correlation and -1 perfect negative correlation. Perfect
positive correlation indicates that there is a linear relationship between
the two variables and that when one of the variables increases, so does the
other in a proportional manner. In the case of negative correlation, when
one of the two variables increases, the other decreases. A value of zero in
Pearson’s product moment correlation coefficient indicates that there is
no obvious correlation between the values of two variables.

• The Spearman’s rank correlation coefficient [Spe06] performs a correlation
measurement over the ranks of values that have been ranked before the
measurement. In other words, it calculates the Pearson’s product moment
correlation of the ranking of the values of two variables. If two rankings
are identical, then the Spearman’s rank correlation coefficient will amount
to 1. If they are reverse to each other, then the correlation coefficient will
be -1. A value of zero in Spearman’s rank correlation coefficient indicates
that there is no obvious correlation between the rankings of values of two
variables. It is important to note that this coefficient type does not assume
linear relation between the values, as it uses rankings.

• The Kendall’s tau correlation coefficient [Ken62] relaxes one more limi-
tation of the previous methods: it does not expect subsequent ranks to
indicate equal distance between the corresponding values of the measured
variable.

The above correlation coefficients have all been used as indicators of per-
formance for summary systems evaluation [Lin04, Nen06]. To clarify how this
happens, consider the case where an automatic evaluation method is applied
on a set of summarization systems, providing a quantitative estimation of their

13The linear relationship of two correlated variables can be found using methods like linear
regression.
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performance by means of a grade. Let us say that we have assigned a number
of humans to the task of grading the performance of the same systems as well.
If the grades appointed by the method correlate to the grades appointed by
humans, then we consider the evaluation method good.

Automatic Evaluation

Other, more morphologically and statistically oriented approaches of summary
evaluation are those inherited from the domain of information retrieval and are
namely the ROUGE/BE measures. More specifically, the ‘family’ of BE/ROUGE14 [HLZF05,
Lin04] evaluation frameworks, uses statistical measures of similarity, based on n-
grams of words15, although it supports different kinds of analysis, ranging from
n-gram to semantic [HLZF05]. The intuition behind the BE/ROUGE family is
that, for two texts to have similar meaning, they must also share similar words or
phrases. Automatic methods like ROUGE, BE can be, somewhat surprisingly,
more closely correlated to human judgement on responsiveness [Dan05, HLZF06]
than human-based processes, e.g. the pyramid evaluation.

Basic Elements (BE) are considered to be ‘the head of a major syntactic
constituent’ and its relation to a single dependent. BEs are decided upon in
many ways, including syntactic parsing and the use of cutting rules [HLZF05].
BEs can be matched by simple string matching, or by more complex matching
methods, like semantic generalization and matching, according to the proposed
framework. According to this approach BEs in summary match to those in
initial sources. The intuition underlying this approach is that locating minimal
units of information from the initial source into the summary identifies similarity
of meaning. The ability of this framework to use different matching operators of
various complexity, appears to allow for the handling of paraphrase and similar
phenomena.

In [HLZF05] we find that ROUGE is a specific branch of the BE approach,
where BEs are word unigrams (i.e. single words) or n-grams of a higher or-
der (i.e. with more than one words). Thus, ROUGE is a BE framework
instance using word identity as a matcher between BEs. The size of the n-
grams, as well other factors (like allowing gaps between n-grams) are best de-
scribed in [HLZF05], specifying different types of ROUGE. ROUGE and BE
have been found to correlate significantly to human assessors’ judgements ac-
cording to [Dan05] and [HLZF06] (Table 2.4), and ROUGE has been used in
DUC for quite some years.

The responsiveness score of DUC and TAC provides, as Dang states in [Dan05],
a ‘coarse ranking of the summaries for each topic, according to the amount of
information in the summary that helps to satisfy the information need expressed
in the topic statement, at the level of granularity requested in the user profile’.

Grammaticality and Fluency

Other than the responsiveness of texts, there has been some research concerning
the grammaticality and fluency of texts. Grammaticality is the quality of con-
forming to a specific grammar. Fluency, on the other hand is considered to be

14See also [PRWZ01] for the BLEU method on machine translation.
15We remind the reader that N-grams of words are groups of words with N elements. N-

grams of characters are groups of characters with N elements.
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Table 2.4: Correlation To Responsiveness in DUC 2005
Method Spearman Pearson
BE 0.928 0.975
ROUGE 0.951 0.972

a measure related to text production or reading rate — i.e. fluent writers write
more quickly that less fluent ones [CH01] and fluent readers read faster than
non-fluent ones. However, the notion of fluency has also been used to describe
well-formed, easily understood text [MDWD07]. Fluency is therefore a derived
quality given the qualities we have described in section 2.1.1, given that the
reader has good knowledge of the text language.

Researchers aim at quantifying these qualities in a set of different approaches.
In the research quest for evaluating fluency and grammaticality, the works of
various linguists and philosophers have provided the foundations and a constant
source of research. N. Chomsky for many years has delved into the notion of
grammaticality [Cho55, Cho05]. Considering statistical as well as non-statistical
aspects of grammaticality, it has been argued that there can be a binary decision
for the grammaticality of a text segment, or a graded decision.

Recent research towards measuring grammaticality has treated grammars as
a set of constraints that are either realized or not within a text. There have
been distinctions between soft and hard constraints, referring to how important
a constraint is to the acceptability of a clause [Kel00, SK05].

Much of the existing work has been based on Optimality Theory (see [PS04]),
which declares that the output language is based on a procedure that uses a
‘candidate analysis’ generation function, called GEN and a harmonic evaluation
function, called H-eval. The GEN function is part of a Universal Grammar that
generates candidate alternatives for the analysis of the input, while the H-eval
function exploits well-formedness rules of a given language. The methodology
using GEN and H-eval describes a loop between the two components, until
no analysis generated by GEN can give better harmonical results measured by
H-eval.

In [BHR06] authors describe an approach based on Property Grammars,
which is also a constraint-oriented syntactic formalism. The method applies
constraint weighting, which has been used in other works as well [SK05]. Highly
grammatical text chunks have a low number of violations for a given set of
evaluated properties. The output is a grammaticality index that is shown to
correlate to human acceptability evaluations.

From the domain of machine translation, the X-Score evaluation process [HR06]
computes the frequency of Part-Of-Speech tags and syntax tags in the target
language for a given model (reference) corpus called ‘fluency corpus’. The same
taggers apply tags to terms in the evaluated text. The assumption used by the
authors of X-Score is that the fluency score of a text should be linearly depen-
dent on the frequencies of tags in the target language. A prediction function is
estimated based on the fluency corpus and a team of human judges; then, the
prediction function is applied on the frequencies of tags of any evaluated text,
returning the estimated fluency index of the evaluated text.

In [MDWD07] the prediction of acceptability is viewed as a machine learning
problem, where the output of a set of parsers is used as input to a learner,

42



trying to discern human from machine generated sentences. Then, the distance
of evaluated texts’ representations from the support vectors learned provide a
metric that correlates to human judgments of fluency.

Studies that analyze human summaries in order to understand the sum-
marization process have been conducted in the past, revealing the abstractive
nature of human summarization. In [Jin02] the section on Corpus Analysis in-
dicates that a number of sentences in human summary texts had no equivalent
in the source documents. Furthermore, most of the sentences that indeed had
an equivalent in the original texts were transformed and combined in various
ways to form the summary.

2.3.1 Evaluation of Evaluation Measures

As an indication of how important the problem of evaluation appears to be,
there are articles reporting on methods for the evaluation of evaluation mea-
sures. In [AGPV05] for example, a framework concerning the evaluation of
evaluation metrics is proposed, which is based on some assumptions relating
human performance to the performance of automatic summarization methods.
The argumentation for the framework implies that we consider evaluation met-
rics to be ‘good’ when they can differentiate human from automatic summaries.
In other words, if an automated method creates a summary that is as well as a
human summary and an evaluation metric cannot tell the difference, then the
evaluation method is considered bad. Even though this approach seems very
pessimistic concerning the future of automatic summarization, it addresses two
important issues: objectivity of an evaluation method (i.e. independence from
corpus) and the criteria of a good evaluation.

The AESOP (Automatically Evaluating Summaries of Peers) task of upcom-
ing TAC 2009 aims to focus on summary evaluation techniques, as well as on
their evaluation under a common set of tools.

2.4 Performing Summarization over Multiple Doc-
uments

In our study so far, we have described the summarization process without distin-
guishing whether the input comprises a single document or multiple documents.
In other words, it appears that we suggest that whether we use multiple sources,
or a single source for summarization, the problems we face will be the same.
This, unfortunately, is not true.

According to several researchers (e.g. [GMCC00, LH01, ZBGR02]), there are
problems that are found in the multi-document version of summarization and
not in its single-document one:

Redundancy. Many sources describing the same topic are much more prone
to repeating information. As we have already indicated, redundancy has
been dealt with by means of Maximal Marginal Relevance (MMR) [CG98]
and Cross-Sentence Information Subsumption [RJB00].

Maximal Marginal Relevance is a metric that takes into account relevance
and novelty of a document, combining relevance and novelty linearly to
provide what Carbonell and Goldstein [CG98] refer to as relevant novelty.
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The metrics of relevance and novelty are not predefined in [CG98], which
indicates the generality of the approach. A document has high MMR if it
is relevant to a user query (as expressed in the information need model in
our case) and, at the same time, if it does not offer redundant information
with respect to an existing set of information chunks (in [CG98] these
chunks are documents).

Cross-Sentence Information Subsumption, on the other hand, is described
as the relation holding between two sentences when the information con-
tent of a sentence a (denoted as i(a)) is contained within i(b) of another
sentence b. In that case a becomes informationally redundant and the con-
tent of b is said to subsume that of a: i(a) ⊂ i(b). When such a relation
holds, a can be omitted as redundant. It is important to note that there
is no indication of how i(x) can be measured. In [RJB00], authors use the
Cluster-Based Relative Utility (CBRU) (also see [ACD+98]) in analogy to
the relevance part of the MMR metric above.

Coherence. Extractive approaches for multi-document summaries face serious
textual quality deficiencies. This means that it is very difficult to cor-
rectly combine parts of text from different sources, while bridging the gap
between authoring style, intention of writer, and so forth. This problem
is very evident when, for instance, evaluating anaphora resolution on the
final summary. Another important aspect of this problem is sentence or-
dering in the output summary [BEM02]. In [HLY+06] authors prove that
the strategy of sentence ordering can offer improvement to (mainly bad)
summaries. As abstractive systems evolve, one would hope to see improve-
ment in summary coherence. However, due to the embryonic state of such
systems, coherence is still an issue.

Intertextuality. The integrity of references in texts, as well as the correctness
of the author’s train of thought and argumentation, cannot be easily trans-
ferred by simple extraction of pieces of text from different documents on
the same topic. It requires abstraction and validation to make sure that
the output preserves the intertextuality of the original set of texts. The
problem is that both abstraction and validation have to be further investi-
gated to provide fruitful summarization results, as they require pragmatic
analysis and inconsistency detection.

Differences and similarities. Several texts may have different, often partly
opposite views of a single topic or event [Rad00, AGK01, AKS05b, MB99].
For example the case where a document reports on an accident having hun-
dreds of dead people, while another document reports the same accident
to have tenths of dead people, indicates an inconsistency that is rarely
encountered in a single text. Such relations have been described in the
Cross-document Structure Theory, as it has already been reported.

Temporal dimension. The time interval that a group of texts has been pub-
lished is within a span of time for multi-document summarization. This
is in contrast to the single-document summarization, where a document
is positioned at a specific point time. This dimension reflects a series
of arising problems, such as temporal alignment between reference time
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and publication time, as well as topic evolution through time [Rad00,
GMCC00, ADKK04, ORL02].

Evaluation. Humans have major disagreements as to what a multi-document
summary should include. That is due to the fact that for people, multi-
document summarization is an abstractive process [VHT03, Nen06]. How-
ever, recent research attempts to substitute abstraction with extraction
and reformulation ([Nen06]), which appears to be a promising direction in
that it can be based upon existing extractive approaches but improve on
their results.

User interface. The user interface has been handled by some researchers as
an important aspect of multi-document summarization [SDC04, CNP06],
indicating the need for a more informative way to render multi-document
summaries. Aspects of multi-document summaries like the source of an
output sentence should be taken into account, as well as aspects concern-
ing the expression of user needs (i.e. information need model). Issues
concerning the user interface problem are further discussed in section 2.6.

As it can be understood, these problems have to be addressed by a frame-
work for multi-document summarization. Our proposed definition of the sum-
marization process takes into account these distinguishing aspects (as has been
indicated in every step of the process), while not lacking in generality.

2.4.1 State-of-the-art Performance

How well do current systems perform in the multi-document summarization
task? This is a question that is rather difficult to answer. What is certain, is
that there is still much room for improvement.

The evaluation carried out in DUC 2005, where the given task was indeed
a multi-document summarization task, given an information need model (as we
have defined it above in section 2.2) showed that most systems did quite well in
subproblems of the tasks [Dan05]. More specifically, the redundancy problem,
as well as the grammaticality one were faced adequately well, having several
systems averaging around the grade of ‘barely acceptable’. On the other hand,
referential clarity, focus and especially structure and coherence fared badly.
The overall results indicate that, though much progress has been done, research
has many more problems to face. What is important is that systems tend
to improve significantly [Dan06], both on content-related and focus measures,
leaving however room for even more improvement over readability and coherence
issues.

It is probable that the use of background knowledge will import the semantics
required to enhance the efficacy of current systems. But what is the nature of
this knowledge and how can it be represented?16

2.5 Background Knowledge

We view background knowledge to be that part of real-world knowledge which
is inherent in humans, and we aim to transfer it into automated systems to sup-

16Readers already familiar with the topic of knowledge representation can skip the following
section, which is introductory to the domain.
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port and aid their function or evaluation. In a syntactic parser the rules used
to identify syntax consist background knowledge. In a dictionary application,
the actual dictionary used for look up is background knowledge. In the sum-
marization process, the use of nouns and verbs only in order to extract salient
sentences is based on background knowledge and namely on the fact that nouns
and verbs carry the main meaning of a sentence.

2.5.1 Using Prior Knowledge

Semantically rich information has during the years been embedded into au-
tomatic summarization systems using either rules that describe patterns of
language corresponding to rhetorical and discourse phenomena (e.g. [Mar00]),
heuristics, or more complex representations. In [BKM90] the representation of
world and text-derived knowledge uses the CyCL representation language. In
the same article we find a proposal to differentiate linguistic from world knowl-
edge (pragmatics), which is achieved using a lexical database and a knowledge
base. This distinction is important in that it implies different aspects of knowl-
edge, requiring different handling.

Recent articles investigate the use of ontologies as a more effective way to
handle non-obvious latent information. Niekrasz et al. in [NPDP05] use what is
described as a Multimodal Discourse Ontology (MMD): this is a knowledge base
that represents the concepts and relations of ‘communicative actions performed
during multi-modal discourse’, i.e. speech, gestures, etc.. The same approach
exploits the so-called Temporal Knowledge Base, which maintains uncertain
(speculative) and incomplete probabilistic information, and supports learning
of new facts by supplementary information and reinforcement. The use of on-
tologies here is being used to support filling partial information, which is later
completed based on reasoning and slot-filling through information extraction.

Ontologies could also be used to incrementally extract information from a
text, so that instances of expected entities are identified. These entities can also
be used in the summary. For example, if an ontology has defined a transition
event as a tuple containing a medium, an agent, a source and a destination,
then a system may gather this information from various parts of source text,
or even different texts, and give the complete piece of information for surface
representation.

In [ENW04] we find a corpus-based ontology supporting the summarization
task performed by agents. An agent, according to [VKB+06], is ‘an entity that
perceives its environment with the help of sensors, is part of this environment,
performs reasoning tasks on its’ representation of the ’environment and acts
upon the environment with the help of action mechanisms (effectors) to achieve
some targets’. In [ENW04] the agents used are software agents, which are
programs operating within a system context. More on agents can be found
in [VKB+06]. Each agent, in [ENW04], implements a (rather) trivial human
cognitive subprocess of summarization. For example the ‘context’ agent checks
whether a specified document is relevant to a selected domain. At this point
the ontology is used to provide the key concepts of the domain. Each agent has
its own use for the ontology, according to the former’s purpose.

Finally, lexica and thesauri are two specific cases of resources specifying
knowledge related to the human-intended meaning of words, synonymy, homonymy,
opposition as well as other relations, as for instance in WordNet [MBF+90].
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Lexica and thesauri have been extensively used to support the summarization
process. Recently, other resources such as Wikipedia are used to aid in the
summarization process by expanding user queries [Nas08].

2.6 Conclusion and Motivation

Automatic summarization is moving from single-document extractive methods
towards multi-document non-extractive methods. Simple heuristic methods are
giving way to more complex methods, that often use machine learning techniques
to determine salience of information. At times much background knowledge is
used in terms of ontologies and thesauri to support the process, even though we
have no direct evidence of the merit of such approaches. Finally, the evaluation
of summaries offers a very broad research domain that may be directly linked
to the optimization of the summarization process itself.

One should never neglect the tight relation between Information Extraction
(IE), Natural Language Processing (NLP) and MDS, which allows research in
one field to nourish breakthroughs in the other. The required deduction of
meaning from documents, allowing different uses of the information contained
therein and in other sources of knowledge, seems to require a multitude of steps
forward from different disciplines. Researching representation may offer effective
means to combine information and evaluate information using a common set of
algorithms.

The analysis given in the previous sections of this study leads to a number
of questions and directions that research can focus on. The main directions
indicated can be categorized as follows:

• Representation. Is there a kind of text representation that can be generic
enough to take part in different steps of the summarization process? Can it
be scalable to represent relations of various order? Can this representation
be language-neutral?

• Knowledge representation in the summarization process. How can we use
background knowledge within automatic summarization?

• Textual Quality. How can we measure textual quality or aspects of it in
a language-neutral way?

2.6.1 Representation

Throughout this research we faced a number of very interesting research endeav-
ours that used all kinds of language features, from specific patterns of words to
syntax and grammar, to extract and combine information from source docu-
ments. However, many of these methods induced noise or could not even be
determined as useful or not, as in the case of stopword removal. This led us to
devise a representation that would not rely on the underlying language, but it
would be able to retain language characteristics even indirectly.

The representation we devised was that of the n-gram graph, presented in
section 3. The n-gram graph has a number of desired traits, including generic
application, language neutrality and higher expressiveness than feature vectors
when expressing relations between chunks of text. Furthermore, it is based on
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the assumption that humans group individual symbols into small sets, which in
turn constitute higher complexity symbols. This grouping and scalability has
offered the basis upon which our research on representation was set.

2.6.2 Knowledge Representation in the Summarization Pro-
cess

Ontologies, which have been utilized to a degree in current research, can have
a much more significant role in the summarization process. Thus we propose
that ontologies are used as a uniform representational method for all resources
supporting the actual summarization process, like thesauri, lexica, conceptual
taxonomies, look-up lists or indices. This indicates the need to produce map-
ping methods from existing representations to ontologies, and brings forward
the question of combining different aspects of knowledge into an overall rep-
resentation containing the mixture of information. In other words, it would
seem useful to combine a thesaurus, a lexicon and a taxonomy under a unified
structure. What possibilities that approach could offer and what its limitations
would be should be the focus of future research.

To use knowledge in summarization, one can map concepts of an ontology
to chunks of text, aiming to represent the text’s semantics. This way tasks like
content selection and redundancy detection could be performed in the semantic
and not the surface level of a text. This notion we have developed within out
summarization system (part III), trying to bridge the gap of the surface to
the semantic representation. However, in our work we have used the WordNet
resource, without making use of the reasoning potential contained in a formal
ontology.

2.6.3 Textual Quality

It was illustrated throughout this whole section that both the definition of tex-
tual measures of quality, as well as their quantification are difficult problems.
Even worse, even if we manage to quantify textual qualities, as has already
happened in various works, it is non-trivial to automatically measure these
quantities.

To that aim we developed a language-neutral evaluation system, presented in
part II, that manages to approximate a set of qualities required for the evaluation
of summaries.
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Chapter 3

The N-gram Graph
Representation

In the domain of natural language processing, there have been a number of
methods using n-grams. An n-gram is a, possibly ordered, set of words or char-
acters, containing n elements (see Example 3.0.1). N-grams have been used in
summarization and summary evaluation [BV04, LH03, CS04]. In the automatic
summarization domain, n-grams appear as word n-grams, as happens in the
ROUGE/BE family of evaluator methods [HLZ05, Lin04].

Example 3.0.1 Examples of n-grams from the sentence: This is a sentence.
Word unigrams: this, is, a, sentence
Word bigrams: this is, is a, a sentence
Character bigrams: th, hi, is, s , a, ...
Character 4-grams: this, his , is , ...

3.1 Graph-based Methods and Graph Matching

Graphs have been used to determine salient parts of text [Mih04, ER04b, ER04c]
or query related sentences [OER05]. Lexical relationships [MR06] or rhetorical
structure [Mar00] and even non-apparent information [Lam05] have been rep-
resented with graphs. Graphs have also been used to detect differences and
similarities between source texts [MB97], inter-document relations [WKB06], as
well as relations of varying granularity from cross-word to cross-document, as
described in Cross-Document Structure Theory [Rad00]).

Graph similarity calculation methods can be classified into two main cate-
gories.

Isomorphism-based Isomorphism is a bijective mapping between the vertex
set of two graphs V1, V2, such that all mapped vertices are equivalent, and
every pair of vertices from V1 shares the same state of neighbourhood,
as their corresponding vertices of V2. In other words, in two isomorphic
graphs all the nodes of one graph have their unique equivalent in the other
graph, and the graphs also have identical connections between equivalent
nodes. Based on the isomorphism, a common subgraph can be defined
between V1, V2, as a subgraph of V1 having an isomorphic equivalent graph
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V3, which is a subgraph of V2 as well. The maximum common subgraph of
V1 and V2 is defined as the common subgraph with the maximum number
of vertices. For more formal definitions and an excellent introduction to
the error-tolerant graph matching, i.e. fuzzy graph matching, see [Bun98].

Given the definition of the maximum common subgraph, a series of dis-
tance measures have been defined using various methods of calculation
for the maximum common subgraph, or similar constructs like the Max-
imum Common Edge Subgraph, or Maximum Common Induced Graph
(also see [RGW02]).

Edit-distance Based Edit distance has been used in fuzzy string matching
for some time now, using many variations (see [Nav01] for a survey on
approximate string matching). The edit distance between two strings
corresponds to the minimum number of edit character operations (namely
insertion, deletion and replacement) needed to transform one string to
the other. Based on this concept, a similar distance can be used for
graphs [Bun98]. Different edit operations can be given different weights,
to indicate that some edit operations indicate more important changes
than others. The edit operations for graphs’ nodes are node deletion,
insertion and substitution. The same three operations can by applied on
edges, giving edge deletion, insertion and substitution.

Using a transformation from text to graph, the aforementioned graph match-
ing methods can be used as a means to indicate text similarity. A graph method
for text comparison can be found in [TNI04], where a text is represented by first
determining weights for the text’s terms using a TF-IDF calculation and then
by creating graph edges based on the term co-occurrences. In our method, no
term extraction is required and the graph is based directly on the text, without
further background such as a corpus for the calculation of TF-IDF or any other
weighting factor.

Our method represents texts by using character n-grams positioned within
a context-indicative graph. We remain language independent, while allowing
for different types of the same word, and try to capture high order relations
between words (i.e. ‘neighbor of a neighbor’ and sequence information), The
graph that we construct, which holds the aforementioned qualities, we shall call
the n-gram graph.

3.2 Representation

We now provide the definition of n-gram, given a text (viewed as a character
sequence):

Definition 3.2.1 If n > 0, n ∈ Z, and ci is the i-th character of an l-length
character sequence T l = (c1, c2, ..., cl) (our text), then
a character n-gram Sn = (s1, s2, ..., sn) is a subsequence of length n of T l ⇐⇒
∃i ∈ [1, l − n + 1] : ∀j ∈ [1, n] : sj = ci+j−1. We shall indicate the n-gram
spanning from ci to ck, k > i, as Si,k, while n-grams of length n will be indicated
as Sn.

The meaning of the above formal specification, is that n-gram Si,i+n−1 can
be found as a substring of length n of the original text, spanning from the i-th
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to the (i + n − 1)-th character of the original text. For example if the text is
the following sentence:

Do you like this summary?

then the bigram S1,2 is the sequence {‘D’,‘o’}≡‘Do’ for display purposes.
The length of an n-gram n, is also called the rank of the n-gram.

3.2.1 Extracting N-grams

If we choose to extract the n-grams (Sn) of a text T l, the (elementary) algorithm
is indicated as algorithm 1. The algorithm’s complexity is linear to the size |T |
of the input text T .

Input: text T
Output: n-gram set SSn

// T is the text we analyse
SSn ← ∅;1

for all i in [1,length(T)-n+1] do2

SSn ← SSn ∪ Si,i+n−13

end4

Algorithm 1: Extraction of n-grams

The algorithm applies no preprocessing (such as extraction of blanks, punc-
tuation or lemmatization). Furthermore, it obviously extracts overlapping parts
of text, as the sliding window of size n is shifted by one position and not by n
positions at a time. This technique is used to avoid the problem of segmenting
the text. The redundancy apparent in this approach proves to be useful sim-
ilarly to a convolution function: summing similarities over a scrolling window
may prove useful if you do not know the exact centre of the match between
two subparts of a string. In the case of summary evaluation against a model
summary for example, the extracted n-grams are certain to include n-grams of
the model summary, if such an n-gram exists, whereas a method where the text
would be segmented in equally sized n-grams might not identify similar n-grams.

Example 3.2.2 Application of our method to the sentence we have used above,
with a requested n-gram size of 3 would return:
{‘Do ’, ‘o y’, ‘ yo’, ‘you’, ‘ou ’, ‘u l’, ‘ li’, ‘lik’, ‘ike’, ‘ke ’, ‘e t’, ‘ th’, ‘thi’,
‘his’, ‘is ’, ‘s s’, ‘ su’, ‘sum’, ‘umm’, ‘mma’, ‘mar’, ‘ary’, ‘ry?’}
while an algorithm taking disjoint n-grams would return
{‘Do ’, ‘you’, ‘ li’, ‘ke ’, ‘thi’, ‘s s’, ‘umm’, ‘ary’} (and ‘?’ would probably be
omitted).

It is important that segmentation is performed carefully in order to reduce
redundancy, without losing information on important sequences of characters.
Consider the case where we match character n-grams between two segmented
texts. In the given example, the fact that the word ‘summary’ has been broken
down into three disjoint n-grams may cause a mismatch, or not match at all,
of the word ‘summary’. For n-grams of higher length, or rank as it is called,
the effect of information loss in the case of a careless segmentation may prove
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more deteriorating, if we consider two n-grams to match if and only if they are
exactly the same. Perhaps other methods of string comparison, like substring
comparison, may decrease this loss. However, the method proposed in this thesis
uses simple string matching between n-grams.

In the case of the word n-gram extraction, the text is considered to be a word
sequence (as opposed to character sequence). The text has been preprocessed,
using a simple tokenizer based on punctuation and blanks, to determine word
boundaries. However, it is important that this ‘simple’ tokenizer deprives the
method of its complete language neutrality, if used. Therefore, we will prefer the
character n-gram version to the word n-gram version, if they produce equivalent
results.

The segmentation process by itself, even if one uses our approach, does not
keep information concerning the relative position of n-grams in the original
text; it only extracts n-grams. What this means is that we do not know if the
n-gram ‘Do’ is next to the n-gram ‘you’, or not. Thus, words (n-grams) that
comprise what is called a ‘collocation’, i.e. that when found together possess
a meaning that is not simply a concatenation or composition of each separate
word meaning [MS99], will lose their connection when extracted. This is where
the graph representation comes in.

3.2.2 The N-gram Graph as a Text Representation

The n-gram graph is a graph G = {V G, EG, L,W}, where V G is the set of
vertices, EG is the set of edges, L is a function assigning a label to each vertex
and to each edge and W is a function assigning a weight to every edge. The graph
has n-grams as its vertices vG ∈ V G and the edges eG ∈ EG (the superscript G
will be omitted where easily assumed) connecting the n-grams indicate proximity
of the corresponding vertex n-grams (also see Figure 3.2). The edges can be
weighted by the distance between the two neighbouring n-grams in the original
text, or the number of co-occurrences within a given window. We note that
the meaning of distance and window size changes by whether we use character
or word n-grams. The labeling function L for edges assigns to each edge the
concatenation of the labels of its corresponding vertices’ labels in a predefined
order: for directed graphs the order is the order of the edge direction while
in undirected graphs the order can be the lexicographic order of the vertices’
labels. To ensure that no duplicate vertices exist, we require that the labelling
function is an one-to-one function.

More formally:

Definition 3.2.3 if S = {S1, S2, ...}, Sk 6= Sl, for k 6= l, k, l ∈ N is the set of
distinct n-grams extracted from a text T l, and Si is the i-th extracted n-gram,
then G = {V G, EG, L,W} is a graph where V G = S is the set of vertices v, EG

is the set of edges e of the form e = {v1, v2}, L : V G → L is a function assigning
a label l(v) from the set of possible labels L to each vertex v and W : EG → R
is a function assigning a weight w(e) to every edge.

In our implementation, the edges E are assigned weights of ci,j where ci,j
is the number of times a given pair Si, Sj of n-grams happen to be neighbours
in a string within some distance Dwin of each other. Since, probably, not all
distances are of importance, and thus two n-grams within a distance of 150
characters probably have no actual relation, we take into account only a window
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around Si in the original text, to determine which Sj is useful. The vertices
vi, vj corresponding to n-grams Si, Sj that are located within this parameter
distance Dwin are connected by a corresponding edge e ≡ {vi, vj}.

We have tested three methods, concerning how the n-gram graph can be con-
structed, based on how neighbourhood between adjacent n-grams is calculated
in a text. In general, a fixed-width window of characters (or words) around a
given n-gram N0 ≡ Sr, r ∈ N∗ is used, with all characters (or words) within the
window considered to be neighbours of N0. These neighbours are represented
as connected vertices in the text graph. The edge connecting the neighbours
is weighted, indicating for example the distance between the neighbours or the
number of co-occurrences within the text. Based on different types of windows,
we can use:

The non-symmetric approach A window of length Dwin runs over the text.
If N0 is located (i.e. begins at) at position p0, then the window will span
from p0 − Dwin to p0 − 1, taking into account only preceding characters
or words. Each edge is weighted by the number of co-occurrences of the
neighbours within a given window of the text.

The symmetric approach A window of length Dwin runs over the text, cen-
tered at the beginning of N0. If the n-gram we are interested in is located
at position p0, then the window will span from p0 − [Dwin

2 ] to p0 + [Dwin
2 ],

taking into account both preceding and succeeding characters or words.
Each edge is weighted based on the number of co-occurrences of the neigh-
bours within a window in the text.

The Gauss-normalized symmetric approach A window of length 3×Dwin

is placed over the text, centered at the beginning of the current n-gram,
N0. If N0 is located at position p0, then the window will span from
p0 − b 3×Dwin

2 c to p0 + b 3×Dwin
2 c (where bxc gives the integer part of x),

taking into account both preceding and succeeding characters and words.
However, in this case the distance of a neighbour n-gram to the current
n-gram is taken into account. In other words, an n-gram N1 with distance
d1 from the beginning of N0, positioned at p0, is considered to be ‘less of
a neighbour’ than n-gram N2, positioned at distance d2, d2 < d1 from p0.
Therefore, each edge is weighted based on the number of co-occurrences
of the neighbours within the text and the neighbours’ distance at each
occurrence. Also, the Gauss-normalized symmetric approach takes into
account neighbours outside the given window size Dwin, to a full distance
of 3 ×Dwin. This distance was selected given the fact that this accounts
for 99.99% of the mass under the Gaussian distribution, given that we
consider a standard deviation of Dwin

1; that is to say, n-grams outside that
distance have almost no effect. Thus, it is better in terms of complexity
to just ignore those outliers.

Figure 3.1 provides schematic representations of the three approaches. The
numbers indicate adjacent n-grams, which can either be word n-grams or char-
acter ones. The line over a number indicates that the n-gram has been taken
into account as a neighbour. In the third part of the figure, the bell-shaped

1This can be easily derived by using the probability mass function of the Gaussian distri-

bution: pdf(x) = 1
σ
√

2π
exp− (x−µ)2

2σ2 . See also [DHS01, Appendix A]
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Figure 3.1: Different types of n-gram windows (top to bottom): non-symmetric,
symmetric and Gauss-normalized symmetric. N-gram 4 is the n-gram of inter-
est.

line indicates the different weights assigned to different distances from the n-
gram positioned at p0. The current n-gram, also called the n-gram of interest,
is indicated by the emphasized number in the figure. We found, through a
set of experiments, that the most promising approach was the symmetric one,
which may indicate that there is indeed a maximum distance, outside which
relations do not hold. The algorithmic complexity for the extraction of edges
is O(|T | ×Dwin), because for every n-gram of interest we extract a number of
neighbours based on the Dwin parameter.

Following this method of representation, we have reached a point where we
have kept some information for a determined n-gram length n and distance Dwin.
It is non-trivial, though, to choose a single {n,Dwin} pair, that can be optimal
for n-gram extraction, independent of the text: if one chooses a very low value
for n, then the relation between different n-grams can be taken into account only
by augmenting the Dwin parameter. However, in the case of a high Dwin value,
given that we only take into consideration whether the n-grams are neighbours
and not their actual distance, may prove detrimental to the information we
keep. In other words, if our Dwin is 50, then a neighbour by 1 character will be
considered equally close to our current n-gram to a neighbour with a distance
of 50 characters.

If n, on the other hand, is too high, then the information we gather for
each text will be extremely redundant and will definitely cause consumption of
more memory, as well as make the application of any process with a graph size-
based complexity more time-consuming. This happens because there are much
more unique 10-grams than 2-grams in any selected (adequately long) text of a
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Figure 3.2: Graphs extracted from the string abcdef, based on the three types
of windows (left to right): non-symmetric, symmetric and Gauss-normalized
symmetric. The n-grams are character n-grams of rank 3. The Dwin parameter
has a value of 2.

natural language, like English or Greek. Furthermore, the number of vertices
of the graph Gn will increase exponentially to the rank n of n-grams2.

In order to tackle these problems we take into consideration n-grams of
various ranks, with a rather small maximum distance between them. What is
considered to be ‘rather small’ can be calculated by statistical analysis of the
corpus used in any given task, as will be shown in section 7. The low Dwin

value avoids the pitfall of considering ‘neighbouring’ n-grams that are far apart
within the original text. However, the selection of an optimal n-gram rank
range [rmin, rmax] for a given task proved to be an issue worth investigating. We
discuss this issue in section 7.

3.2.3 Attributes of the n-gram graph

The n-gram graph has a set of inherent differences to existing representation
methods, such as the vector space model, nevertheless keeping useful traits of
existing methods:

Indication of n-th order relations. The graph in itself is a structure that
maintains information about the ‘neighbour-of-a-neighbour’. This means
that if A is related to B through an edge or a path in the graph and
B is related to C through another edge or path, then if the proximity
relation is considered transitive we can deduce that A is related to C.
The length of the path between A and C can offer information about
this indirect proximity relation. This can be further refined, if the edges
have been assigned weights indicating the degree of proximity between the
connected vertices.

This attribute of the n-gram graphs primarily differentiates them from
the vector space representation. If one creates a feature vector from an
n-gram graph, where the edges correspond to dimensions of the feature
vector, the indirect relation between vertices is lost. Keeping information
on an n-th order relation between a number of l distinct elements in a

2The grammar of each language does not allow all combinations of alphabet characters,
and thus the possible 5-grams of a language with 26-letter alphabet are not 265, but somewhat
lower. See also [MS99, sections 2.2.1-2.2.2].
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vector will require adding a dimension for every relation between two
elements. Therefore, even though one may construct a vector in a way
that it will represent the same information as the n-gram graph, there is
high complexity in the transformation process. However, further study of
the equivalence of the two representations would be interesting to perform
in the future.

Parametrically determined generality of the model. The n-gram graph,
if viewed as a language model, recognizes sequences of symbols based
on the way they are found to be neighbours. The set of sequences the
model accepts is actually the solution to a problem of constraint satis-
faction [Tsa93], where the constraints are based upon the neighbourhood
relation. The laxity or strictness of these constraints is based upon the
Dwin, Lmin,LMAX parameters. We plan to research the exact expressive
power of the n-gram graph as a language model in future work.

A constraint satisfaction problem is a triple < V,D,C >, where V =
{v1, v2, ..., vn} is a set of variables, Dvi

= {D1, D2, ..., Dn} is the domain
of values for vi ∈ V , and C = {c1, c2, ..., cm} is a set of constraints. Every
constraint is in turn a pair < t,R >, where t is a tuple of variables and
R is a set of equally sized tuples of values. An evaluation of the variables
is a function e from variables to domains, e : V → D. Such an evaluation
satisfies a constraint < (x1, . . . , xn), R > if (v(x1), . . . , v(xn)) ∈ R. A
solution is an evaluation that satisfies all constraints.

In our case, in the simplest n-gram graph form where we use unigrams only,
Lmin = LMAX = 1, we consider the variables of our constraint satisfaction
problem to be matched to the letters of a given text T of length |T | in
characters, i.e. n = |T |. Then, the edges of the graph form the constraints
on the variables, based on the counts of co-occurrences of unigrams. The
value of Dwin changes the number of edges in the graph, thus changing
the number of constraints per variable. This gives us the specification of
the texts the given n-gram graph can generate as a language model.

Language neutrality. When used in Natural Language Processing, the n-
gram graph representation makes no assumption about the underlying
language. This makes the representation fully language-neutral and ap-
plicable independent even of writing orientation (left-to-right or right-to-
left) when character n-grams are used. Moreover, the fact the the method
enters the sub-word level has proved to be useful in all the cases where
a word appears in different forms, e.g. due to difference in writing style,
inflection of word types and so forth.

Generic application. The n-gram graph need not be applied to text represen-
tation only. The existence of small-length symbols, like character n-grams,
that are related via a neighbourhood relation can also be found in such
applications as image analysis and data mining or bioinformatics.

The graph in itself is a mathematical construct with no predefined se-
mantics, suitable for the representation of relations. This generic utility
makes it usable whenever there is a meaningful neighbourhood relation.
Furthermore, the amount of information contained within a graph is only
restricted by the data one desires to annotate graph edges and vertices
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with. Within the scope of this study we will propose a set of uses for the
n-gram graph aiming to offer intuition on possible further applications.

In order to use the n-gram graph representation we need a set of algorithms
and tools to perform such tasks as graph matching and similarity measurement,
graph merging and graph difference. The algorithms, as will be shown in the
following chapters, can then be applied to fuzzy matching between strings, to
generating document set models, to classifying documents, to evaluating sum-
maries and a number of other applications.
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Chapter 4

N-gram Graph Operators
and Algorithms

Given two instances of n-gram graph representation G1, G2, there is a number of
operators that can be applied on G1, G2 to provide the n-gram graph equivalent
of union, intersection and other such operators of set theory. For example, let
the merging of G1 and G2 corresponding to the union operator in set theory be
G3 = G1 ∪ G2, which is implemented by adding all edges from both graphs to
a third one, while making sure no duplicate edges are created. Two edges are
considered duplicates of each other, when they share identical vertices1.

The invention of the operator is actually non-trivial, because a number of
questions arise, such as the handling of weights on common edges after a union
operation or the keeping of zero-weighted edges after the application of an opera-
tor. In our implementation we have decided that the union operator will average
existing edge weights for every common edge into the corresponding new graph
edge. Zero-weighted edges are treated like all other edges, even though they
have the same semantics as the absence of an edge (i.e. the vertices are not
related).

In all the presented algorithms we work with edges only, because the way the
graphs have been created does not allow isolated vertices to exist. Throughout
this section we consider that information is contained within the relations be-
tween n-grams and not in the n-grams themselves. Therefore, our minimal unit
of interest is the edge, which is actually a pair of vertices. This use of graphs
implicitly defines the properties of the graph’s vertices, based on what we do
with the corresponding edges.

Overall, we have defined a number of operators most of which are functions
from G×G to G, where G is the set of valid n-gram graphs of a specific rank.
In other words, unless otherwise noted, the operators function upon graphs of
a given rank and produce a graph of the same rank. The operators are the
following.

• The similarity function sim : G × G → R which returns a value of sim-
ilarity between two n-gram graphs. This function is symmetric, in that

1The identity between vertices can be a customized calculation. Within our applications
two vertices are the same if they refer to the same n-gram, i.e. they share the same label.
Thus, identity can be checked by simple string matching.

58



sim(G1, G2) = sim(G2, G1). There are many variations of the similarity
function within this study, each fitted to a specific task. The common-
ground of these variations is that the similarity values are normalized in
the [0, 1] interval, with higher similarity values indicating higher actual
similarity between the graphs.

• The containment function contains, which indicates what part of a given
graph G1 is contained in a second graph G2. This function is expected
to be asymmetric. In other words, should the function indicate that a
subgraph of G1 is contained in another graph G2, we know nothing about
whether the inverse stands.

In the herein proposed implementations of the containment function val-
ues are normalized in the [0, 1] interval, with higher values indicating that
a bigger part of a given graph G1 is contained in a second graph G2.
We consider a graph to be contained within another graph if all its edges
appear within the latter. If this is not the case, then any common edge
contributes to the overall containment function a percentage inversely pro-
portional to the size of G1, so that the function value indicates what part
of G1 is contained within G2.

• The merging or union operator ∪ for two graphs, returning a graph with all
the edges, both common and uncommon, of the two operand graphs. The
edges are weighted by the average of the weights of the original edges. The
intuition behind averaging the edges’ weights is that the merged graphs
should be equally close to the two operand graphs in terms of edge weights;
this is the effect of an averaging function.

• The intersection operator ∩ for two graphs, returning a graph with the
common edges of the two operand graphs, with the averaged weights of the
original edges assigned as edge weights. Once more, the averaged weights
make sure we keep common edges and their weights are assigned to the
closest possible value to both the original graphs: the average.

• The delta operator (also called all-not-in operator) 4 returning the sub-
graph of a graph G1 that is not common with a graph G2. This operator
is non-symmetric, i.e. G1 4G2 6= G2 4G1, in general.

• The inverse intersection operator 5 returning all the edges of two graphs
that are not common between them. This operator is symmetric, i.e.
G1 5G2 = G2 5G1.

Finally, the empty graph ∅ is considered to be a graph with no edges. The
size of a graph is the number of its edges and is indicated as |G1| for a graph
G1.

4.1 Similarity and Containment

To represent e.g. a character sequence or text we can use a set of n-gram
graphs, for various ranks, instead of a single n-gram graph. To compare a
sequence of characters in the form of a chunk, a sentence, a paragraph or a whole
document, we apply variations of a single algorithm that acts upon the n-gram
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graph representation of the character sequences. The algorithm is actually a
similarity measure between two n-gram graph sets corresponding to two texts
T1 and T2.

To compare two texts (or character sequences in general) T1 and T2 e.g. for
the task of summary evaluation against a gold standard text, we need to compare
the texts’ representations. Given that the representation of a text Ti is a set of
graphs Gi, containing graphs of various ranks, we use the Value Similarity (VS)
for every n-gram rank, indicating how many of the edges contained in graph Gi

are contained in graph Gj , considering also the weights of the matching edges.
In this measure each matching edge e having weight wi

e in graph Gi contributes
VR(e)

max(|Gi|,|Gj |) to the sum, while not matching edges do not contribute (consider
that for an edge e /∈ Gi we define wi

e = 0). The ValueRatio (VR) scaling factor
is defined as:

VR(e) =
min(wi

e, w
j
e)

max(wi
e, w

j
e)

(4.1)

The equation indicates that the ValueRatio takes values in [0, 1], and is sym-
metric. Thus, the full equation for VS is:

VS(Gi, Gj) =

∑
e∈Gi

min(wi
e,wj

e)

max(wi
e,wj

e)

max(|Gi|, |Gj |)
(4.2)

VS is a measure converging to 1 for graphs that share both the edges and similar
weights, which means that a value of VS = 1 indicates perfect match between
the compared graphs. Another important measure is the Normalized Value
Similarity (NVS), which is computed as:

NVS(Gi, Gj) =
V S

min(|Gi|,|Gj |)
max(|Gi|,|Gj |)

(4.3)

The fraction SS(Gi, Gj) = min(|Gi|,|Gj |)
max(|Gi|,|Gj |) , is also called Size Similarity. The NVS

is a measure of similarity where the ratio of sizes of the two compared graphs
does not play a role.

The overall similarity VSOof the sets G1,G2 is computed as the weighted
sum of the VS over all ranks:

VSO(G1,G2) =

∑
r∈[Lmin,LMAX] r ×VSr∑

r∈[Lmin,LMAX] r
(4.4)

where VSr is the VS measure for extracted graphs of rank r in G, and Lmin,
LMAX are arbitrary chosen minimum and maximum n-gram ranks.

The function contains() has a small, but significant difference from the value
similarity function. The first difference is that it is not commutative, because
the denominator of eq. 4.2 uses the max function. More precisely, if we call
Value Containment (V C) the containment function using edge values then VC
is:

VC(Gi, Gj) =

∑
e∈Gi

min(wi
e,wj

e)

max(wi
e,wj

e)

|Gi|
(4.5)

This small change in the denominator is the cause for the asymmetric na-
ture of the function and makes it correspond to a graded membership function
between two graphs.
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The similarity function calculation has a complexity of O(|G1|×|G2|), due to
the fact that for each edge in G1 one needs to lookup its identical edge in G2. If
an index is maintained with the edges’ labels, this complexity can be diminished
at the cost of memory use, which is the case in our implementation. Therefore,
for every edge in the smallest of the two graphs, we perform a low complexity
lookup in the edges of the biggest graph. If an edge is found we perform the
calculation of the edge’s contribution to the similarity sum. Otherwise, we
continue with the next edge from the small graph. This gives a real complexity
that is closer to O(min(|G1|, |G2|)× log(max(|G1|, |G2|)).

4.2 Graph Union (or Merging) and Intersection

The union, or merging, operator ∪ has two important aspects. The first deals
with unweighted edges as pairs of labeled vertices e = (v1, v2), while the second
manages that in conjunction to the weights of the edges.

When performing the union of two graphs we create a graph G1 ∪ G2 =
Gu = (Eu, V u, L,Wu), such that Eu = EG

1 ∪ EG
2 , where EG

1 , E
G
2 are the edge

sets of G1, G2 correspondingly. In out implementation we consider two edges
to be equal e1 = e2 when they have the same label, i.e. L(e1) = L(e2)2, which
means that the weight is not taken into account when calculating Eu.

To calculate the weights in Gu there can be various functions depending on
the effect the merge should have over weights of common edges. One can follow
the fuzzy logic paradigm and keep the maximum of the weights of a given edge
in two source graphs wu(e) = max(wG

1 (e), wG
2 (e)), where wG

1 (e), wG
2 (e) are the

weighting functions of the corresponding graphs. Another alternative would be
to keep the average of the values so that the weight represents the expected
value of the weights of the original weights. Given these basic alternatives, we
chose the average value as the default union operator effect on edge weights. It
should be noted that the merging operator is a specific case of the graph update
function presented in section 4.4. Formally, if E1, E2 are the edge sets of G1, G2

correspondingly, W i is the result graph edge weighting function and W1,W2 are
the weighting functions of the operand graphs with e /∈ Ei ⇒Wi(e) = 0, i ∈ 1, 2,
then the edgeset E∪ of the merged graph is:

E∪ = E1 ∪ E2,W i(e) =
W 1(e) +W 2(e)

2
, e ∈ (E1 ∪ E2) (4.6)

The intersection operator ∩ returns the common edges between two graphs
G1, G2 performing the same averaging operation upon the edges’ weights. For-
mally the edgeset E∩ of the intersected graph is:

E∩ = {e|e ∈ G1 ∧ e ∈ G2},W i(e) =
W1(e) +W2(e)

2
, , e ∈ (E1 ∩ E2) (4.7)

The merging operator defines the basic operation required to perform up-
dates in the graph model, when for example one uses the n-gram graphs to model
a class of documents. The intersection operator, on the other hand, can be used
to determine the common subgraphs of different document graphs. This use has
a variety of applications, such as common topic detection in a set of documents

2We consider the labeling function to be the same over all graphs.
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(see part III) or the detection of ‘stopword-effect’ edges. The ‘stopword-effect’
edges are edges that are apparent in the graphs of most texts of a given language
and have high frequency, much like stopwords.

As an example, the detection of stopword-effect edges can be accomplished
by simply applying the intersection operator upon graphs of (adequately big)
texts of various different subjects. The resulting graph will indicate the repre-
sentation of that part of language that has appeared in all the text graphs and
can be considered ‘noise’. More on the notion of noise in n-gram graphs can be
found in section 4.5.

The complexity of the merging and the intersection operators is similar to
that of the similarity function calculation, because one needs to look for identi-
cal edges between G1 and G2 and then determine what to do with the weights.
The main difference is that uncommon edges play a part in the merging opera-
tor. Thus, one can start from cloning the biggest graph, which has a complexity
linear to the size of the biggest graph. Then, continuing with the edges of
the small graph, one determines which of the edges already exist in the cloned
graph to update their weights and which edges should be added to the cloned
graph as new. The overall complexity for the merging operator, therefore, be-
comes for |G1| <= |G2|, O(|G1|) +O(|G1| × log(max(|G1|, |G2|))) +O(|G1| × i),
where i is the cost of inserting a new edge into a graph, and is related to the
implementation of the edges’ index.

4.3 Delta (All-not-in) and Inverse Intersection

The Delta or all-not-in operator 4 is a non-commutative operator, that given
two graphs G1, G2 returns the subset of edges from the first graph that do not
exist in the second graph. Formally the edgeset E4 is:

E4 = {e|e ∈ G1 ∧ e /∈ G2} (4.8)

The weights of edges is not changed when applying the delta operator. Obvi-
ously, the operator is non-commutative.

A similar operator is the inverse intersection operator 5 which creates a
graph that only contains the non-common edges of two graphs. The difference
between this operator and the delta operator is that in the inverse intersection
the edges of the resulting graph may belong to any of the original graphs.
Formally the resulting edgeset E5 is:

E5 = {e|e ∈ (G1 ∪G2) ∧ e /∈ (G1 ∩G2)} (4.9)

Both the delta and the inverse intersection operators can be applied to
determine the differences between graphs. This way one can e.g. remove a
graph representing ‘noisy’ content from another graph (see section 4.5). An-
other application is determining the non-common part of two texts that deal
with the same subject. The algorithmic complexity of the Delta operator is
O(|G1| × (log(|G2|) + i)) as for every edge in G1 one looks up whether the edge
is contained in G2 and, if it is not contained, the edge is inserted in the resulting
graph with a cost of i. The complexity of the inverse intersection operator can
be calculated based on the fact that the inverse intersection can be analysed
in a merge, an intersection and a delta. This means that the, non-primary,
intersection operator has a complexity of O(∪) +O(∩) +O(4).
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4.4 Representing Document Sets - Updatability

The n-gram graph representation specification, as described in section 3.2, in-
dicates how to represent a text using an n-gram graph. However, in Natural
Language Processing it is often required to represent a whole document set. The
most simplistic way to do this using the n-gram graph representation would be
to concatenate the documents of the set into a single overall document. How-
ever, this kind of approach would not offer an updatable model, i.e. a model
that could easily change when a new document enters the set.

In our applications we have used an update function U that is similar to the
merging operator, with the exception that the weights of the resulting graph’s
edges are calculated in a different way. The update function U(G1, G2, l) takes
as input two graphs, one that is considered to be the pre-existing graph G1

and one that is considered to be the new graph G2. The function also has a
parameter called the learning factor l ∈ [0, 1], which determines the sensitivity
of G1 to the change G2 brings.

Focusing on the weighting function of the graph resulting from the appli-
cation of U(G1, G2, l), the higher the value of learning factor, the higher the
impact of the new graph to the existing graph. More precisely, a value of l = 0
indicates that G1 will completely ignore the new graph. A value of l = 1 indi-
cates that the weights of the edges of G1 will be assigned the values of the new
graph’s edges’ weights. A value of 0.5 gives us the simple merging operator.
The definition of the weighting performed in the graph resulting from U is:

W i(e) = W 1(e) + (W 2(e)−W 1(e))× l (4.10)

The U function allows using the graph in a machine learning process for such
tasks as text classification. The model training step for the creation of a class
comprises the initialization of a graph with the first document of the class and
the updating of that initial graph with the graphs of following class documents.
Especially, when one wants the class graph’s edges to hold weights averaging
the weights of all the individual graphs that have contributed to the class, then
the i-th new graph that updates the class graph should use a learning factor of
l = 1.0− i−1

i , i > 1. When a graph for each class is created, one can determine
the class of a test document by using the similarity of the test document to the
class graphs: the class that has the most similar graph to the test document
graph is the selected class of the document.

4.5 Defining and removing noise using n-gram
graph operators

When representing texts using n-gram graphs e.g. for a classification task one
faces the presence of noise within the graphs. The noise within the graphs for
the given task is the set of common subgraphs over all classes of documents.
In traditional text classification techniques stopword removal is usually used to
remove what is considered to be the noisy part of the data. Up to this point we
have seen that n-gram graphs do not need such preprocessing. However, based
on the task, we can usually identify non-interesting parts of data that hinder
the task. This ‘noise’ can be removed via the already proposed n-gram graph
algorithms.
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Figure 4.1: Convergence of common graph size over the number of conjunctions

In the case of a classification task, we create a merged graph for the full set
of training documents Tc belonging to each class c. After creating the classes’
graphs, one can determine the maximum common subgraph between classes
and remove it to improve the distinction between different classes. A number
of questions arise given this train of thought:

• How can one determine the maximum common subgraph between classes?
According to our operators, it is easy to see that the maximum common
subgraph is the conjunction of all the class graphs.

• Is this (sub)graph unique? No, it is not. Even though the conjunction
operator is associative if edge weights are omitted, the averaging of edge
weights per conjunction causes non-associativeness. In other words, (G1∩
G2) ∩G3 6= G1 ∩ (G2 ∩G3), in that edge weights are different.

• Can we approximate the noisy subgraph, without iterating through all the
classes? Yes. As can be seen in figure 4.1 the noisy subgraph can be easily
approximated in very few steps.

• Does the removal of the noisy (sub)graph from each class graph really
improve results? The answer is yes, as will be shown in section 4.5.1.

64



Class Recall

C
ou

nt

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Figure 4.2: Class recall histogram for the classification task including noise

4.5.1 Judging the effect of noise within n-gram graphs

To support our intuition that there is a common part of the n-gram graphs that
is actually noise, what we called stopword-effect edges, we performed a set of
preliminary experiments on classification. We created a graph from all the texts
of each of the TAC 2008 topics. Then, we tried to classify each of the training
documents of all the topics to a corresponding topic. The classification was
performed by measuring the similarity of the judged document to each topic
graph. The topic of the graph with the maximum similarity was selected as the
topic of the document. This way, we wanted to see if all documents would be
found to be maximally similar to their original topic graphs. If that was not
the case, then perhaps this would be the effect of common elements between
the content of different topics, i.e. noise.

The class recall histogram of all topics-classes before removing the noise can
be found in figure 4.2. The class recall histogram after removing the alleged
noise can be seen in figure 4.3.

To see whether the results are indeed improved we used a paired Wilcoxon
ranked sum test [Wil45], because of the non-normal distribution of differences
between the recall of each class in the noisy and noise-free tests. The test
indicated that within the 99% statistical confidence level (p-value < 0.001) the
results when removing the noise were indeed improved. Further research should
be conducted to determine the exact effect of noise for various tasks as well as
different settings, e.g. various graph sizes.

Given the set of definitions, theoretical constructs and tools presented within
this part of the thesis, we are now ready to proceed to the presentation of
applications based on the n-gram graphs. Our first attempt was to determine a
way to judge the quality of a given summary and we decided to do this before
creating a summarization system. Paradoxical as it may seem, this order of
research was chosen because it is important to know what is desired, before
determining how to achieve it. Therefore, part II offers the AutoSummENG
method of automatic summarization system evaluation, followed in part III by
our summarization system.
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Figure 4.3: Class recall histogram for the classification task without noise
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Part II

Summary Evaluation Using
N-gram Graphs
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Chapter 5

Summarization System
Evaluation

We focus on the problem of evaluating summarization systems in an automated
fashion. In recent scientific attempts to evaluate summarization systems, a
multitude of problems arose, concerning mostly the inter-judge disagreement as
well as the difficulty to automatically determine the quality of a summary. These
problems are met mainly within the domain of multi-document summarization,
where the synthesis of summaries appears to be more than mere extraction of
text snippets [VHT03, Nen06].

The problem of inter-judge disagreement, as indicated in [VHT03, LH02],
is the result of human subjectivity in terms of evaluation of summaries: it has
been noted that human judges, appointed to grade the quality of a summary,
disagree notably between each other on the grades assigned to different sum-
maries. Several methodologies have been examined to systematize the grade
assignment process, aiming at smoothing or nullifying the disagreement caused
by methodology-specific practices [Nen06, RJB00, Mar00, SL02]. If one fails to
create a methodology for humans to correlate vigorously to each other on the
process of evaluation, then either the process of evaluation cannot be modeled
objectively, which would be interesting to examine further by itself, or we need
to define the process of summarization and its evaluation more precisely (for a
more thorough discussion see [GKV06]).

On the other hand, the rankings posed by human grading over summariza-
tion systems correlate strongly. This indicates that people tend to prefer the
same systems over other systems, which leads, as we will shortly present, to
research concerning automatic evaluation methods that produce rankings sim-
ilar to human rankings. In order to achieve the ranking, several attributes of
summarization systems have to be examined and graded. These attributes are
based on the qualities of the output summaries.

The problem of automatically determining the quality of a given summary,
as we have already discussed in part I, appears to be approached using two dif-
ferent perspectives: either by intrinsic or extrinsic evaluation [MB97, VHT03].
Intrinsic evaluation operates on the characteristics of the summary itself, inde-
pendent of the domain it may be used, trying for example to capture how many
of the ideas expressed in the original sources appear in the output. On the other
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hand, extrinsic evaluation decides upon the quality of a summary depending on
the effectiveness of using the latter for a specified task. Such a measure of
extrinsic evaluation, namely responsiveness, appeared in the Document Under-
standing Conference (DUC) of 20051. This extrinsic measure has been used in
later DUCs as well.

In DUC 2005, the appointed task was the synthesis of a 250-word, well-
organized answer to a complex question, where the data of the answer would
originate from 25 documents [Dan05]. In DUC 2005, the question the summa-
rizing ‘peers’, i.e. summarizer systems or humans, were supposed to answer
consisted of a topic identifier, a title, a narrative question and a granularity
indication, with values ranging from ‘general’ to ‘specific’. We remind the
reader that the responsiveness score was supposed to provide, as Dang states
in [Dan05], a ‘coarse ranking of the summaries for each topic, according to the
amount of information in the summary that helps to satisfy the information
need expressed in the topic statement, at the level of granularity requested in
the user profile’. In other words, the responsiveness grade was meant to result
in a partial ordering, indicative of how well a given summary answers a given
question, taking into account the specifications of a question. It is important to
note that responsiveness was not meant to be an absolute grading measure, but
rather a partial ordering of the summarization abilities of the peers [Dan05].

The responsiveness grade was appointed by human judges and is therefore a
useful measure, which an automatic evaluation system would aim at determin-
ing automatically. An automatic measure that could provide a similar ordering
should strongly correlate to the responsiveness grade ordering assigned by hu-
mans.

Since there appears to be no absolute measure of quality for a summary,
even for human judges, an automatic measurement would require at least one
model summary (i.e. human extracted summary produced as a reference for
measuring the goodness of the summaries produced by others), also called ‘gold
standard’ or ‘reference’ summary. The human summaries offer high responsive-
ness content. This given, it would be possible to judge the peer summaries (i.e.
summaries extracted by peer systems). Such measurements actually determine
some kind of distance between the peer and the model summaries. The ques-
tions posed for such an automatic measure, having the same utility as the one
responsiveness provides, would be:

• What is the kind of information that can be used in order to represent the
peer and model summary?

• What should the actual representation method for the extracted informa-
tion be, in order to retain information valuable in the comparison process?

• What kind of similarity measure can be used or defined, in order to provide
meaningful results?

Automatic methods for the evaluation of summaries exist [HLZF05, Lin04,
ZLMH06] and correlate highly to the measure of responsiveness. There are,
however, some desired characteristics that do not coexist in a single method.
More precisely:

1Also see http://duc.nist.gov/
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• Language-neutrality. A method that does not require language depen-
dent resources (thesauri, lexica, etc.) can be applied directly to different
languages.

• Full automation. A method should not require human intervention, apart
from the human model summaries.

• Context-sensitivity. A method should take into account contextual in-
formation, so that well-formedness of text is taken into account. Well-
formedness can be loosely defined as the quality of a text that allows easy
reading. A text that is a random sequence of words would lack this quality,
even if the words are on topic.

Our method, named AutoSummENG (AUTOmatic SUMMary Evaluation based
on N-gram Graphs), attempts to hold all these qualities, while bearing results
with high correlation to the responsiveness measure, which indicates correlation
to human judgement. The results of our experiments indicated that our method
outperforms current state-of-the-art systems in that sort of correlation, while
remaining strictly statistical, automated and context-sensitive due to the nature
of the representation used, namely the n-gram graph (more on this in section
6.1).
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Chapter 6

Summary of Method and
Background Knowledge

The AutoSummENG method, is based on the concept of using statistically ex-
tracted textual information from summaries, integrated into a rich representa-
tional equivalent of a text, to measure similarity between generated summaries
and a set of model summaries. The novelty of the method concerns the following
points:

• The type of statistical information extracted.

• The representation chosen for the extracted information.

• The method of similarity calculation.

We remind the reader that the information extracted from source texts is a
set of indicators of neighbourhood between n-grams contained within the source
text. In other words, the method proposes the extraction of relations between
n-grams, given spatial proximity of those n-grams within a given text. Then, a
graph is constructed to indicate the full set of relations deduced (as edges be-
tween n-gram-labeled vertices), together with additional information concerning
these relations. Such representations are extracted from both generated and
model (i.e. human composed) summaries. An edge in a graph may contain
such information as the mean distance between the neighbouring n-grams in all
occurrences, or a distance-weighted co-occurrence count for the related pair of
n-grams, or a detailed distribution of distances between the pair of n-grams in
texts (also see section 3.2).

Finally, a comparison between the graph representation of generated and
model summaries is made, returning a degree of similarity between the graphs.
At this point, generated summaries that are found to be on average more simi-
lar to model summaries are considered better. Systems that generate, on aver-
age, better summaries are in turn considered better systems. The comparison
methodology varies from vertex-only comparison between graphs, to full com-
parison including the information attached to the edges.

Given the above, we have evaluated different representation types, based on
both the type of represented data (character or word n-grams) as well as the
use or not of connectivity information between the data (graph or histogram).
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During its evaluation the system was found to perform differently based on its
parameters.

In chapter 7 a full study was also conducted, focusing on how these pa-
rameters can be a priori optimized, to provide a fully automated evaluation
methodology. The study was based on the fact that there are relations between
meaningful n-grams, we call ‘symbols’ and non-meaningful ones, which we call
‘non-symbols’. These categories of n-grams are based on statistical criteria and
are used to describe how noise can deteriorate the performance of our method,
as a function of the methodology parameters. Given this noisy-channel model
of our approach, we were able to perform an a priori estimation of the method
parameters.

At this point, we briefly review the background related to basic concepts of
our methodology, such as n-grams and graphs, also presenting how comparison
between graphs is performed.

6.1 Proposed Evaluation Method

Tackling the problem of what kind of information should be used to represent
a peer and a model summary in the evaluation of a summary, one should take
into account that the surface appearance of two equivalent pieces of information
conveying the same content need not be identical, as happens in the case of
paraphrases [ZLMH06]. Nevertheless, it is quite probable that the words ex-
pressing the content will exist in the same context, or that part of the words
used will be identical, for example if different inflections are used. For more on
the linguistic aspect of this assumption please consult [MS99]. Our method ac-
counts for these assumptions, while retaining language-neutrality, by using only
statistical methods and language-independent assumptions for the extraction of
information from texts and for the computation of textual similarity.

6.1.1 Representation

Our method uses character n-grams, positioned within a context-indicative
graph. Once more, in our analysis we consider that we view neighbourhood
with respect to the current n-gram, which is a subsequence of the text anal-
ysed. In the following analysis, we have also used word n-grams to be able to
evaluate the method, as the n-gram graph representation is applicable to both
word or character n-grams.

In the research conducted, it was important to see if a histogram offers
equally well results with a graph in the process of the evaluation. If that stood,
it would mean that the graph representation should not be used altogether.

The n-gram histogram representation is a simple frequency histogram mea-
suring n-grams’ occurrences. In other words, it simply indicates the number
of times an n-gram appears, without any neighbourhood information. This
representation will be used as a baseline to indicate whether neighbourhood
information is indeed important in our domain of application.
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6.2 Comparison

In order to compare two summaries T1 and T2, we need to compare their rep-
resentations. Given that the representation of a text Ti is a set of graphs Gi,
containing graphs of various ranks, we briefly review the similarity measures
between graphs Gi, Gj of the same supposed rank n, which were presented in
section 4.1:

• Co-occurrence Similarity (CS), indicating how many of the edges con-
tained in graph Gi are contained in graph Gj . We define e ∈ EG ≡ e ∈ G.
Thus co-occurrence is defined as:

CS(Gi, Gj) =
∑

e∈Gi µ(e,Gj)
max(|Gi|, |Gj |)

(6.1)

µ is the membership function, which returns 1 if e belongs to G, else it
returns 0. Also |G| is the number of edges e ∈ G. The definition causes
CS to be symmetric, i.e.

CS(Gi, Gj) = CS(Gj , Gi) (6.2)

Also, CS takes values in [0, 1], with a value of 1 indicating a full match of
the two graphs, even though edge weights are not taken into account. On
the other hand, a value of 0 means that no edge from one graph exists in the
other. In this measure, each matching edge contributes by 1

max(|Gi|,|Gj |)
to the sum. The CS is a normalized derivative of common graph distance
measures, based on the Maximum Common Subgraph [Bun98].

• Value Similarity (VS), indicating how many of the edges contained in
graph Gi are contained in graph Gj , considering also the weights of the
matching edges. In this measure each matching edge e having weight wi

e in
graph Gi contributes VR(e)

max(|Gi|,|Gj |) to the sum, while not matching edges
do not contribute (consider that if an edge e /∈ Gi we define wi

e = 0). The
ValueRatio (VR) scaling factor is defined as:

VR(e) =
min(wi

e, w
j
e)

max(wi
e, w

j
e)

(6.3)

The equation indicates that the ValueRatio takes values in [0, 1], and is
symmetric. It is easy to see that this allows the VS metric to retain the
symmetricity inherited from the CS equation part. Thus, the full equation
for VS is:

VS(Gi, Gj) =

∑
e∈Gi

min(wi
e,wj

e)

max(wi
e,wj

e)

max(|Gi|, |Gj |)
(6.4)

VS is a measure converging to 1 for graphs that share both the edges and
similar weights, which means that a value of VS = 1 indicates perfect
match between the compared graphs.

A histogram is actually an illustration of a frequency distribution. In this
work we use the term histogram to indicate the feature vector that represents
a frequency distribution of n-grams.
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The analogous measure of CS from graphs to histograms, which we name
CSH , is actually based upon a binary decision of whether an (n-gram) element h
of histogram H1, with a value of v1, also exists in a histogram H2, independent of
the value v2 of the same element in H2. Each co-existing element h contributes
to CSH a quantity of 1

max(|H1|,|H2|) and, therefore, the equation for CSH is:

CSH(H1, H2) =
∑

h∈H1

µ(h,H2)
max(|H1|, |H2|)

(6.5)

where µ(h,H) equals to 1 if ∃h ∈ H : v(h,H) > 0, otherwise it equals to 0,
where v is the value corresponding to h in histogram H. Also, |H| is the number
of elements in histogram H.

On the same basis and by setting v(h,H) for each h /∈ H to 0, then VSH is
defined as:

VSH(H1, H2) =
∑

h∈H1

v(h,H2)
max(|H1|, |H2|)

(6.6)

The fact that we have proposed extraction of different ranks of n-grams for
the composition of the graphs allows us to take advantage of matching between
different ranks. The overall result of both the CS and the VS calculations, here
depicted by the superscript ‘O’, is a weighted average of the ranks. For example,
for CS we have:

CSO =

∑
r∈[Lmin,LMAX] r × CSr∑

r∈[Lmin,LMAX] r
(6.7)

where CSr is the CS measure for extracted graphs of rank r, and Lmin, LMAX

are arbitrary chosen minimum and maximum ranks.
The intuition behind equation 6.7 is that matching between higher order

ranks is more important between matching in lower level ranks. This intuition
relies on the fact that languages rely on the composition of simpler character
strings to create more complex ones, which bear richer meaning than their com-
ponents. This composition occurs in characters, words, sentences, paragraphs
and so forth and has been founded both by generative as well as statistical
language processing research (e.g. [MS99, Introduction]). Similarly for VSO,
CSO

H , VSO
H . In the experiments, these overall values were used as results for the

comparison process. It should be noted that the function of weight given the
rank has been found empirically, and thus better alternatives can be found1.

6.3 Experimental Setup – Representation

Based on the definition of the proposed similarity measures we wish to show, by
experiments, that systems with summaries getting higher CS or VS than others,
are indeed better systems; and so it has proved to be, by correlation to the
responsiveness measure (see Table 7.1). We will refer to this correlation to the
responsiveness measure as evaluation performance (EP), as opposed to system
or method performance which refers to the grade appointed to an evaluated
system or method.

1We have also tried the simple reverse of rank r ( 1
r

), with worse results.
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The data on which the measurements were conducted was the summary
and evaluation corpus of DUC 2006. The corpus consists of summaries for 50
different topics. Each topic had a number of automatically extracted summaries,
one for each participating system, and 4 human created summaries. The human
summaries were differentiated by means of an identifier, as were the baseline
system summaries, which originated from a baseline system created by NIST,
which simply took the first 250 words of the most recent document for each
topic. It is important to indicate that human summaries were used both as
model summaries and as peer summaries. All summaries were truncated to 250
words before being evaluated. To verify some of our experiments using a second
corpus, we have used the corpora of DUC 2005 and DUC 2007 as well. The
corpus of DUC 2005, similarly to the one of DUC 2006, consists of summaries
for 50 different topics. The only major difference is that 30 of the topics had
4 human summaries each, while the remaining 20 topics each had either 9 or
10 human summaries. The corpus of DUC 2007 consists of summaries for 45
different topics. Each topic has 4 humanly created summaries, as well as 28
machine generated summaries.

The measure used for evaluation performance was the correlation of the
method evaluation metric to the responsiveness measure, which has already
been used and accepted by recent research [Dan05, HLZ05, Nen06]. The sta-
tistical measures used were Pearson’s product moment correlation coefficient,
as well as Spearman’s rank correlation. We remind the reader that Pearson
correlation takes values in [−1, 1], where a value of 1 (or -1) indicates perfect
(or negative perfect) correlation between two measures, while a value of 0 in-
dicates no apparent correlation. Spearman correlation indicates whether two
measures used as grades will provide similar rankings given a set of contesting
entities, with values near 1 indicative of a higher correlation. On that basis,
we would require our method to approach the maximum correlation value of
1 to the responsiveness measure. In the following tests, we consider represen-
tations and measures with Spearman’s coefficient values closer to 1 better. It
should be noted that the experiments used both character and word n-grams
as granularity levels, to see if there is a difference between the two.

The set of experiments concerning representation, attempted to evaluate
simple n-gram histogram representation, in comparison to the graph represen-
tation. The measures of Co-occurrence Similarity CS and Value Similarity VS
have been used for both representation schemes and the results of the experi-
ments were correlated to the responsiveness measure.

Each peer summary was compared both in terms of character n-gram and
word n-gram graphs, as well as the corresponding character and word n-gram
histograms, to all model summaries separately. Then the similarities were aver-
aged to conclude a final similarity of the peer summary to the models. Human
summaries, that appeared both as peer and model summaries, were not com-
pared to themselves in the process of comparison.

Requiring that representations are compared between themselves, regardless
of the parameters, we conducted a series of experiments within a very wide
range of parameter settings. The three parameters used are:

1. Minimum n-gram length, indicated as Lmin.

2. Maximum n-gram length, indicated as LMAX.
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Representation - Measure Max Min Mean Std. Deviation
Graph – Value 0.938 0.803 0.914 0.019

Histogram – Co-occurrence 0.934 0.723 0.912 0.035
Graph – Co-occurrence 0.912 0.738 0.883 0.020

Histogram – Value 0.854 0.502 0.633 0.097

Table 6.1: Histogram and Graph Character N-gram Statistics Ranked by Mean
Performance

3. Neighbourhood Window Size, indicated as Dwin.

The values given to the above parameters were as follows:

• Lmin∈ [1, 10], which means we have taken into account n-grams from uni-
grams to ten-grams.

• LMAX∈ [Lmin, 10], which means we have taken into account n-grams from
the size of the selected Lmin and up to ten-grams.

• Dwin∈ [1, 20], which means we have taken into account a window size of
one and up to twenty in different iterations of the experiment.

The features that differentiate representations are:

• the word or character nature of the n-grams in the representation.

• the type of the representation: histogram or graph.

• the existence of binary or real values in the representation (co-occurrence
vs. value). For example, a histogram indicative of occurrence would only
use binary values, while a histogram containing frequency or probability
of occurrence would use real values. In the case of a graph, a binary value
may indicate co-occurrence, while a real value may also indicate strength
of this co-occurrence.

6.4 Results on Characters: Histogram or Graph
– Co-occurrence or Value

Table 6.1 depicts the evaluation performance of four different approaches con-
cerning the representation (either graph or histogram) and measure (either co-
occurrence or value). For each approach, we have measured the maximum eval-
uation performance, the minimum evaluation performance, the mean and the
standard deviation of evaluation performance. Concerning character n-grams,
in Table 6.1 we can see that the most promising representation is that of the
graph value, based on the ranking of average performance and robustness (i.e.
least standard deviation).

Statistical Evidence

In order to statistically support whether different approaches indeed rendered
different results and, thus, conclude on which approach is better, we tested
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whether the distribution of evaluation performance values for each method was
normal (Gaussian). If this stood, we would be able to apply a simple one-sided
t-test to reach a decision about comparison between approaches. The Anderson-
Darling normality test [Ste74] was used to judge normality. This test has the
null hypothesis that the samples examined come from a normal distribution.
Unfortunately, the distributions of the samples used are not normal (the samples
had a probability of less than 2.2×10−16 to originate from a normal distribution)
and we had to use another test.

At first, we tested whether the distributions of results from all methods were
all different from one another, which would indicate that there is not a reason to
choose a specific distribution. To do this, the Kolmogorov-Smirnov goodness-of-
fit test [MJ51] was used, which has the null hypothesis that two sets of samples
come from the same distribution. The test indicated that all distributions are
indeed different with a confidence of more than 99%2.

The test selected as appropriate for the task of deciding which evaluation
approach performs better was the Wilcoxon rank sum test (also called Mann-
Whitney test) [HW73, p. 27-33,68-75]. This test ranks the samples (in our
case the evaluation performance values) over a common axis (in our case the
R axis). Then, it uses the sum of the ranks of each sample set to see which
corresponding distribution is more probable to give samples that stand higher
than the samples of the other in the given axis. According to this test, the
ranking of methods indicated that Histogram-Co-occurrence is probably a little
better than Graph-Value methods, contrary to what the mean and standard de-
viation have indicated. In the bottom half of the ranking, Graph-Co-occurrence
is worse than Graph-Value but better than Histogram-Value, as expected.

There was a hint that the oddity concerning Histogram-Co-occurrence and
Graph-Value may be due to the effect of the Dwin parameter in Graph-Value re-
sults. In other words, there are a lot of samples from the Graph-Value approach
that have extreme Dwin values, which affect the whole distribution of results.
To check this possibility we performed the same test between Histogram-Co-
occurrence and Graph-Value evaluation performances, where we had kept only
performances of the Graph-Value approach for Dwin <= 10, which is still a
high value considering the average size of words in English. This indeed turned
things around, and Histogram-Co-occurrence was presented as being worse than
Graph-Value, even though the confidence level of 95% could not be reached (p-
value of 0.1123). We double checked our intuition in the DUC 2005 corpus,
once more for values of Dwin under 10, inclusive, and got a result indicating
that Graph-Value is better than Histogram-Co-occurrence with a confidence
level of 99%. The above indications gave us the incentive to delve further in
the optimization of parameters, as can be seen in chapter 7. However, all the
analysis pointed that, given non-extreme values of all three parameters (Dwin,
Lmin, LMAX), the Graph-Value approach can outperform the Histogram-Co-
occurrence one.

One should note that the Dwin parameter does not affect the histogram rep-
resentation (as there is no Dwin parameter when using the histogram). This
means that the test concerning the histogram only included Lmin, and LMAX

parameters. The experiments concerning the graph representation, on the other
2The p-value of the null hypothesis was less than 2.2 × 10−16 for all cases except for the

G-V – G-C case where p-value was 0.001015; well over the 99% confidence level.
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G – C G – V H – C H – V
G – C - No No Yes
G – V Yes - No Yes
H – C Yes Yes - Yes
H – V No No No -

Table 6.2: Statistics using Spearman Correlation for Character N-Grams on
DUC 2006. Each square indicates whether the representation of the corresponding
row gives better results than the one in the corresponding column, based on a Wilcoxon
rank sum test with 95% confidence level. G stands for Graph, H for Histogram, C for
co-occurrence and V for value.
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Figure 6.1: Scatterplot of Lmin (MinNGram) on the left and LMAX (MaxN-
Gram) on the right and Performance (Spearman) - Char N-Grams

hand included Dwin. We tested the effect of all parameters to the system per-
formance.

To determine the effect of different parameters on the performance of the
Graph – Histogram evaluation, we used a scatterplot graph. The scatterplot
graph indicates how the values of our evaluation performance (vertical axis), as
a value of correlation to human grading, varied between different runs, given
different values of a parameter. Grand variation in performance for a single
parameter value is indicated by highly dispersed points in the vertical axis, while
robustness is indicated by many, closely positioned points in the vertical axis.
The smooth line in the graphs was extracted via LOWESS regression [Cle81]
and helps identify the trend of the performance given the parameter.

In Figure 6.1 we can see that marginal values of Lmin, which is the parameter
under study, worsen the performance of the system. In low values the deviation
is raised, while in high values the average performance is lowered.

In Figure 6.1 we can see that, like Lmin, marginal values of LMAX worsen
the performance of the system. In this case, there is no obvious effect in the
robustness of the performance.

Finally, in Figure 6.2 we can see that, while there is no obvious effect in the
robustness of the performance by increasing the value of the Dwin parameter
(depicted as Dist in the figure itself), the performance appears to deteriorate
gradually.
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Figure 6.2: Scatterplot of Dwin (Dist) and Performance (Spearman) - Char
N-Grams

Parameter Correlation
Dwin -0.316
Lmin -0.148
LMAX 0.080

Table 6.3: Pearson Correlation between Dwin and Performance for Character
N-Grams Graph – Value

In order to validate this impression we examined the Pearson correlation
between the three parameters and the performance of the system. The results,
shown in Table 6.3 with the first column indicating the parameter and the second
the correlation of its value to the evaluation performance, indicate that there is
indeed negative correlation between Dwin and performance, even though it is not
very strong. The assumption derived from the negative impact of the distance
to the performance was that we should be very careful with the selection of
Dwin, as it seems to insert some type of noise in the evaluation process.

6.5 Results on Words: Histogram or Graph –
Co-occurrence or Value

Applying the same pattern of analysis for the word n-grams we reach the fol-
lowing conclusions:

• In word n-grams the histogram is by far better than the graph (see Table
6.4).

• The two best approaches, both of which concern histograms, do not have
statistically supported difference in their performance. Therefore the sim-
plest of the two should be chosen (i.e. Histogram-Co-occurrence).

• There is very serious variance in results for different parameter values. The
standard deviation is actually an order of magnitude higher that that of
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Representation - Measure Max Min Mean Std. Deviation
Histogram – Value 0.898 0.450 0.767 0.108

Histogram – Co-occurrence 0.909 0.306 0.741 0.173
Graph – Value 0.909 0.072 0.478 0.227

Graph – Co-occurrence 0.882 0.046 0.457 0.223

Table 6.4: Histogram and Graph Word N-gram Statistics ranked by Mean Per-
formance
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Figure 6.3: Scatterplot of Lmin and Performance (Spearman) - Word N-Grams

the character n-grams. This has to do with the impact of parameter values
on performance. The word-based system seems to be much more sensitive
than its character counterpart to Lmin (see Figure 6.3 and Table 6.5). On
the other hand, LMAX seems not to affect the histogram performance (see
Table 6.5). The above indicate that for word n-grams one should be very
careful in choosing minimal values for the graph approach.

To recapitulate, our experiments indicate that, in the task of summary sys-
tem evaluation:

• the best representation for character n-grams is the Graph – Value rep-
resentation, even though the Histogram – Co-occurrence representation
is almost equally effective, when the distance parameter for the Graph –
Value representation is extreme. A low value in the distance parameter of
the graph is more likely to produce good results. The LMAX parameter
should be chosen to have a non-extreme value, even though further exper-

Parameter Correlation
Lmin −0.255
LMAX −0.038

Table 6.5: Pearson Correlation between Dwin and Performance for Word N-
Grams Histogram – Value
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iments, presented in chapter 7, were conducted to show which value can
be considered as non-extreme.

• the best representation word n-grams is that of Histogram – Value, even
though Histogram – Co-occurrence is not much less effective. In word n-
grams, the minimum n-gram rank parameter Lmin of the histogram plays
a serious role, indicating that low-rank n-grams are important and should
be used, while the upper limit to the choice of n-gram rank is not directly
linked to the overall performance and should therefore be kept low to
reduce number of calculations.

• considering the fact that the use of character n-grams performs overall
much higher than its word counterpart (look again at tables 6.1 and 6.4),
we should examine the use of character n-grams further. As we discuss in
the concluding chapter, chapter 9.3, the word n-gram methodology should
be examined under another point of view to see whether it correlates to
other evaluation measures, something that lies outside the scope of this
work.
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Chapter 7

Optimizing N-gram Graph
Parameters

Despite the robustness of the proposed method, we attempted to delve further
in the strengths and weaknesses of the n-gram graph representation and the
parameters inherent in the described method. We remind the reader that the
three parameters used are:

1. Minimum n-gram length, indicated as Lmin.

2. Maximum n-gram length, indicated as LMAX.

3. Neighbourhood Window Size, indicated as Dwin.

The absolute limits of the above three parameters are actually text-driven,
since all parameters cannot exceed the size of the text. There is an additional
obvious restriction, demanding that the maximum n-gram length should not
be lower than the minimum n-gram length. However, since the complexity of
the data structure and the number of calculations is exponential to the n-gram
lengths, as well the window size, we created a model that can predict near-
optimal values for the parameters.

In order to verify the correctness of the model, as well as the deviation of its
response from the actual optimal, we conducted a series of experiments in the
corpus of DUC 2006 using two approaches:

1. The exhaustive approach, where a big number of combinations of the
triplet Lmin, LMAX, Dwin were evaluated within adequately big limits
for each parameter to extract an overall optimum.

2. The model-based approach, where the model-predicted values of the pa-
rameters were evaluated to indicate whether the response was approximate
to the optimum.

During the exhaustive approach the parameters were given values as follows:

• Lmin∈ [1, 10], which means we have taken into account n-grams from uni-
grams to ten-grams.

• LMAX∈ [Lmin, 10], which means we have taken into account n-grams from
the size of the selected Lmin and up to ten-grams.
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‘permanent’, ‘permit’, ‘permits’, ‘persist’, ‘person’,
‘personal’, ‘personal computers’, ‘personnel,’
‘persons’, ‘persuade’, ‘pesticide’, ‘pesticides.’,
‘permi’, ‘permitt’, ‘pers’, ‘pers and’, ‘person kn’, ‘person or’,
‘perti’, ‘perty’, ‘pes’, ‘pes o’

Figure 7.1: Sample extracted symbols

• Dwin∈ [1, 20], which means we have taken into account a window size of
one and up to twenty in different iterations of the experiment.

The limits of the given values were set arbitrarily, however it was obvious during
the experiments that performance of the system near the limits was very low,
deteriorating with every step with higher parameter values. Thus, it was obvious
that our limits were rational, given the language1 and the set of texts. It should
be reminded that we used the symmetric approach for the extraction of n-gram
neighbours (see section 3.2) in all our experiments, because it exhibited the
most promising results and it is probably the most language neutral, considering
orientation in the writing of texts (left-to-right or right-to-left).

At first we attempted, in order to reduce the number of experiments, to hold
the Dwin parameter constant in the arbitrary, but well-performing, value of 3
and change only the values of Lmin and LMAX. This way we planned to find a
local-maximum and to investigate a correlation between n-gram size limits and
system performance. In the course of our experiments we discovered that the
optimal value of Dwin is correlated to Lmin, LMAX and cannot be held constant.
At that point we formed a model that would contain all our findings.

7.1 Symbols, Non-symbols

We considered our text T to contain symbols and non-symbols. Let us elaborate
in these two types of character sequence:

Symbols They are supposed to carry the meaning of the text, and they should
be sequences of characters (letters) that are not neighbours by mere chance.
The letters of an existent word should be found neighbouring more often
than random characters that do not form a word.

Non-symbols They are sequences of characters (letters) that simply happen
to occur near each other and have no actual meaning by themselves. Non-
symbols are all the letter sequences from the text that are not symbols.

In Figure 7.1 we have indicated some sample extracted symbols and in Fig-
ure 7.2 some non-symbols. We see that symbols may include simple terms and
collocations (more on collocations in [MS99, section 1.4.4]). We can also see
other sequences of letters, like words lacking their endings (e.g. ‘permitt’), end-
ing themselves (e.g. ‘perty’, ‘pes’) or other sequences of no apparent semantics
(e.g. ‘pes o’).

1A language where the average word length would be twenty characters may require dif-
ferent limits.
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‘permit </HEADLINE>’, ‘permit program’, ‘permit approved’

Figure 7.2: Sample non-symbols

Ideally, we would like our representation to only include symbols. How-
ever, based on the given method, the n-gram graph includes information for
both symbols and non-symbols, which induces noise in the comparison process.
Therefore, we need to identify such values of parameters Lmin,0, LMAX,0, Dwin,0

that minimize the noise, while maximizing the quantity of useful information.
The following problems arise:

• How can we formally define and detect symbols and non-symbols?

• Is the usefulness of all symbols equal and how do we measure it?

• Can we define a single, easily understood quantity that we need to maxi-
mize in order to achieve the required result?

7.2 Detection of Symbols

As described above, a symbol is a sequence of characters in the case of character
n-grams. This sequence abides by a single rule: each letter is more probable to
tail its preceding subsequence of characters than a character drawn randomly
from a pool of characters. We elaborate on how a symbol is extracted from a
text.

We have a text T l. We denote by st the symbol we have composed at
step t of the extraction process, and ct the candidate symbol for the t-th step.
A candidate symbol will become a symbol, if and only if it conforms to the
rule described in the previous paragraph. In order to determine what is the
probability of a given substring X to be followed by a given character y, we
construct a corpus containing a set of texts from the domain. In our case, we
simply used all the model summaries as the corpus and we created an overall
text, TL

0 of length L, formed by the concatenation of the corpus texts. Thus,
given a pair (X,y) with X having a length of |X|, we can count:

• how many times X appears in T0, represented by NX .

• how many times the string Xy appears in T0, represented by NXy.

• the total number of n-grams of a given size n within T0, represented by
|T0,n|.

We need to calculate the probability P (y|X) of a given suffix y, given the prefix
X:

P (y|X) = P (X) ∗ P (y,X),where P (y,X) =
NXy

|T0,n|
and P (X) =

NX

|T0,|X||
(7.1)

On the other hand, the probability P (yr|X) of a random suffix yr, given the
prefix X, is given by:

P (yr|X) = P (yr), since yr is chosen randomly and
independently from X.
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Thus,

P (yr) =
1
|A|1

(7.2)

|A|n is the number of strings of length n, found in the alphabet A of T0. When
we use the term alphabet of T0, we refer to the set of unique characters appearing
in T0. We select this definition of an alphabet because we want our approach to
remain language-neutral, and therefore we do not presume any given alphabet.

The extraction of symbols from TL
0 is described as algorithm 2.

Input: text TL
0

Output: symbol set S
// t denotes the current iteration, but has no use in the

algorithm
// T [i] denotes the i-th character of T
// ε is the empty string
// P (yr) is the probability of a random suffix yr

// The plus sign (+) indicates concatenation where character
series are concerned.

S = ∅;1

st = TL
0 [1];2

for all i in [2,length(T)] do3

y = TL
0 [i];4

ct = st + y;5

if P (y|st) > P (yr) then6

st = ct;7

end8

else9

S = S + st;10

st = y;11

end12

end13

// Add last symbol
S = S + st;14

Algorithm 2: Extracting Symbols

Descriptively, the above algorithm runs through the text, splitting symbols
when the next character seems to have been positioned after the current sub-
string by mere chance. Starting with a single-character candidate symbol, the
algorithm adds new characters to the candidate symbol, until a split point is
reached. Then, the candidate symbol is upgraded to a symbol, and a new can-
didate symbol is formed using the next character. In Figure 7.3 we can see the
distribution of symbol sizes as extracted by the algorithm from the DUC 2006
corpus.

The aware reader may note that this method is related to the Symmetric
Conditional Probability used in the LocalMaxs algorithm [DSDGL99], as well
as the notion of ‘glue’ in [HS06b]. The main difference is that we do not evaluate
candidate n-grams to keep the most prominent ones, but we consider all n-grams
that represent symbols to be important, and all others not important. Addition-
ally, the probabilities used in the extraction of symbols here are different from
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Figure 7.3: The Distribution of Symbols per Rank (Symbol Size) in the DUC
2006 corpus

the ones already in previous publications (e.g. SCP) and there are no fixed rules
based on the n-gram rank, because these would be language-dependent. How-
ever, it would be interesting to see whether the use of other existing methods
for variable rank n-gram extraction can prove more fruitful than the proposed
one. This has not been done in the context of the current work.

7.2.1 Signal to Noise – Symbol Importance

In order to determine a measure of the importance of each symbol in our method,
we insisted on the probabilistic approach. We consider any given symbol to be
more important, if it is less probable to be generated by a random symbol
creator. This symbol creator, in order to create a new n-gram of size n, would
choose randomly a n − 1 rank n-gram from a pool of valid symbols and would
randomly select an 1-gram symbol to append, creating the new n-gram. The
importance of a symbol is indicated by a weighting factor. On the other hand,
we consider non-symbols to be equally (un)important, in that each non-symbol
has an importance of 1.

The fact that we have interesting and uninteresting pieces of data that form
our input is analogous to a noisy channel model, where a signal (interesting
pieces) is transmitted over a medium (algorithm) that adds noise (uninteresting
pieces). In this case we would like to change the medium parameters (Lmin,
LMAX, Dwin), in order to maximize the signal and minimize the noise. A signal-
to-noise approach, trying to predict what is the tradeoff between different values
of Lmin and LMAX concerning the signal-to-noise ratio, can be based on an
equation like:

SN(Lmin, LMAX) = 10× log10(
S(Lmin, LMAX)
N(Lmin, LMAX)

) (7.3)

where S(Lmin, LMAX), N(Lmin, LMAX) are functions returning a measure of sig-
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nal and noise correspondingly, for a given range (Lmin, LMAX). SN indicates
the function of signal-to-noise. The signal is the useful information we have
captured via symbols, while the noise is the redundant or useless information
we have captured via non-symbols.

N(Lmin, LMAX) is defined as the count of non-symbols appearing in a given
corpus for the given range:

N(Lmin, LMAX) =
LMAX∑
i=Lmin

|Non-Symbolsi| (7.4)

where |Non-Symbolsi| is the number of non-symbols of rank i.
On the other hand, for the case of symbols we wish to take into account the

importance of each symbol, and therefore calculate normalized weighted symbols.
The latter are weighted according to their importance, which is a function of
their rank. The normalization step occurs over the weighted symbols to provide
a new set of symbols, same in number as the ones found in the texts, which
are however rearranged over different ranks in a way that they also illustrate
the importance of any given rank. The number of weighted symbols for each
n-gram rank r is calculated in two steps, within the given range [Lmin, LMAX]:

1. Calculate the weight wr of symbols for the specified rank r and sum over
all weighted symbols to find the total, weighted symbol sum Wr for rank r.
The weight ws is defined to be the inverse of the probability of producing
a symbol of rank r given a symbol of rank r−1, as longer symbols are less
probable to appear as a result of a random sampling of characters. This
means that we consider more important sequences that are less likely to
have been randomly produced. Thus:

P (sr|sr−1) =

{
1

|Symbolsr|+|Non-Symbolsr|
if r = 1.

1
|Symbolsr−1|+|Non-Symbolsr−1|

× 1
|Symbolsr|+|Non-Symbolsr|

else.

So wr = 1/P (sr|sr−1) (7.5)

where |Symbolsr| is the number of symbols in rank r.

2. Normalize Wr so that the sum of Wr over r ∈ [Lmin, LMAX] is equal to
the original number of symbols in the texts. The normalized, weighted
symbols W 0

r for rank r are calculated by:

W 0
r = Wr ×

|Symbolsr|∑LMAX
i=Lmin

|Symbolsi|
(7.6)

We indicate once more that the W 0
r measure actually represents the im-

portance of symbols per rank r for the symbols of the texts, instead of the
number of symbols per rank that is indicated by |Symbolsr|.

Thus, S(Lmin, LMAX) finally equals to:

S(Lmin, LMAX) =
LMAX∑
i=Lmin

W 0
i (7.7)
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Figure 7.4: Correlation between Estimation (SN) and Performance
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Having defined our signal-to-noise function, we wish to maximize it and,
therefore, we search the space of parameter values for optimum values. However,
we have to investigate whether our estimate of signal-to-noise is correlated to
the performance of the system, because only then will SN be useful. Indeed,
SN offers an important 0.949 rank correlation (Spearman) to the maximum
performance that can be achieved by our method (see Figure 7.4). The same
correlation holds for the mean performance for a given Lmin, LMAX pair and
different values of Dwin. In fact, SN is also almost linear to the performance
of the system, with a Pearson correlation of 0.918. Therefore, our estimator is
rather good in finding optimal values for Lmin and LMAX.

However, we have not yet discussed the distance parameter. We have said
that it has a rather serious impact on the performance of the system. Up to
this point the Dwin parameter was presumed to be independent from Lmin and
LMAX. However, further evolution and testing of our model indicated a possible
connection between Dwin and LMAX.

We want to know, in the same manner as above, what is the signal-to-noise
ratio as a function of distance Dwin. We shall refer to this ratio as SNd.

In order to determine SNd, we can once more count the symbols and non-
symbols expected to be found in a given distance Dwin from our n-gram. Let
us consider, without harming generality, the case where we are in the middle of
our (infinitely long) text and we have a visibility of Dwin characters to the right
and left. Our current n-gram is of rank s0. We are extracting n-grams of size r.

During our n-gram extraction, we extract d0 = 2 × Dwin n-grams (for the
symmetric approach). Thus, there are d0 candidate symbols. In order to calcu-
late the probability of extracting Ns symbols from d0 attempts, we can model
the process of extraction with a binomial success probability, calculated for Ns

successes in d0 attempts. The chance of success for the binomial for a given
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n-gram rank of r is given by:

Ps =
W 0

r

W 0
r + |Non-Symbolsr|

(7.8)

The chance that our current n-gram is a symbol is the probability P 0
s calcu-

lated by:

P 0
s =

W 0
s0

W 0
s0

+ |Non-Symbolss0
|

(7.9)

Presuming that only information about neighbouring symbols is important, the
signal function should take into account only the probability of having both
a symbol current n-gram and a symbol neighbour n-gram. Even though the
maximum number of non-overlapping, neighbour symbols we can find within
d0 is [d0

r ], we will not use this limitation in our analysis. We do so, because
the analogy of symbols and non-symbols remains the same on average over all
our corpus and our estimator can count on this analogy to extract good results
on average. To extract an estimate Er

s of the number of symbols that can be
extracted for a given rank r, we use the algorithm indicated as algorithm 3.

Input: Distance Dwin, Success Probability of Single Trial Ps

Output: Expected Number of Symbols Er
s

// D(x) is a discrete probability distribution
for all i in [1,Dwin] do1

D(x) = binomial(i;Dwin,Ps) ;2

end3

// E(y) is the mean function
Er

s=E(D(x)) ;4

Algorithm 3: Symbol Count Estimation

From algorithm 3, we get an estimated number of symbols. The rest of the
d0 extractions are non-symbols and account for d0−Er

s extractions. Therefore,
SNd can be calculated by:

SNd(Lmin, LMAX) = 10× log10

Sd(Lmin, LMAX, Dwin)
Nd(Lmin, LMAX, Dwin)

(7.10)

where Sd, Nd are the signal and noise functions correspondingly, calculated by:

Sd(Lmin, LMAX, Dwin) =P 0
s ×

LMAX∑
r=Lmin

(Er
s ) (7.11)

Nd(Lmin, LMAX, Dwin) =
LMAX∑

r=Lmin

(d0 − Er
s ) (7.12)

Equations 7.11, 7.12 indicate that:

• the signal, given an n-gram rank range, is the sum of the probabilities
over all ranks to create useful edges, i.e. edges connecting symbols , in the
corresponding graphs.
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Figure 7.5: Correlation between Estimation (SN) and Performance for Given
Lmin, LMAX
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• the noise is the sum, over all graph n-gram ranks, of the number of ex-
tracted graph edges that will involve at least one non-symbol.

As a result of this analysis, we conclude that the optimal distance Dwin is
a function of Lmin, LMAX and should be regarded as an independent parame-
ter. In order to evaluate our model we will repeat the extraction of correlation
between the SNd and actual performance for different values of Dwin.

Indeed, SNd offers an important 0.920 rank correlation (Spearman) to the
maximum performance that can be achieved for the selected optimal n-gram
range (see Figure 7.5). SNd has a promising Pearson correlation of 0.896 to
the performance. Therefore, our estimator is good in finding near-optimal Dwin

values2. In the given example of the DUC 2006 corpus, the best performance
was 0.938 and the one returned using the estimation was 0.935, while the average
over all candidate distances was 0.927, with a standard deviation of 0.008.

The near-optimal values for the pair (Lmin, LMAX) were according to the es-
timation values (4, 4), while their optimal values were (1, 3) (DUC 2006 corpus).

7.3 Overall Performance of AutoSummENG

In order to check the performance of our method, compared to other existing
methods, we used the Spearman correlation and the Pearson correlation that is
used in [Dan06], but for our method we have also calculated the Kendall’s tau
correlation coefficient, which we consider to be the most fitting coefficient for
the given task, based on its definition (see section 2.3).

The Responsiveness measure in DUC 2006 was named Content Responsive-
ness, because another measure appeared named Overall Responsiveness (see [Dan06]).

2This holds for already decided optimal values of Lmin, LMAX as we found through a series
of experiments.
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Metric Spearman Pearson Kendall
Overall Responsiveness 0.718 0.833

Rouge-2 0.767 0.836
Rouge-SU4 0.790 0.850

BE-HM 0.797 0.782
AutoSummENG 0.870 (0.00) 0.904 (0.00) 0.712 (0.00)

AutoSummENG B/S 0.858 (0.00) 0.899 (0.00) 0.712 (0.00)

Table 7.1: Correlation of Measures to the Content Responsiveness Metric of
DUC 2006 for Automatic peers only . Within parentheses the p-value of the
corresponding test.

Evaluated Group Rouge-2 Rouge-SU4 BE-HM AutoSummENG - B/S
Automatic Peers 0.84 (0.00) 0.85 (0.00) 0.78 (0.00) 0.91 (0.00) - 0.90 (0.00)

Human Peers 0.64 (0.05) 0.69 (0.03) 0.57 (0.09) 0.68 (0.03) - 0.67 (0.00)
All Peers 0.90 (0.00) 0.88 (0.00) 0.88 (0.00) 0.97 (0.00) - 0.97 (0.00)

Table 7.2: Pearson Correlation of Measures to the Content Responsiveness Met-
ric of DUC 2006 for Automatic peers, Human peers and All peers, excluding peer
17. Within parentheses the p-value of the corresponding test.

Briefly, Overall Responsiveness represents an overall quality measure (includ-
ing grammaticality and other textual qualities) for a given system, while Con-
tent Responsiveness only refers to whether the required information were con-
tained in summaries from a given system, without taking into account the well-
formedness of output summary. The results concern application of the character
n-gram Graph – Value representation with a symmetric window. P-values re-
ported zero (0.00) indicate actual p-values that are rounded to zero when two
digits are considered significant. We should note that we have also used an ordi-
nary non-parametric bootstrapping approach3 with 10000 replications to better
determine the results for our method. The corresponding results appear either
in the AutoSummENG entries as separate entries (see Table 7.1) or as second
value – p-value pairs (see Table 7.2). 4

In Table 7.1, there is an obvious difference between the performance of Auto-
SummENG and existing approaches. Table 7.2 indicates the Pearson correlation
performance of evaluation methods when not including system 17 of DUC 2006,
for which BE-HM breaks (due to some characters in the input) and performs
abnormally.

As an overview of the major evaluation systems’ performance over the data
of DUC 2005 to 2007, the Table 7.6 has been provided, based partly on [CD08].
It should be noted that the AutoSummENG performance does not correspond
necessarily to its optimal value, but rather to the performance achieved using
pre-estimated parameters. Another important note is that, even though there
is a difference between the performance of systems, statistical analysis indicates
through confidence intervals that the difference in performance may be due to

3For an introduction to bootstrapping see [ET93].
4Given the fact that the results using bootstrapping were only marginally modified over

many experiments we did not further perform bootstrapping, considering the given original
values to be good and indicative estimations of the process, not wanting to diversify the
method of calculation of our results from other corresponding works.
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Evaluated Group Spearman Pearson Kendall
Automatic peers 0.906 (0.00) 0.908 (0.00) 0.755 (0.00)

Human peers 0.857 (0.00) 0.830 (0.00) 0.764 (0.00)
All peers 0.957 (0.00) 0.985 (0.00) 0.847 (0.00)

Table 7.3: Correlation of AutoSummENG to the Responsiveness Metric of DUC
2005 for Automatic peers, Human peers and All peers. Within parentheses the
p-value of the corresponding test.

Evaluated Group Spearman Pearson Kendall
Automatic peers 0.870 (0.00) 0.904 (0.00) 0.712 (0.00)

Human peers 0.648 (0.04) 0.684 (0.03) 0.471 (0.07 )
All peers 0.935 (0.00) 0.966 (0.00) 0.804 (0.00)

Table 7.4: Correlation of AutoSummENG to the Content Responsiveness Metric
of DUC 2006 for Automatic peers, Human peers and All peers. Within paren-
theses the p-value of the corresponding test. Statistical importance lower than
the 95% threshold are noted by emphatic text in the parentheses.

Evaluated Group Spearman Pearson Kendall
Automatic peers 0.864 (0.00) 0.88 (0.00) 0.707 (0.00)

Human peers 0.615 (0.06 ) 0.649 (0.04) 0.396 (0.12 )
All peers 0.935 (0.00) 0.964 (0.00) 0.801 (0.00)

Table 7.5: Correlation of AutoSummENG to the Content Responsiveness Metric
of DUC 2007 for Automatic peers, Human peers and All peers. Within paren-
theses the p-value of the corresponding test. Statistical importance lower than
the 95% threshold is noted by emphatic text in the parentheses.
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Year BE(-HM) Rouge-2 Rouge-SU4 AutoSummENG
2005 0.87 0.94 0.93 0.91
2006 0.85 0.84 0.85 0.90
2007 0.89 0.88 0.83 0.88

Table 7.6: Pearson Correlation of Measures to the Content Responsiveness Met-
ric of DUC 2005-2007 for Automatic Systems

Figure 7.6: Pearson Correlation of Measures to the (Content) Responsiveness
Metric of DUC 2005-2008 for Automatic Systems

randomness (see also [Dan05, Dan06, HLZ05]).
Even though the evaluation process itself contains the a-priori estimation

step for its parameters, we wanted to check whether the model parameters
determined for the corpus of DUC 2006 would function effectively when applied
to DUC 2005 and DUC 2007 corpora. In tables 7.3, 7.4, 7.5 we can see the
results for all corpora (DUC 2005, DUC 2006, DUC 2007). In the tables the
results have been separated by groups (automatic peers and human peers) and
there is also the overall ranking correlation, including all peers. The results
indicate that the DUC 2006 parameters perform well in other corpora as well,
showing that the parameters did not simply overfit the DUC 2006 corpus.

To verify this fact, we also determined model parameters for DUC 2005 and
applied them to all corpora: DUC 2005, DUC 2006, DUC 2007. The results
were once more satisfying as can be seen in Table 7.7. This hints on the fact that
the model parameters are more language-dependent than corpus dependent, but
this will have to be verified against another language. In Figure 7.6 one can see
the correlation of various measures to (content) responsiveness over the years in
DUC and TAC. AutoSummENG appears to be the most robust method, even
though it is not consistently the best method.

The fact that our method does not require parsing of some kind, nor syntactic
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Year - Evaluated Group Spearman Pearson Kendall
2005 - Automatic peers 0.840 (0.0) 0.885 (0.0) 0.669 (0.0)

2005 - Human peers 0.936 (0.0) 0.878 (0.00) 0.854 (0.00)
2005 - All peers 0.929 (0.00) 0.977 (0.00) 0.803 (0.0)

2006 - Automatic peers 0.871 (0.0) 0.891 (0.0) 0.709 (0.0)
2006 - Human peers 0.759 (0.01) 0.715 (0.02) 0.566 (0.03)

2006 - All peers 0.937 (0.00) 0.967 (0.00) 0.806 (0.0)
2007 - Automatic peers 0.842 (0.0) 0.871 (0.0) 0.687 (0.0)

2007 - Human peers 0.659 (0.04) 0.673 (0.03) 0.442 (0.08 )
2007 - All peers 0.925 (0.00) 0.966 (0.00) 0.792 (0.0)

Table 7.7: Correlation of AutoSummENG to the Responsiveness Metric of DUC
2005 and Content Responsiveness Metric of DUC 2006, 2007 for Automatic
peers, Human peers and All peers using estimated parameters based on DUC
2005. Within parentheses the p-value of the corresponding test. Statistical
importance lower than the 95% threshold are noted by emphatic text in the
parentheses.

Representation Spearman Pearson
Graph – Co-occurrence 0.748 0.860

Graph – Value 0.786 0.893
Histogram – Co-occurrence 0.811 0.920

Histogram – Value 0.537 0.858

Table 7.8: Correlation of AutoSummENG to the Overall Responsiveness Metric

or grammatical analysis like other existing methods, offers an advantage, both
in terms of complexity, as well as in terms of inherited noise from erroneous
preprocessing (which was indicated as a problem in the case of BE [Dan06]).

In the course of our experiments, we used the optimal values found for con-
tent responsiveness correlation to check the correlation of the proposed method
to the Overall Responsiveness of systems in DUC 2006. The results are illus-
trated in Table 7.8. Once more the method seems to do adequately well, with
the histogram-co-occurrence version reaching the highest performance (for the
given parameter setting of Lmin = 4, LMAX = 4, Dwin = 4). This indicates that
our method can have more applications than meets the eye and this seems worth
investigating.

The fact that we need to estimate parameters, on the critic side of this anal-
ysis, can be time consuming and even error-prone, which will affect the overall
performance of the system. This problem is only partially addressed by the
robustness of the results for non-marginal parameter values. Another lesser
drawback of our method is that the graph representation can be memory con-
suming, even though in our implementation5 we have optimized the code and
the problem has been tackled. Finally, there have been no experiments in differ-
ent languages, which means that we have not answered the question of whether
the language-neutral approach will have similar performance in other languages.
On the other hand, this does not contradict the fact that the approach remains

5The full project, including source code, of AutoSummENG can be found at
http://www.ontosum.org/static/AutomaticSummarization.
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strictly language-neutral in its methodology.
Furthermore, there is a drawback of our method tied to the complexity of

extracting and comparing n-gram graphs. This drawback has already been
handled in terms of implementation, but the algorithm itself holds a complexity
much higher that that of constructing a histogram, per se. Therefore, it would
be interesting to hold only ‘useful’ subgraphs based on a statistical measure of
usefulness or find an algorithmic alternative to our own.
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Chapter 8

Notes on Summary
Evaluation and
Combinatorial Evaluation

8.1 Individual Summary Evaluation vs. Sum-
mary System Evaluation

Within the research conducted on automatic summary evaluation we found out
that by optimizing evaluation methodologies based on their correlation to the
responsiveness measure a number of problems have appeared:

• The automatic evaluation process performs well only when tackling the
problem of overall evaluation. Different aspects and textual qualities of a
summary have not been evaluated separately.

• The evaluation methodologies correlate well, only when viewed at the
system level. In other words, we cannot judge the quality of individual
summaries well.

To further support these conclusions we have performed two evaluations
using the TAC 2008 dataset:

• the correlation (Spearman’s rho, Kendall’s tau and Pearson correlation)
of the system evaluation scores to the human system judgements (average
overall responsiveness and average grammaticality). The system evalua-
tion scores are calculated by the average scores of the summaries provided
by a single system.

• the correlation of the summary evaluation scores to human judgement
(overall responsiveness and linguistic quality). The summary evaluation
score is the AutoSummENG score of a single summary given a set of model
summaries.

We note that the correlation between overall responsiveness and linguistic
quality is 0.3788 (Kendall’s tau, p-value < 0.01). This means that they are cor-
related, but not strongly. We also deduce from Table 8.1 that there are aspects
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AutoSummENG to ... Spearman Kendall Pearson
Overall Responsiveness 0.8953 (< 0.01) 0.7208 (< 0.01) 0.8945 (< 0.01)
Linguistic quality 0.5390 (< 0.01) 0.3819 (< 0.01) 0.5307 (< 0.01)

Table 8.1: Correlation of the system AutoSummENG score to human judgement
for peers only (p-value in parentheses)

AutoSummENG to ... Spearman Kendall Pearson
Overall Responsiveness 0.3788 (< 0.01) 0.2896 (< 0.01) 0.3762 (< 0.01)
Linguistic quality 0.1982 (< 0.01) 0.1492 (< 0.01) 0.1933 (< 0.01)

Table 8.2: Correlation of the summary AutoSummENG score to human judge-
ment for peers only (p-value in parentheses)

of textual quality that cannot be well estimated at this point in time, like the
linguistic quality. As this quality is important and not strongly correlated to the
overall responsiveness measure, it seems that the reason for not being able to
surpass the current level of performance in evaluating summaries and summa-
rization systems is that we lack statistically independent judgements concerning
orthogonal aspects of textual quality. If these judgements were performed, we
would be able to judge quality better as a composition of the independent judge-
ments.

The tables 8.1 and 8.2 indicate two important aspects of the summarization
evaluation. The first has to do with the fact that the AutoSummENG method
is good enough to judge system performance rankings. The second indicates
that we should conduct research towards a measure that could indicate sum-
mary performance, in contrast to system performance. The latter problem is
much harder and would also solve the system ranking problem, as the system
performance is calculated as the average of the system summaries’ performance.

8.2 Combinatorial System Evaluation Using Ma-
chine Learning

We attempted to create a meta-estimator of summary system quality using n-
grams of various ranks both at the word and character level. The performance
of each system was described as a vector, the dimensions of which were the
AutoSummENG performance of the system for different configurations (vari-
ous n-gram sizes, word or character n-grams, various window sizes) as well as
ROUGE/BE values. The meta-estimator was created using a set of various
machine learning techniques (decision trees, linear regression, multi-layer per-
ceptron, SVM-based regression).

Further investigating the use of meta-evaluators, we wanted to see if the
AutoSummENG method, when applied with various parameters values, can
offer enough features to better estimate summary system quality. A second
question we wanted to answer is whether combining the automatic evaluation
methods provides more information than the individual methods do.

The experimental setting involved the corpus of TAC 2008 and we used as
input features the following.
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Method Resp. Ling.
All AE Others All AE Others

Linear R. 0.915 0.915 0.903 0.630 0.630 0.541
SMO R. 0.920 0.914 0.880 0.540 0.567 0.471
Mult. Perc. 0.928 0.899 0.905 0.704 0.547 0.488
ε-SVR (LibSVM) 0.924 0.923 0.903 0.409 0.445 0.447
Average 0.922 0.913 0.898 0.571 0.547 0.487

Table 8.3: Combinatorial Evaluation using Machine Learning: Pearson Corre-
lation. Max Performances Indicated as Bold.

• Rouge-2 performance, Rouge-SU4 performance

• BE performance

• AutoSummENG performance including character n-grams of various lengths
and distances 1 and word n-grams of various lengths and distances2.

We used the WEKA machine learning platform [WF05] in a 10-fold Cross-
Validation experiment to determine how the combination of the aforementioned
features performs when estimating Responsiveness or Linguistic Quality. Table
8.3 indicates the performance achieved using three different regression methods,
linear regression, SMO regression and multilayer perceptron.

In order to determine whether AutoSummENG outputs are good inputs to
the combinatorial estimator, we examined three alternatives. The first (labeled
All) included all evaluation results as input, the second included only AutoSum-
mENG results (labeled AE ) and the third all other evaluation results (labeled
Others). The performance of the meta-estimation indicates that:

• Different versions of AutoSummENG appear to be useful as input to the
meta-evaluation process. Together the AutoSummENG evaluation out-
puts are better features than all the other measures together, as a paired
t-test at 90% confidence level has indicated, using the results for Respon-
siveness in Table 8.3. The results are even more encouraging (95% confi-
dence level) for the difference in performance when estimating Linguistic
Quality. However, in our experiments the AutoSummENG features were
more numerous than all the other together, which may have biased the
results.

• The best results are achieved if one combines all the methods’ outputs.
However, paired t-tests offered no support, at the 90% level, that using
all features will render better results than using only AutoSummENG
features.

It would be really interesting to determine what each method contributes to
the overall result. Furthermore, one should use other evaluation methodologies,
as grammaticality grading [MDWD07, Kel00], to add new (vector) features to
the evaluation process, that would ideally be orthogonal to each other.

We have used Principal Component Analysis (see [TK03] for more) to de-
termine more important features, but the analysis showed that all features are

1Parameters for character n-grams (Lmin, LMAX, Dwin) ∈ {(3, 3, 3), (5, 5, 5), (7, 7, 7)}.
2Parameters for word n-grams (Lmin, LMAX, Dwin) ∈ {(1, 1, 8), (2, 2, 8), (3, 3, 3)}.
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of equal importance. This have us a hint that using existing evaluation tech-
niques combined does not offer the expected results. The reason for this can be
explained by correlation: the results of existing evaluation methods are highly
correlated statistically (also see [Dan05, Dan06]). This is normal, because they
all aim to give an overall judgement of responsiveness.

At this point, we considered how we can detect and measure other textual
quality aspects. To research these aspects we devised and tested whether there
can be a statistical measure that can classify summaries as human and non-
human, hoping to uncover the idiosyncrasy of human writing. We present this
study in the following chapter.
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Chapter 9

String Sequence Normality

Identifying the set of qualities that render a text understandable and fluent is
a problem that has been apparent in machine translation (MT), natural lan-
guage generation (NLG) and automatic summarization. In close relation to
this, this study focuses on the notion of normality of a textual document with
respect to another, aiming to relate this concept to grammaticality and fluency
of summaries.

Having the objective to detect qualities related to the ‘goodness’ of sum-
maries, in relation to grammaticality and fluency (see section 2.3), this chapter
studies statistically-extracted features of humanly-created summaries, in con-
trast to automatically extracted summaries. The aim is to detect invariant fea-
tures of humanly created summaries so as to devise summarization systems that
shall produce summaries having these features. We conjecture that such sum-
maries shall be rated high with respect to grammaticality and fluency: However,
this is something to be shown. Towards this aim, this work proposes and studies
a statistical measure, named String Sequence Normality (SSN ) of a document
with respect to another. This is a measure applied to a specific representation
of documents based on sequences of strings appearing in them. We study the
application of this measure using these analysis of various granularity (character
and word n-grams of various ranks) over a set of humanly and automatically
created multi-document summaries from two different corpora.

Using the String Sequence Normality (SSN ) of a summary t1 with respect to
a ‘reference’ document t2, there is no need for a given grammar so as to assess
the grammaticality of t1, as our grammar is the one used in the ‘reference’ text
t2: The one with respect to which the summary is evaluated concerning its
normality. Furthermore, given that the String Sequence Normality (SSN ), is
closely related to the frequence of appearance of strings, we can state that the
‘reference’ grammar is a by-product of computing the measure.

The state of the art contains various kinds of evaluators concerning gram-
maticality and fluency, which are both indicators of acceptability and normality
of text. Our method is related to these evaluators, according to the folowing:

• It uses a model corpus that is being used as a ‘reference’ for measuring
the normality of a document.

• It derives patterns of symbol sequences from the model corpus, providing
the ‘constraints’ for ‘measuring’ grammaticality.
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• It uses machine learning methods to discriminate between human and
machine-generated texts, by exploiting the normality of texts.

The factors that differentiate the presented method over related ones, are as
follows:

• The method does not require extracting the grammar from a text; The
aim is to determine normality of a text given a reference — i.e. model —
corpus. Both types of texts (evaluated and reference) are represented as
sequences of symbols.

• The method does not require preprocessing of the input texts in any way.
Only word splitting is used in cases we use word n-grams as symbols.

• The proposed method requires no background knowledge of the language
used. Doing so, it may function independently of language.

• The method may exploit word as well as sub-word structure information,
by the use of word or character n-grams of various ranks.

• The method supports variable granularity, allowing to detect different
types of normality, from word spelling to syntax.

As already stated, we have been motivated towards measuring normality of
summaries with respect to a given corpus so as to detect those invariants of
humanly created summaries, which could be applied to automatically created
summaries to have them rank high with respect to grammaticality and fluency.
As such, normality provides a measure for evaluating summaries and, thus,
summarization systems.

The chapter is structured as follows. We present the Statistical String Se-
quence Representation of textual documents and the definition of the String
Sequence Normality, in section 9.1. Experiments over well-known corpora fol-
low in section 9.2, proving the validity of the proposed measure and providing
results concerning the qualities of humanly created summaries in contrast to
automatically created ones. We close the chapter with the conclusions and the
lessons learned from the study, in section 9.3.

9.1 String Sequence Normality

To exploit String Sequence Normality so as to study the invariant features of
humanly-created summaries related to grammaticality and fluency, we need a
representation of texts in terms of sequences of symbols. This representation
must be parametric in terms of symbols’ granularity, allowing comparisons.

The proposed representation, which we call Statistical String Sequence Rep-
resentation (SSS-R), is a set of triples of the form < (F, S), D >. This includes
a pair (F, S) and a corresponding distribution for each pair D. The first part
F of each pair is a sequence of strings. The second part S is a single string.
The granularity of strings, being a single letter, a word or a whole sentence, is a
parameter of the representation. The distribution D for a given pair describes
the number of co-occurrences of F and S in the text as a function of the distance
between them, up to a maximum distance dmax. This distance is measured as
the number of strings from F to S in the text. Therefore, this distance depends
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on the granularity of the strings used as well. From now on we denote such a
representation, as a set of triplets of the form:

F→ S(D), where D ≡ (distance1⇒ numberOfOccurences1
distance2⇒ numberOfOccurences2...)

Given a distance x between F and S , D(x) specifies the number of occur-
rences of F and S in the text with a distance x among them.

To determine the SSS-R of any text, we need to specify the following set of
parameters: The n-gram rank r of F , the maximum distance dmax of F and S
co-occurrence, as well as the type of strings identified in the text (e.g. character,
word, sentence). Thus, we will use the form SSS-R(r, dmax, stringType) to fully
describe an SSS-R. Such a representation describes all the possible sets of triples,
for any text: However, given a specific text t, then its representation given the
parameters for SSS-R is denoted SSS-R(r, dmax,StringType)(t): This is a set
of triplets which is an instance of SSS-R(r, dmax,SymbolType).

Example 9.1.1 The sentence:
S: ‘A big big test.’
is represented as SSS-R(1, 1, character)(S) by the following set of triplets:
t→ e(1⇒ 1.0)
→ b(1⇒ 2.0)1

A→ (1⇒ 1.0)
→ t(1⇒ 1.0)
b→ i(1⇒ 2.0)
t→ .(1⇒ 1.0)
e→ s(1⇒ 1.0)
g → (1⇒ 2.0)
s→ t(1⇒ 1.0)
i→ g(1⇒ 2.0)
S may also be represented by the following instance of SSS-R(2,2,word):
big, big → test(1⇒ 1.0)
a, big → test(2⇒ 1.0)
a, big → big(1⇒ 1.0)

Therefore, the first set of triplets is an instance of SSS-R(1,1,character),
while the second is an instance of SSS-R(2,2,word).

Given a text t, let T be the corresponding instance of SSS-R(r, dmax, sym-
bolType) representing this text. This is denoted as follows:

T ≡ SSSR(r, dMax, symbolType)(t) ⇐⇒
T a SSS-R(r, dmax, symbolType) ⇐⇒
T is an instance of SSS-R(r, dmax, symbolType)

We define the similarity sim between two distributions D1,D2 to be the
sum of the absolute differences of the corresponding non-zero elements of each
distribution. If X is the set of values {x|x : D1(x) > 0 or D2(x) > 0}, then:
sim(D1,D2) =

∑
i∈X(abs(D1(i)−D2(i))), where abs is the absolute value function.

On the same basis, the similarity of two triplets A,A′, simT(A,A′) equals to
the similarity of their distributions D,D′, sim(D,D′), given that the two first
elements of the triples are identical. Else, we define simT(A,A′) = 0.

1The underscore at the beginning of the line is actually the blank character (space).
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Given that T1, T2 are the corresponding instances of SSS-R(r, dmax, string-
Type) for two texts t1 and t2, then we define the SSN normality of t1 with
respect to the reference text t2, as follows:

Definition 9.1.2
normality(T1|T2) ≡ T1 ∼ T2 =

P
A∈T1,A′∈T2

simT (A,A′)

|T1| , where |T1| is the num-
ber of triplets in T1 and T1, T2 a SSS-R(r, dmax, stringType).

Given a corpus C = T1, T2, ..., Tn, n ∈ N∗, In order to define the SSS-R of
this corpus we concatenate the texts in the corpus to produce a single text.
Doing so, we can use the corpus as a reference text, measuring the normality
of any document representation in SSS-Rs with respect to this corpus. This
normality is what we call SSN .

9.2 Experiments

The data on which our experiments were conducted are the summaries and eval-
uation corpora of DUC 2006 and DUC 2007. DUC 2006 consists of summaries
for 50 different topics, as well as the corresponding 25 input documents per
topic. Summaries were generated from these texts. Each topic has a number
of automatically extracted summaries, one for each participating system, and 4
humanly created summaries. The humanly created summaries are differentiated
by means of an identifier. All summaries were truncated to 250 words before
being evaluated. DUC 2007, similarly to the one of DUC 2006, consists of sum-
maries for 45 different topics. Each topic has 4 humanly created summaries, as
well as 28 machine generated summaries. In the corpora the humanly created
summaries appeared both as ‘models’ and ‘peers’. However, in this study we
label both occurrences of human summaries as ‘human’ and those created by
summarization systems as ‘peer’.

In order to have a set of baseline-quality summaries, we have created a
single summary for each topic in the DUC2006 corpus by randomly gathering
words from the 25 input documents. The words have been selected so that
their frequencies in the summary would tend to be the same as in the input
documents. The length of each summary is about 250 words (length chosen
from a Poisson distribution averaging to 250). In DUC 2007 we did not insert
random summaries, so that we could check the effects of having a baseline on
our methodology.

To detect those features that are vital to distinguishing human from auto-
matic summaries, we have conducted the following process over two different
corpora:

• For a given topic, the input documents were concatenated to a single
document which was represented as an instance of SSS-R(i, j, character),
where 1 ≤ i ≤ 8, j = i, and as an instance of SSS-R(k, l, word), where
1 ≤ k ≤ 3, l = k. We chose j = i, i.e. single-rank analysis, to determine
the individual effect of different ranks in the process.

• Each summary document, either humanly or automatically-generated was
represented as an instance of SSS-R(i, j, character), where 1 ≤ i ≤ 8, j =
i, and as an instance of SSS-R(k, l, word), where 1 ≤ k ≤ 3, l = k.
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Table 9.1: Detailed Accuracy By Class - Simple Naive Bayes DUC 2006
Class TP FP P R F
Peer 0.967 0.033 0.993 0.967 0.979
Human 0.968 0.033 0.866 0.968 0.914

Table 9.2: Confusion Matrix - Simple Naive Bayes DUC 2006
Classified As

Peer Human Actual Class
1740 60 Peer

13 387 Human

• We compared each summary text representation TSSS-R to the correspond-
ing topic representation CSSS-R, creating a feature vector. The values of
each vector were the results of TSSS-R ∼ CSSS-R for each of the SSS-
R configurations. Each 11-dimensional vector was labeled by a label
L ∈ {human, peer}. The ‘peer’ label was assigned to automatic sum-
marizer documents, including our baseline documents.

• We used a simple Naive Bayes classifier to classify human and peer texts.
Also, we used a kernel-estimating Naive Bayes classifier, as an alternative.
In both cases 10-fold stratified cross-validation was performed to deter-
mine the effectiveness of the method (see the WEKA toolkit [WFT+99]).
Furthermore, we have used an SVM classifier as well. The classifiers were
selected based on their common use and good performance in a variety of
classification tasks.

• We calculated the feature’s Information Gain, and performed Principal
Component Analysis to determine the important features used for the
classification decision.

We performed the same process on a second corpus (DUC 2007) to verify our
results.

9.2.1 Classification Between Human and Machine-Generated
Summaries

In Table 9.1 we see the results of the naive Bayes classification. The columns’
labels are as follows: Class is the document class (label), TP is the rate of true
positives, FP is the rate of false positives, P is the precision, R is the recall
and F is the F-measure. Given the fact that the F-measure for both classes
exceeds 90%, it appears that the method has been highly effective in classifying
summaries.

It is impressive that we need not apply more complex classifiers; this provides
evidence for the features being appropriate. In Table 9.2 we see the numbers of
correctly classified and misclassified instances. Once more, the features seem to
be appropriate.

We attempted, however, to use a more advanced classifier to see if it is easy
to reach the maximum F-measure. Using Bayes that considers multinomial
distribution for features, as well as an SVM classifier (C-SVM) with a high cost
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Table 9.3: Confusion Matrix - Multinomial Naive Bayes DUC 2006
Classified As

Peer Human Actual Class
1780 20 Peer

4 396 Human

Table 9.4: Confusion Matrix - C-SVM DUC 2006
Classified As

Peer Human Actual Class
1797 3 Peer

1 399 Human

parameter (as found in the LibSVM implementation [CL01]) we got the results
shown in tables 9.3, 9.4.

At this point we checked whether the SVM model produced overfits the
DUC 2006 corpus. Thus, we evaluated the model on the DUC 2007 corpus
data. Impressively, the results were quite similar, as can be seen in Table 9.5,
amounting to an F-measure of over 97% for both classes. Then, we evaluated
the model of the DUC 2007 corpus on the DUC 2006 data. The results of this
experiment, which are described in Table 9.6 show that we had an increased
number of false negatives for the human class. However, this is most probably
the effect of not including baseline texts in the experiments conducted on the
corpus of DUC 2007. In any case, the application of the learning process yields
comparable results for both corpora (see also 9.7 for the Bayes performance on
DUC 2007).

The experimental results, therefore, proved that the use of SSS-R as the
means to represent the corpus and the summaries, along with the use of SSN
for the computation of summaries’ normality with respect to the ‘reference’ text
(model corpus), provide good enough features to tell human and automatically
generated summaries apart.

9.2.2 Feature Importance - PCA Application

Given the success of the classification process, i.e. the success of detecting the
humanly-created summaries (correspondingly the automatically-created ones),
we proceeded to detect the key features of the classification process: These form
the features that can be conjectured to be the invariants for the humanly-created
summaries, differentiating them from the automatically-created summaries. To-
wards this, we have used two methods to decide upon the answer:

• We ranked the features according to their Information Gain (see [MS99,

Table 9.5: Confusion Matrix - C-SVM model of DUC2006 applied on DUC2007
Classified As

Peer Human Actual Class
1439 1 Peer

18 342 Human
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Table 9.6: Confusion Matrix - C-SVM model of DUC2007 applied on DUC2006
Classified As

Peer Human Actual Class
1797 3 Peer
335 65 Human

Table 9.7: Confusion Matrix - Multinomial Naive Bayes DUC 2007
Classified As

Peer Human Actual Class
1418 22 Peer

8 352 Human

p. 583] for linguistic uses of the measure).

• We performed Principal Component Analysis [Wol87].

The information gain calculation gave the ranking of Table 9.8. In the table,
the SSS-R used was named using ‘char’ or ‘word’, indicating the kind of symbol
that was used for the representation and the r = dmax parameter value. For
instance, Char2 indicates single-character strings with r = dmax = 2. The table
presents ranking for both DUC 2006 and 2007 corpora, on the left and right
part, correspondingly.

The application of PCA on both corpora, DUC 2006 and DUC 2007, brought
a pleasant surprise: the most important Principal Components extracted from
both corpora were very similar. Both the absolute values of weights of the
original features in the PCA-extracted features, as well as the eigenvalues of
the major principal components themselves were similar (see Table 9.9). This
indicates emergent important features, only partially dependent on the corpus.

In both rankings, it seems that the low-ranked character n-grams simply
reproduce the spelling constraints of a language and offer no useful information.
The most important features appear to be the high-rank character n-grams:
these span over more than one word. These features are the ones detecting
word collocations and other similar phenomena. Using only Char7 and Char8

Table 9.8: Ranking of Features using Information Gain
Rank IG 2006 SSS-R IG 2007 SSS-R

1 0.6528 Char8 0.6769 Char7
2 0.6527 Char7 0.67525 Char8
3 0.6463 Char6 0.67394 Char6
4 0.6161 Char5 0.61962 Char5
5 0.3703 Char4 0.35862 Char4
6 0.0545 Char3 0.06614 Char3
7 0.0256 Word3 0.01098 Char1
8 0.0196 Char1 0.0078 Char2
9 0.0133 Word1 0 Word2

10 0 Word2 0 Word3
11 0 Char2 0 Word1
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Table 9.9: Major Features by PCA
Corpus Eigenvalue Feature Formula
DUC 2006 5.62218 0.414Char4+0.409Char5

+0.389Char6
DUC 2007 5.70926 -0.411Char4-0.397Char5

-0.372Char6

Table 9.10: Confusion Matrix - 2 Features - Multinomial Naive Bayes DUC 2006
Classified As

Peer Human Actual Class
1784 16 Peer

8 392 Human

features we reached a very high performance, displayed in Table 9.10.
Furthermore, figures 9.1, 9.2, 9.3 show the effect of using different features

for the discrimination between human and peer summaries: The light colored
(yellow) areas indicate instances of SSSR representations of human summaries
and the dark colored (blue) indicate instances of SSSR representations of peer
summaries. It is obvious that high-rank character n-grams discriminate be-
tween classes, because humans have lower SSN in high ranks than automatic
summaries, but higher SSN than random texts.

Summarizing the above, what we must notice is the importance of sub-word
(character) features of high rank. However, it is not the spelling that makes the
difference, but the joining of words. Also, studying the results we can conjecture
that normality indicates whether a text is the result of an abstraction process:
This is true given that people (who follow an abstractive summarization process)
have lower SSN performance than automatic summarization systems (that fol-
low mostly an extractive summarization process), but higher than random texts
(that in no way follow the patterns in the corpus).

Figure 9.1: Character 1-grams SSN distribution for DUC 2006
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Figure 9.2: Character 4-grams SSN distribution for DUC 2006

Figure 9.3: Character 8-grams SSN distribution for DUC 2006 The 50 automatic

texts with low grammaticality are the random instances
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9.3 Conclusions on Evaluation

From the study presented we have inferred a number of facts:

• The AutoSummENG method for summarization evaluation is a promis-
ing method based on language-neutral analysis of texts and comparison
to gold-standard summaries. The method is based on n-gram graphs,
even though it provides support for other, histogram-based, approaches.
We have found that the character n-gram graph representation, includ-
ing information of neighbourhood frequency, can render the best results
for the given task. The presented method appears to outperform cur-
rent approaches in the corpus of DUC 2006, providing a good evaluation
alternative for future attempts.

• Answering the questions posed in chapter 5, statistical information related
to co-occurrence of character n-grams seem to provide important informa-
tion concerning the evaluation process of summary systems. The actual
representation used for capturing this information can be an n-gram graph,
as this has been described within out method, with parameters optimized
a priori. The distance metric to be preferred would be the Value Similar-
ity between the graph representation of peer summaries and model sum-
maries. Our method, complemented by the parameter optimization step,
has proved to be a language-neutral, fully automated, context-sensitive
method with competitive performance.

• The combination of individual evaluation measures can prove fruitful in
improving the evaluation of summaries. However, research efforts should
focus on evaluating different, orthogonal qualities of text in order to
achieve higher overall evaluation performance.

• Many existing automatic summarization systems, which are based mostly
on extractive techniques, appear to share statistical features. There is
such a feature that can tell human summaries apart from automatically
generated ones. This is the proposed String Sequence Normality, SSN .

• Human summaries tend to have lower SSN values than automatically
generated summaries. This may be directly connected to the abstractive
nature of multi-document summarization process of humans. On the other
hand, human summaries tend to have higher SSN values than summaries
randomly generated.

• The principal components, based on SSN , that discriminate humanly-
created from automatically-generated summaries for a given language seem
to follow a specific pattern of weights. This indicates that humans do
follow statistically traceable patterns of text generation if we get to the
sub-word level.

In an effort to evaluate automatic texts (summaries) in accordance to the
human perception of fluency and grammaticality, the presented SSN measure
adds one more language-neutral and objective tool. It would be very important
to determine other, perhaps similar measures that will be able to detect other
invariants of human texts. Doing so, step by step, our intuition of the complex
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process of summarization will be augmented and, hopefully, we shall be able
to design and implement better automatic summarization systems. In our re-
search, we have begun to utilize SSN in the process of sentence reformulation
for summarization.

Having researched the way a summary should be evaluated, we decided to
create a summarization system that would hold a set of desired attributes, as
illustrated through the gaps in current literature:

• The system should be as language-independent as possible.

• The system should aim to use background knowledge, in the form of an
ontology or a thesaurus.

This system we devised and implemented will be presented in part III cover-
ing such summarization subtasks as Subject Analysis, Data Analysis, Feature
Generation and Representation, Summary Representation and Summary Gen-
eration.
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Part III

Using n-gram graphs in
extractive summarization
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Chapter 10

Salience Detection and
Redundancy Removal Using
N-gram Graphs

Within this part we tackle the problems of salience detection and redundancy
control using a unified framework based on n-gram graphs. The contributed
methodologies offer language-neutrality in the subject analysis, data analysis
and summary representation steps of the summarization process, under an eas-
ily adaptable set of tools. The underlying theory, even though it is based on
a rigorous formalization, is based upon the elementary intuition that neigh-
bourhood and relative position between characters, words and sentences offers
more information than the ‘bag-of-words’ approach. In the following chapters
we present our proposed methodology (section 10.1) and perform a set of ex-
periments to support its applicability and evaluate its performance (chapter
10.5).

In the presented methodology, the algorithms we use are fully language-
independent. Furthermore, our method uses the n-gram graph logic [GKVS08]
for sentence and chunk similarity, which overcomes the need for preprocess-
ing. Even the chunking process, used to separate a sentence into subsentential
strings, is based upon statistics. Furthermore, we define a methodology for
the mapping of a sentence to a set of concepts provided by an external source
(section 10.1.1), that we have used for query expansion.

10.1 Proposed Methodologies for Extractive Sum-
marization Subtasks

In the following paragraphs we present both the theory and the devised tools
used throughout the salience and redundancy detection. It is important that
a single theoretical and practical framework allows for different applications on
the Natural Language Processing (NLP) domain.

In order to understand the n-gram graph use, one should take into account
the fact that neighbourhood between different linguistic units is a very impor-
tant factor for determining the meaning of these units. Contextual information

112



has been very widely used and several methodologies have been built upon its
value (e.g. [BLL98, Yar95]).

In psychology there is the ‘magic number seven’ [Mil56], indicative of the
upper limit of human immediate memory capacity and communication ability.
Most operations concerning the perception, processing and storage of informa-
tion is limited by this number of input stimuli. Clustering of these stimuli into
groups allows for more complex perception, processing and storage. As Miller
puts it ‘By organizing the stimulus input simultaneously into several dimen-
sions and successively into a sequence or chunks, we manage to break (or at
least stretch)’ the ‘informational bottleneck’ of being able to process only 7± 2
items. Within this work we consider that neighbourhood between characters,
words or sentences offers the ability to represent textual information in a way
similar to human cognition as small groups of stimuli. Thus, we have adapted
a set of mathematical tools that implement NLP operations using information
concerning the neighbourhood of characters or strings, without the need for
background language information.

The summarization subtasks we address in the following sections are:

• Query expansion, which aims to improve the subject analysis step of the
summarization process.

• Salience detection, as part of the summary representation step.

• Redundancy removal of the summary representation step especially for
multi-document summaries.

The methodologies we describe also indicate a new type of feature for the feature
generation and representation step of the summarization specification: the n-
gram graph.

In order to perform the aforementioned subtasks, we describe two tools of
statistical analysis we have devised and used in our methodology:

• Next-character entropy text chunking to be able to analyse a sentence into
its constituent parts, regardless of the underlying language.

• The semantic index, which provides a mapping function between a sen-
tence and a set of concepts.

In the following paragraphs, the following basic assumptions have been made.

• The content CU of a text set (corpus) U is considered to be the intersection
of all the graph representations of the texts in the set: CU =

⋂
t∈Ut.

This assumption indicates that we consider content of a document set the
common substrings between all documents.

• A sentence S is considered more similar to the content CU of a text set, as
more of the sentence’s chunks (sub-strings of a sentence) have an n-gram
graph representation similar to the corresponding content representation.
Every chunk’s similarity to the content is added for the overall similarity
of a sentence to the content.

This assumption is based on the fact that sentences similar in meaning
will contain similar substrings. The more common substrings one finds
between two sentences, the higher the similarity in meaning (even though
this is obviously not always the case).
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10.1.1 Next-character Entropy Chunking

In order to perform chunking we use a corpus to determine the probability
P (c|Sn) that a single given character c will follow a given character n-gram Sn,
for every character c apparent in the corpus. The probabilities can then be used
to calculate the entropy of the next character for a given character n-gram Sn.

The entropy measure indicates uncertainty. We have supposed that sub-
strings of a character sequence where the entropy of P (c|Sn) surpassed a statis-
tically computed threshold represent candidate delimiters. Within the text to
be chunked we seek the delimiters, after the end of which a new chunk begins.
In our application we have only checked for unigrams, i.e. simple letters, as de-
limiters even though delimiters of higher rank can be determined. For example,
in bi-gram chunking the sequence ‘, ’ (comma and space) would be considered
to be delimiter, while in unigrams the space character only would be considered
delimiter. Given a character sequence Sn and a set of delimiters D, our chunking
algorithm splits the string after every occurrence of a delimiter d ∈ D.

10.1.2 Mapping a Sentence to a Set of Concepts Using
External Knowledge

Within the scope of our work we tried to extract concepts from a sentence.
Usually this happens by looking up, possibly preprocessed, words in thesauri
like WordNet. In our approach we have used a decomposition module based on
the notion of the symbolic graph.

A symbolic graph is a graph where each vertex contains a string and edges are
connecting vertices in a way indicative of a substring relation. As an example,
if we have two strings abc, ab labeling two corresponding vertices, then since
ab is a substring of abc there will be a directed edge connecting ab to abc. In
general, the symbolic graph of a given text T contains every string in T and for
every string it illustrates the set of substrings that compose it. This graph’s size
is exponential to the size of the input text, therefore we choose an upper limit
to the size of substrings apparent within the graph. The symbolic graph should
ideally use the symbols defined in part II, however in terms of implementation
simplicity we chose to use every string as a possible symbol within this part of
the research.

When a symbolic graph has been constructed, then one can run through all
the vertices of the graph and look up each vertex in a thesaurus to determine if
there is a match. If the thesaurus contains a looked up vertex string then the
vertex is assigned the corresponding looked up meaning. This annotated graph,
together with a facility that supports comparing meanings is what we call the
semantic index.

The semantic index, therefore, represents links between n-grams and their
semantic counterparts, implemented as e.g. WordNet definitions which are tex-
tual descriptions of the sense. Such definitions are used within example 10.1.1.
If D1, D2 are the sets of definitions of two terms t1, t2, then to compare the
semantics (meaning) of m1,m2 of t1, t2 using the semantic index, we actually
compare the n-gram graph representation G1i, G2j , 1 ≤ i ≤ |D1|, 1 ≤ j ≤ |D2|
of each pair of definitions of the given terms. Within this section we consider
the meaning of a term to map directly to the set of possible senses the term
has. The similarity of meaning simMeaning is considered to be the averaged sum
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of the similarities over all pairs of definitions of the compared terms:

simMeaning(t1, t2) =
∑

G1i,G2j
sim(G1i, G2j)

|D1| × |D2|
(10.1)

This use of similarity implies that uncertainty is handled within the measure
itself, because many alternative senses, i.e. high |D1|, |D2|, will cause a lower
result of similarity. An alternative version of the similarity measure, that only
requires a single pair to be similar to determine high similarity of the meanings
is the following.

simMeaning
′(t1, t2) = maxG1i,G2j

sim(G1i, G2j) (10.2)

Within our examples in this section we have used equation 10.1.

Example 10.1.1 Compare: smart, clever
WordNet sense definitions for ‘clever’:

• cagey, cagy, canny, clever – (showing self-interest and shrewdness in deal-
ing with others; ‘a cagey lawyer’; ‘too clever to be sound’)

• apt, clever – (mentally quick and resourceful; ‘an apt pupil’; ‘you are a
clever man...you reason well and your wit is bold’-Bram Stoker)

• clever, cunning, ingenious – (showing inventiveness and skill; ‘a clever
gadget’; ‘the cunning maneuvers leading to his success’; ‘an ingenious
solution to the problem’)

WordNet sense definitions for ‘smart’:

• smart – (showing mental alertness and calculation and resourcefulness)

• chic, smart, voguish – (elegant and stylish;‘chic elegance’;‘a smart new
dress’;‘a suit of voguish cut’)

• bright, smart – (characterized by quickness and ease in learning;‘some chil-
dren are brighter in one subject than another’;‘smart children talk earlier
than the average’)

• fresh, impertinent, impudent, overbold, smart, saucy, sassy, wise – (im-
properly forward or bold;‘don’t be fresh with me’;‘impertinent of a child to
lecture a grownup’;‘an impudent boy given to insulting strangers’;‘Don’t
get wise with me!’)

• smart – (painfully severe;‘he gave the dog a smart blow’)

• smart – (quick and brisk;‘I gave him a smart salute’;‘we walked at a smart
pace’)

• smart – (capable of independent and apparently intelligent action;‘smart
weapons’)

Similarity: 0.0794
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t1 t2 simMeaning

smart stupid 0.0388
smart pretty 0.0339
run operate 0.0768
run walk 0.0436
run jump 0.0416
run die 0.0557
hollow empty 0.0893
hollow holler 0.0768

Table 10.1: Other examples of comparisons: using sense overview

t1 t2 simMeaning

smart clever 0.0000
smart stupid 0.0020
smart pretty 0.0036
run operate 0.2162
run walk 0.0020
run jump 0.0017
run die 0.0152
hollow empty 0.1576
hollow holler 0.3105

Table 10.2: Other examples of comparisons: using only synonyms from overview

In Table 10.1, we offer some more pairs of terms and their corresponding
similarity values. These primary results indicate that, even though the measure
appears to have higher values for terms with similar meaning, it may be biased
when two words have similar spelling. This happens because the words them-
selves appear in their definition, which causes a partial match between otherwise
different definitions.

The results further depend heavily on the textual description — i.e. defini-
tion — mapped to any term’s individual sense (synset in WordNet). The results
for the same examples when using synonyms only as descriptors of individual
senses can be seen in Table 10.2. We notice that the words ‘smart’ and ‘clever’
are found to have no relation whatsoever, because no common synonyms are
found within the WordNet results1. Furthermore, since the given word always
appears in its synonym list, word substring similarity still plays an important
role, e.g. ‘hollow’ and ‘holler’.

The use of a semantic index is that of a meaning look-up engine. The
semantic index is actually an annotated symbolic graph. If there is no matching
vertex in the graph to provide a meaning for a given input string then the
string is considered to have the meaning of its closest, in terms of graph path
length, substrings that have been given a meaning. This ‘inheritance’ of meaning
from short to longer strings is actually based on the intuition that a text chunk
contains the meaning of its individual parts. Furthermore, a word may be broken
down to elementary constituents that offer meaning. If one uses an ontology or

1We have used the overview option in this set of experiments and only kept the synonyms
through regular expressions on the WordNet result.
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even a thesaurus including prefixes, suffixes or elementary morphemes and their
meanings to annotate the symbolic graph, then the resulting index becomes
quite a powerful semantic annotation engine.

Within this work, we have combined a symbol graph and WordNet into a
semantic index to annotate queries with meanings and perform query expansion.

10.2 Query Expansion

Query expansion is based on the assumption that a set of words related to an
original query can be used as part of the query itself to improve the recall and
usefulness of the returned results. In the literature much work has indicated
that query expansion should be carefully applied in order to improve results
[Voo94, QF93].

In our approach, we have used query expansion in a very simplistic way,
looking up all query words in WordNet [MBF+90] and appending the resulting
WordNet’s ‘overview of senses’ -contained words to the query. An example
overview of senses for the word ‘ambiguous’ can be seen in example 10.2.1.

Example 10.2.1 Overview of verb test

The verb test has 7 senses (first 3 from tagged texts)

1. (32) test, prove, try, try out, examine, essay --
(put to the test, as for its quality,
or give experimental use to;
"This approach has been tried with good results"; "Test this recipe")
2. (9) screen, test --
(test or examine for the presence of disease or infection; "screen
the blood for the HIV virus")
3. (4) quiz, test --
(examine someone’s knowledge of something; "The teacher tests us every week";
"We got quizzed on French irregular verbs")
4. test -- (show a certain characteristic when tested;
"He tested positive for HIV")
5. test -- (achieve a certain score or rating on a test;
"She tested high on the LSAT and was admitted to
all the good law schools")
6. test -- (determine the presence or properties of (a substance))
7. test -- (undergo a test; "She doesn’t test well")

Overview of adj ambiguous

The adj ambiguous has 3 senses (first 3 from tagged texts)

1. (9) equivocal, ambiguous -- (open to two or more interpretations;
or of uncertain nature or significance;
or (often) intended to mislead; "an equivocal statement";
"the polling had a complex and equivocal (or ambiguous) message for
potential female candidates";

117



"the officer’s equivocal behavior increased the victim’s uneasiness";
"popularity is an equivocal crown";
"an equivocal response to an embarrassing question")
2. (4) ambiguous -- (having more than one possible meaning;
"ambiguous words"; "frustrated by ambiguous instructions,
the parents were unable to assemble the toy")
3. (1) ambiguous -- (having no intrinsic or objective meaning;
not organized in conventional patterns; "an ambiguous situation
with no frame of reference"; "ambiguous inkblots")

This approach does not function effectively, because much noise is inserted
within the query; on the other hand, this experimentation with query expansion
offers some insight concerning the usefulness of query expansion for our approach
on the query-based summarization task.

For a given word w, a set of senses’ overviews is returned by the semantic
index; from these senses si, i > 0 we only utilize senses sj with graph repre-
sentations Gsj

that have more in common with the content CU than a given
threshold (see section 4.1 for the definitions of the used functions): Gsj ∩CU 6=
∅ and VS(Gsj , CU) > t, t ∈ R+. Finally, the query is integrated in the content
definition by merging the representation of the original query Gq and the rep-
resentations Gsj

of all the j additional extracted senses to the original content,
giving a new query-based content definition CU

′. Having calculated CU
′, we

can judge important sentences simply by comparing the graph representation
of each sentence to the CU

′. The refer to the removal of noisy definitions from
the overview of senses as our sense filter.

Even though the query expansion process was finally rather successful, in
the original query expansion process noise was added, due to chunks like ‘an’,
‘in’ and ‘o’ which were directly assigned the meanings of ‘angstrom’, ‘inch’ and
‘oxygen’ correspondingly (also see experiments in section 10.5). This lowered
the evaluation scores of our submitted runs. Using the sense filter as shown
here, the deficiency has been avoided.

10.3 The Content Selection Process

Given the content definition and the chunking process, each sentence is assigned
a score, which is actually the sum of the similarities of its chunks to the content.
This process, we call chunk scoring, offers an ordered list of sentences L. Another
alternative, we call sentence scoring, would be to assign to each sentence its
similarity to the content, without chunking. Both of these alternatives have
been examined experimentally in section 10.5.

Given the sentences’ ordered list, a naive selection algorithm would select
the highest-scoring sentences from the list, until the summary word count limit
is reached. However, this would not take redundancy into account and, thus,
this is where redundancy removal comes in.
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10.4 The Tackling of Redundancy – Redundancy
and Novelty

10.4.1 Novelty

The novelty detection process has two aspects, the intra-summary novelty and
the inter-summary or user-modeled novelty. The intra-summary novelty refers
to the novelty of a sentence in a summary, given the rest of the content of the
summary. The inter-summary or user-modeled novelty refers to the novelty
of information apparent when the summarization process takes into account
information already available to the reader (as per the TAC 2008 update task).

In order to ensure intra-summary novelty, one has to make sure that every
sentence added only minimally repeats already existing information. To achieve
this goal, we use the following process:

• Extract the n-gram graph representation of the summary so far, indicated
as Gsum.

• Keep the part of the summary representation that does not contain the
content of the corresponding document set U, G′sum = Gsum 4 CU.

• For every candidate sentence in L that has not been already used

– extract its n-gram graph representation, Gcs.

– keep only G′cs = Gcs 4 CU, because we expect to judge redundancy
for the part of the n-gram graph that is not contained in the common
content CU.

– assign the similarity between G′cs, Gsum′ as the sentence redundancy
score.

• For all candidate sentences in L

– Set the score of the sentence to be its rank based on the similarity
to CU minus the rank based on the redundancy score.

• Select the sentence with the highest score as the best option and add it
to the summary.

• Repeat the process until the word limit has been reached or no other
sentences remain.

In the TAC 2008 corpus, systems are supposed to take into account the first
of two sets per topic, set A, as prior user knowledge for the summary of set B of
the same topic. In fact, set A contains documents concerning a news item (e.g.
Antarctic ice melting) that have been published before the documents in set B.
We have used the content of the given set A, CUA, in the redundancy removal
process by further merging the content of set B, CUB , to Gsum after the first
step of the process. In other words, the content of set A appears to always be
included in the current version of the summary and, thus, new sentences avoid
redundancy.
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10.4.2 Redundancy

Within this work we have also implemented a method of redundancy removal,
as opposed to novelty detection, where redundancy is pinpointed within the
original set of candidate sentences: we consider a sentence to be redundant, if it
surpasses an empirically computed threshold2 of overlap to any other candidate
sentence. In each iteration within the redundancy removal process each sentence
is compared only to sentences not already marked as redundant. As a result
of this process, only the sentences never marked as redundant are used in the
output summary.

10.5 Experiments

The experiments conducted upon the TAC 2008 corpus were numerous, to re-
search aspects of the summarization process. We consider each variation of our
system based on a different parameter set to be a different system, with a dif-
ferent System ID. We have used the AutoSummENG as our system evaluation
method, since it correlates well to the DUC and TAC responsiveness measure
[GKVS08].

In TAC 20083 there were two tasks. The main task was to produce a 100
B•word summary from a set of 10 documents (Summary A). The update task
was to produce a 100-word summary from a set of subsequent 10 documents,
with the assumption that the information in the first set is already known to
the reader (Summary B). There were 48 topics with 20 documents per topic in
chronological order. Each summary was to be extracted based on a topic de-
scription defined by a title and a narrative query. The summaries were expected
to have a maximum length of 100 words. For every topic 4 model summaries
were provided to allow for evaluation.

At this point we indicate that various drawbacks exist in using an overall
measure like AutoSummENG, ROUGE [Lin04] or Basic Elements [HLZF05]
(also see [Bel09] for a related discussion):

• Small variations in system performance are not indicative of real perfor-
mance change, due to statistical error.

• The measure can say little about individual summaries, because it corre-
lates really well when judging a system.

• The measure cannot judge performance of intermediate steps, because it
judges the output summary only.

• The measure can only judge the summary with respect to the given model
summaries.

Given the above restrictions, we have performed experiments to judge the change
in performance when using:

2The threshold should be computed via experiments or machine learning to relate with
human estimated redundancy of information, but this calculation has not been performed in
the scope of this work.

3See http://www.nist.gov/tac/publications/2008/presentations/TAC2008_UPDATE_

overview.pdf for an overview of the Text Analysis Conference, Summarization Update Task
of 2008.
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System ID CS SS RR ND QE NE Score
1 X X X 0.120211
2 X X X 0.130345
3 X X X 0.121837
4 X X X 0.119849
5 X X X 0.129929
6 X X 0.125457

Table 10.3: AutoSummENG summarization performance for different settings
concerning scoring, redundancy and query expansion. Legend CS: Chunk Scor-
ing, SS: Sentence Scoring, RR: Redundancy Removal, ND: Novelty Detection,
QE: Query Expansion, NE: No Expansion

• chunk scoring for sentence selection versus sentence scoring.

• redundancy removal versus novelty detection.

• query expansion versus no query expansion.

Before judging the results in table 10.3, we performed an ANOVA (analysis of
variance) test to determine whether the System ID — i.e. system configuration
— is an important factor for the AutoSummENG similarity of the peer text to
the model texts. It was shown with a p-value below 10−15 that both the topic
for which the summary was performed and the System ID is indeed important
for the summary performance. This indicates that:

• There are topics of various difficulty and the topic is an important factor
for system performance.

• Selection of different components for the summarizer, from the range of
our proposed components, can affect the summaries’ quality.

The systems using chunk scoring have no statistically significant difference
in performance from the ones that use sentence scoring, as the t-test gave a p-
value of 0.64. However, the systems using chunk scoring, namely systems 3 and
6, had a slightly lower average performance than the others. The systems using
redundancy removal appear to have statistically significant difference in perfor-
mance from the ones that use novelty detection, nearly at the 0.05 confidence
level (one-sided t-test). System 6 was chosen to not use any redundancy removal
method and performs near the average of all other systems, thus no conclusion
can be drawn. Concerning query expansion, it was not proved whether query
expansion indeed offers improvement, as the t-test gave a p-value of 0.74.

In table 10.4 information on the average performance of TAC 2008 partic-
ipants over all topics is illustrated. More on the performance of TAC 2008
systems can be found in [DO08]. Our system performs below average but quite
better than the least successful participant.

To further examine the performance of our system in other corpora, we per-
formed summarization using the configuration that performed optimally in the
TAC 2008 corpus on the corpora of DUC year 2006. Systems in DUC 2006 were
to synthesize from a set of 25 documents a brief, well-organized, fluent answer
to a non-trivially expressed declaration of a need for information. This means
that the query could not be answered by just stating a name, date, quantity, or
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System (TAC 2008 SysID) AutoSummENG Score
Top Peer (43) 0.199136
Last Peer (18) 0.102862
Peer Average (All Peers) 0.1647544 (Std. Dev. 0.0215723)

Proposed System (-) 0.130345

Table 10.4: AutoSummENG performance data for TAC 2008. NOTE: The top

and last peers are based on the AutoSummENG measure performance of the systems.

System (DUC 2006 SysID) AutoSummENG Score
Baseline (1) 0.143679
Top Peer (23) 0.204977
Last Peer (11) 0.12597
Peer Average (All Peers) 0.1841712 (Std. Dev. 0.0170088)

Proposed System (-) 0.1783284

Table 10.5: AutoSummENG performance data for DUC 2006. NOTE: The top

and last peers are based on the AutoSummENG measure performance of the systems.

similar singleton. The organizers of DUC 2006, NIST, also developed a simple
baseline system that returned all the leading sentences of the ‘TEXT’ field of
the most recent document for each topic, up to 250 words [Dan06].

In Table 10.5 we illustrate the performance of our proposed system on the
DUC 2006 corpus. It is shown that the system strongly outperforms the baseline
system, and is less that a standard deviation (0.01700883) below the AutoSum-
mENG mean performance (0.1841712) of all the 35 participating systems.

From the comparison between the results on the DUC 2006 and the TAC
2008 task we can conclude that our proposed system performed better in the
generic summarization task of DUC 2006 than in the update task of TAC 2008.
However, this is judged only by the responsiveness-related AutoSummENG mea-
sure which makes identifying the exact defects of the TAC summaries non-trivial
and requires further investigation in future work.

Nevertheless, it is very important that the proposed summarization com-
ponents offered competitive results without using machine learning techniques
with a rich set of sentence features like sentence position or existence of title
words. This indicates the usefulness of n-gram graphs as well as the generality
of application of the n-gram graph operators and functions. However, other
components need to be added to reach state-of-the-art performance, given the
existing means of evaluation. These components should aim to improve the
overall coherence of the text and tackle such problems as anaphora resolution.

10.6 Conclusions on Summary Extraction Using
N-gram Graphs

We have offered a set of methodologies, based on the language-neutral represen-
tation and algorithms of n-gram graphs, aiming to tackle a number of automatic
summarization problems:

Salience detection , where we have indicated ways to determine the content
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of a cluster of documents and judge salience for a given sentence.

Redundancy removal , where two different approaches have been presented
following the Cross-Sentence Informational Subsumption (CSIS) [RJB00]
and Marginal Relevance [CG98] paradigms.

Query expansion , where a scheme to broaden a given query has been pro-
posed, with a slightly improving effect.

The experimental results presented judged only one commonly used aspect
of our systems; namely its responsiveness ability. Based on these results we
have seen that combining different methods for the components of the overall
summarization method, one can achieve significantly different results. The best
results were achieved when using sentence scoring with redundancy removal,
where query expansion made no real difference in performance. It is very impor-
tant that the proposed summarization components offered competitive results
through simple application of n-gram graph theory and methodologies.
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Part IV

Other Contributions and
Discussion
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Chapter 11

FABLE: An Architecture
Proposal for the Support of
the AESOP TAC Task
(Automatically Evaluating
Summaries Of Peers) and
the Evaluation Community

This proposal aims to set the foundations of a unified software architecture and
framework for the integration of evaluation methodologies of peer summaries.
The framework is based on open protocols, supports easy integration of new
evaluation methods and allows for remote execution of methods. It aims to be
scalable, secure and system independent. It offers support for the use of an
optional set of gold standard summaries, support measurements of correlation
between different summarization evaluation results and allows for combination
of evaluation techniques into complex new techniques.

11.1 Motivation

It has been shown through a variety of works[CD08, Jon07, Nen06, Sjö07,
GKV08] that the domain of evaluation of summaries is a difficult task. Exist-
ing methods of automatic evaluation like ROUGE [Lin04], BE (and BEwT-E)
[HLZF05, TH08] and AutoSummENG [GKVS08] manage to assign such grades
to summary systems that system ranking correlates highly to the ranking offered
by the human assigned responsiveness measure used in the Document Under-
standing Conferences (DUC) and Text Analysis Conference (TAC). However,
a number of problems have been pinpointed by the summarization community,
including the following:

• The evaluation process is so far mostly a shallow evaluation between a
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summary and a set of gold standard human summaries.

• Existing automatic evaluation grades do not indicate such things as gram-
maticality, coherence and other desired textual qualities.

• It is not trivial to provide evaluation results concerning where each existing
method performs well and where it does not.

• No method is able to judge the quality of a single summary with certainty.
Only the average performance over a set of summaries from each system
correlates to human judgement.

• The expression of information need appears to be vaguely defined in sum-
marization tasks, which further makes the variations of the responsiveness
measure used in recent Document Understanding Conferences and the
Text Analysis Conference not robust. We cannot say for certain whether
systems have improved over the years, or whether they have achieved the
aim of the yearly tasks, because of the vagueness of information need.

The aforementioned problems should be tackled through a community effort
aiming to provide for:

• A unified set of benchmark data, including corpora, information need
specifications and baseline results.

• A unified approach for the evaluation of different aspects of a summary
text, including all its syntactic, semantic and pragmatic properties.

• A unified set of meta-evaluation tools, i.e. evaluation of the evaluation,
through statistical methods and practices.

It would also be important to judge each evaluation measure according to its
indended application, as this is defined by its inventor. Also, one would like
to have other researchers comment on the drawbacks and advantages of every
method, so that improvement may occur.

11.2 The Architecture

The proposed architecture and corresponding framework, we will call Framework
for Automated Binding to Linguistic Evaluation FABLE, is illustrated in Figure
11.1. The architecture comprised four main types of roles and corresponding
Application Programming Interfaces (APIs):

The Evaluation Client This is the application or individual that wants to
use the evaluation framework to evaluate a summarization system. The
client interacts with the evaluation proxy to request the evaluation of a
summary, or with the meta-evaluator to request evaluation of a given
evaluation method for a given corpus.

The Dataset Provider The dataset provider is the source of the data for
the summarization and evaluation tasks. It may contain text corpora
for summarization, including queries and gold standard summaries. It
provides such functionality that one can look up corpora, which are broken
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down into topics. The topics contain documents which can be retrieved
through a corresponding method.

At this point, it should be determined whether new corpora can be regis-
tered remotely, by assigning e.g. Uniform Resource Identifiers (URIs) to
document records in the dataset provider service. This way the dataset
provider may not need to host the texts itself, but rather retrieve the text
via its URI.

The Evaluator The evaluator provides the functionality of evaluating a mea-
surable textual quality, optionally given a set of gold standard documents.
The documents can be simple references to dataset provider resources, or
actual texts.

Each evaluator publishes a list of meta-data (attribute tags), showing the
domain of application and the specific requirements. These meta-data may
define whether the evaluator requires a gold standard set of documents for
the evaluation, the languages the evaluator supports and so forth. 1

Complex evaluators can be implemented by simply creating an evaluator
that calls other evaluators and combines the latter’s results in a unique
way.

The Evaluator Proxy The evaluator proxy acts as the main link to a set of
evaluators and their functionality. It provides a facility to register new
evaluators to support easy integration of new methodologies. Further-
more, it contains information about the attributes of registered evalua-
tors, so that an evaluation client can locate evaluators based on desired
attributes. The evaluation proxy provides the actual interface for evalu-
ation clients, because a client will request the proxy to execute a specific
type of evaluation for a given summary. The proxy may then forward the
call to an evaluator and transmit the evaluation result to the client when
available.

The evaluator proxy also contains the authentication logic, so that security
rules can be applied on the availability of services per client. Overall, the
evaluator proxy is the gateway of the evaluation methods to the clients.

The Meta-evaluator The meta-evaluator acts as an evaluator proxy, but also
provides functionality for the testing of an evaluation result against a
gold standard evaluation result. The meta-evaluation methodologies the
meta-evaluator supports (e.g. Pearson, Spearman, Kendall correlation)
are published and the client can select any meta-evaluation method for a
given set of evaluation results.2

11.3 Implementation Issues

In order to fulfil the need for open standards, the proposed implementation
framework for FABLE would be the Web Services framework. Web services are

1It might also be important to also let community members propose tags to an evalua-
tor according to its performance in different tasks, but this may be a second step after the
implementation of FABLE.

2Optionally, the meta-evaluation may be divided into proxies and meta-evaluators, but
this may increase the complexity of the architecture without an actual need to support.
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Figure 11.1: The proposed Framework for Automated Binding to Linguistic
Evaluation. The arrows point from the caller to the method implementor (API
implementor).

system independent, allow for distributed execution and are quite secure when
executed via the HTTPS or a similar encrypted protocol. Furthermore, they
provide for abstraction and hide implementation details, which can be important
when facing non-disclosure agreements or commercial, non-open products.

Web Services’ specifications have long been established and can be easily
applied to any kind of underlying language. This means that the set of already
existing methodologies will only need to provide a wrapper for their execution,
in accordance to the specifics of the FABLE APIs. In order to provide for
custom options the API should include a ‘custom parameters’ field. However,
evaluation methods should use default values, where applicable, to avoid the
necessity of using these custom options.

There is a question of whether the transfer of documents over HTTP will
cause too much overhead. However, caching methods can be implemented in
evaluators so that a text does not need to be transported from the Dataset
Provider every time it is required, especially for highly requested corpora. An
alternative would be to use intelligent agents, that can transfer between servers
and execute where the corpus resides, but this might pose a set of implementa-
tion issues given the fact that we need a whole community to adopt the frame-
work.

11.3.1 Roadmap

The steps required in order to help the community adopt FABLE are the fol-
lowing.
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• For each service of the functionality proposed herein, decide on the exact
APIs through community discussion.

• Create a primary Dataset Provider to make widely used corpora available.

• Create the Evaluator Proxy service and create wrappers for the basic
evaluation methods, providing detailed information on how to register a
new evaluator through documentation.

• Provide generic wrappers that can e.g. provide results from a command
line (shell) execution. This means that any command line-based applica-
tion will be easily wrapped and supported by FABLE.

• Determine the security policy of the Evaluator Proxy service. How can
one register to use the services? Should the registration service be open
or not? Should there be an automated mechanism for registration?

• Create a basic Meta-evaluator for the commonly used meta-evaluation
methodologies, such as correlation to a given ranking. It is important at
this part to determine the format of the gold standard data and whether
gold standard evaluation results can reside in the repository of the Dataset
Provider service.

• Provide a test case of the framework to the community as a whole to
determine problems and drawbacks.

• Finalize system specifications and request its use from community mem-
bers, supporting them throughout the process, at least through good doc-
umentation.

11.4 Overview of FABLE

The proposed architecture, called FABLE, aims to provide a common architec-
ture and set of tools for summary evaluation primarily, and possibly for other
purposes. It allows for easy integration of existing evaluation methods, as well
as of new methods via a secure, publicly available set of gateways in the form
of Evaluator Proxies. It further supports the evaluation of evaluation methods
regardless of the underlying methodology. Finally, it provides an open protocol,
system-neutral, programming language-neutral testbench for existing evaluation
methods, without requiring collocation of application code. Finally, the repos-
itory of corpora may prove important for other domains of Natural Language
Processing (NLP) as well and alleviate the cost for corpus availability.

129



Chapter 12

JINSECT Toolkit: A
Generic NLP Toolkit using
N-Gram Graphs

The JINSECT open source (LGPL) toolkit is a set of applications, program-
ming structures and algorithm implementations that allow for the use of n-gram
graphs for a series of NLP tasks. The generic methods and operators concern-
ing the graphs have been optimized and tested over a variety of settings and
applications with very promising results. The toolkit can be used both as a
library for the development of novel NLP applications or as a minimal suite
of applications, including a summarizer and a summary evaluation application.
Within this chapter we briefly present its current and potential applications and
scope.

Within the past few years, research in the Natural Language Processing
(NLP) domain has led to a multitude of novel methods for the analysis of text.
Ongoing work in the fields of topic models, machine learning as well as the
application of graph representations to represent textual information tend to
augment the set of tools available to the NLP community.

In view of the increasing tendency to use statistical methods within NLP
tasks, as well as the usefulness and generic utility of such methods regardless
of language, we have designed and implemented a toolkit for NLP to help the
adoption of n-gram graphs within NLP tasks. The toolkit has a full set of
programming structures, algorithms and method implementations to help such
tasks as the ones shown in Table 12.1. The described toolkit is more an object
oriented library than a fully-fledged NLP program suite. There is much ongoing
work and a set of applications that we plan to support using the toolkit.

12.1 Purpose of the Toolkit

The JINSECT acronym stands for Java INteroperable Semantic Extraction
Context-based Toolkit. The main targets of the toolkit are:

• Use of contextual information.
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Text Classification
Authorship Identification

Text Indexing
Semantic Annotation

Automatic Summarization
Automatic Evaluation of Summary Systems

Opinion Extraction
Text Stemmatology

Table 12.1: Applications of JINSECT

• The extraction of high level information using statistical, language-neutral
methods.

• Interoperability with other tools and resources.

The main contribution of the toolkit concerns the implementation of pro-
gramming structures and algorithms adopting the n-gram graph representation
method for analysing texts. Summarization subtasks like query expansion, sen-
tence selection and summary evaluation have already been performed using the
JINSECT toolkit [GKV08, GKVS08]. Ongoing work concerning a variety of
applications (see Figure 12.1) indicates the generic applicability of the toolkit
in different settings.

12.1.1 Requirements

The toolkit is platform-independent due to the use of Java language as the
implementation language. It requires Java v1.6 or newer to perform without
problems (even though v1.5 may be fine, as well). The licence used in JINSECT
is LGPL, allowing for any kind of commercial or non-commercial use1.

12.2 JINSECT as a library

Within JINSECT an application developer can find structures and algorithms
concerning the extraction and representation of texts – and sequences of char-
acters in general – as one of the following alternatives:

• character n-gram graphs

• character n-gram histograms

• word n-gram graphs

• word n-gram histograms

N-gram graphs, the implementation of which has been based the Open-
JGraph library2, capture co-occurrence information retaining neighbour-of-a-
neighbour information, unlike feature vectors. This type of representation is

1Libraries coming from other sources, used in example applications in the toolkit, may of
course hold their own licence. However, almost all dependencies are on open source projects.
This holds certainly for all basic structures and algorithms.

2See also http://sourceforge.net/projects/openjgraph/
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the most promising part of the library. However, the useful information is held
with a cost in analysis time and memory usage. Therefore, a really important set
of time and memory optimizations have been implemented within the JINSECT
library to make sure that the algorithms perform well in most circumstances.

The library supports a set of operations upon and between graphs, as these
have been defined by Giannakopoulos et al. in [GKV08], namely:

• Similarity sim

• Merging or Union ∪

• Intersection ∩

• Delta Operator (All-Not-In operator) 4

• Inverse Intersection Operator 5

Most of these operators’ implementations have been optimized for maximum
performance, using caching methods and efficient algorithms for speed improve-
ment in everyday applications.

The ability to use n-grams of variable granularity, applying character n-
gram and word n-gram analysis of various ranks, offers both maneuverability
and simplicity of use. This helps attain both language-neutrality, but also the
extraction of higher level features in a purely statistical manner.

As additional help, we have implemented:

for clustering and indexing , a set of clustering and indexing algorithms,
using n-gram graph as an alternative (ongoing work).

for statistical calculations a set of structures which can be used as distri-
butions or histograms and corresponding algorithms calculating mean,
standard deviation, argmax and other similar functions.

for serialization a set of abstraction classes for the serialization of almost all
objects that appear in the toolkit, which allows for caching and transfer-
ability of intermediate results. The abstraction provides unified access to
memory, files, compressed files and any other repository.

for summary evaluation the AutoSummENG method (see section 12.3.2),
which allows both single-machine multi-threaded execution and use by
agents (through JADE [BPR99]), as a case study of distributed execution.

for interoperability modules in JINSECT allow for the use of WordNet [MBF+90]
as well as other dictionaries and thesauri which have been exposed via Web
Services3. Also, we support different kinds of corpora through abstraction
classes for both documents and corpus objects.

other utility functions for generic Java tasks (efficient file reading, multi-
threading, etc.).

3See http://services.aonaware.com/DictService/DictService.asmx.
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Emirates is the the biggest customer of the A380 with an order for 43 planes,
and has been expecting to take delivery of the aircraft in October 2006. An
Airbus spokesman in France said the company has begun to measure turbulence
in the wake of the A380 but that studies are not complete. Singapore Airlines
will be the first to receive the new model, with the first orders delivered in late
2006, following earlier production delays. Construction problems have delayed
the introduction of the double-deck A380, the largest passenger plane in the
world.

Figure 12.1: A sample summary from the TAC 2008 corpus – Topic 801A-A

Within the toolkit we have included and used, for example, methods for the
annotation of sentences through the combination of statistical methodology and
background, thesaurus-based knowledge. In the same domain, we have created
a statistical chunker based on the method described in section 10.1.1. These
code snippets offer excellent samples of ongoing, not yet published, research
concerning the use of n-gram graphs as part of various NLP tasks.

JINSECT has a large part of its classes documented as JavaDoc documen-
tation, even though documentation is a constantly ongoing endeavour. Within
the toolkit source code one can find a whole set of usage samples from spam
filtering usages to summary evaluation.

12.3 JINSECT as an Application Suite

JINSECT contains two main applications:

• A Text Analysis Conference (TAC) corpus compatible update summarizer
that can be called via the command-line.

• A Summary System Evaluation application using n-gram graphs, with a
working specialized GUI.

12.3.1 Summarizer

The summarizer (see a sample summary in Figure 12.1) implemented in the
toolkit offers both a proof-of-concept for the generic applicability of n-gram
graphs in NLP subtasks, as well as an excellent example for the use of the
library. The summarizer at this moment is a console-only application, but soon
we plan to create a user interface for its use.

The summarizer is under heavy development and has offered really promising
results so far, especially after the integration of a third-party sentence splitting
tool by the National University of Singapore4.

12.3.2 Summary System Evaluation

The AutoSummENG methodology, which has been implemented within JIN-
SECT, evaluates a set of summarizing systems, or ‘peers’, with respect to a
given set of model summaries. In order to perform this kind of evaluation, the

4see http://www.comp.nus.edu.sg/~qiul/NLPTools/JavaRAP.html.
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system compares an n-gram graph representation of each peer summary to the
n-gram graph representations of the model summaries, grading each system by
a set of similarity indications: one similarity indication for each model summary
on the same topic.

The AutoSummENG system can function on either n-grams of words or
characters, each giving its own results upon application. It has been shown by
means of analysis, that if one uses the toolbox to evaluate how responsive the
summaries of a given system are, it is preferable to use character n-grams.

The graph of n-grams (whether words or characters) are created by hav-
ing each n-gram represented by a node in the graph, and add edges between
neighbouring n-grams. N-grams are considered neighbours if they fall within
a number of words (or characters correspondingly) of each other. The toolkit
also takes into account n-grams of different sizes, which can be set manually.
Therefore, the parameters the user can test are:

• Whether character n-grams or word n-grams are to be used.

• The minimum size of n-grams to take into account.

• The maximum size of n-grams to take into account.

• The distance within which two n-grams are to be considered neighbours.

• Whether for the Value grade, the number of co-occurrences of two n-
grams may be taken into account, or the average distance between the
neighbouring n-grams in these occurrences.

The grades (values) returned by the toolkit are supposed to provide a ranking
similar to that humans would decide on if they evaluated the same set of peers
over the same topics. That ranking, should be expected to be correct, given a
sufficient number of topics to evaluate on.

There are different kind of grades returned for a single comparison:

• The first refers to overlap, indicating how much the graph representation
of a model summary overlaps a given peer summary. This is called the
Co-occurrence measure.

• The second also refers to overlap, also taking into account how many times
two n-grams are found to be neighbours. This is called the Value measure,
which expects two similar texts to have n-grams neighbouring about the
same number of times.

• The third is the Size measure, simply indicating the ratio of n-grams
between the smaller and larger summary (whether model or peer)5.

• The final grade is the Overall grade, which is a weighted sum of the
previous measures and is in a planning stage.

The JINSECT toolkit also implements and supplies a method for determin-
ing optimal n-gram parameters for a given corpus, as indicated in [GKV08].
The implementation of the AutoSummENG method allows for the use of multi-
threading for higher performance.

5This grade should indicate a baseline for correlation to human grades, and should not be
taken into account otherwise.

134



Figure 12.2: A snapshot from the main AutoSummENG window

12.3.3 N-gram Graphs in Spam Filtering

As proof of our intuition that graphs can be used in a classification task we
applied our n-gram graph methodology on a spam filtering task using JInsect.
The task is the one described in CEAS 20086. The task was to classify about
140000 e-mails as spam or ham, but in the process of classification feedback
was given to the classifier, much like the case where a user provides feedback on
what is considered to be spam.

Given this scenario we created a spam filter server7 and tried a variety of
approaches that used n-gram graphs as the means to represent the e-mails and
their classes, to compare new e-mails to the classes and to update the class
representations. In our preliminary experiments the most promising approach,
which used a maximum of 20K characters from the e-mails, with no preprocess-
ing at all, performed really well as can be seen in Table 12.2. The evaluation
measures for the filter combine the percentage of spam blocked and the filter’s
false positive rate. They are the Logistic Average Misclassification (LAM) and
the Area under the ROC curve (ROCA) measures. According to the CEAS
organizers the LAM calculation is ‘smoothed’:

lam = invlogit((logit(FPrate) + logit(FNrate))/2) (12.1)

where logit(p) = log( p
1−p ), invlogit(x) = ex

1+ex and FPrate = (#ham-errors +
0.5)/(#ham + 0.5), FNrate = (#spam-errors + 0.5)/(#spam + 0.5).

The diagrams of the performance of the system over the number of classi-
fied e-mails, as well as the performance for various thresholds concerning the
strictness of the filter are correspondingly Figure 12.3 and Figure 12.4. The
strictness of the filter indicates the trade-off between ham misclassification and
spam misclassification.

The aforementioned experiments, together with a first place in the primary
ranking concerning a stemmatology challenge (Computer Assisted Stemmatol-
ogy Challenge8), where the n-gram graphs were used as a clustering methodol-
ogy to determine the derivation of different versions of a single text, provided

6See http://www.ceas.cc/2008/challenge/ for more on the challenge.
7The full source can be found in the JINSECT toolkit (see chapter 12).
8See http://www.cs.helsinki.fi/u/ttonteri/casc/results.html for more information.
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Gold Standard
+-------------------+
| ham spam |
| |

Filter | ham 24900 1777 |
Result |spam 2229 108799 |

+-------------------+
Total 27129 110576

ham%: 8.22 (7.89-8.55)
spam%: 1.61 (1.53-1.68)
lam% 3.68 (3.58 - 3.79)

Table 12.2: Results of the application of n-gram graph in the CEAS 2008 task.
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Figure 12.3: The performance of the n-gram graph-based spam filter over the
number of classified e-mails.
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Figure 12.4: The performance of the n-gram graph-based spam filter with re-
spect to strictness.

the support we needed for the use of n-gram graphs in a variety of applications.
Since the full report of all side-experiments and results would be out of scope
here, we plan to publish the multitude of applications where n-gram graphs can
be found to be useful in the future.

12.4 Overview of JINSECT and Future Work

The JINSECT toolkit is a set of applications, programming structures and al-
gorithm implementations that allow for the use of n-gram graphs for a series of
NLP tasks. The generic methods and operators concerning the graphs have been
optimized and tested over a variety of settings and applications. The project
has been partially documented, even though there is much more to be done.
The licence of the toolkit allows the latter’s use as a royalty-free library.

The toolkit, which can be found at http://www.ontosum.org/?q=static/
AutomaticSummarization, is under constant development and soon we plan to
have an overall estimation of the next development steps. Specifically, much
more work has to be done concerning the documentation and its update. Fur-
thermore, the breaking up of the library in self-sufficient sub-parts may offer
further modularity and make adoption even easier for prospective application
developers. We also plan to have a larger set of sample, full applications using
the toolkit to test the n-gram graphs applicability in real-life settings.

The presented toolkit offers both intuition through examples as well as ver-
ification potential for the use and usefulness of n-gram graphs and their related
methods. Additionally, it offers a framework for the application of these graphs
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which is extensible, open and evolving. Future work should aim at further taking
into account development requirements by the developping community itself, to
provide a fully usable toolset for the creation of modern NLP applications.
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Chapter 13

Overall Discussion and
Future Work

The domain of multi-document summarization offers a multitude of challenges.
As a complex human process, summarization combines individual lower-level
functions into a highly powerful, but intensely subjective cognitive tool. Even
though much work has been done to model the summarizing process and its
evaluation according to human summarizers’ methods [EN00, VHT03, SOC+02],
more must be done in order to achieve the following targets:

• Create an intermediate representation for the source information efficiently,
without inserting much noise in the extraction process.

• Combine the intermediate representation with common knowledge, e.g.
through logic and reasoning, to deduce further useful information for the
given use and purpose of the summary.

• Generate fluent, coherent text achieving the satisfaction of communica-
tion, taking into account user preferences and knowledge, in terms of a
user model.

• Quantify and measure automatically different aspects of textual quality.

• Determine methodologies that will function regardless of the underlying
language.

However, the research on summarization in its more than 50-year-old path
has led to a variety of very useful applications. Furthermore, both positive and
negative results, strengths and weaknesses have helped increase the commu-
nity intuition on what summarization is about. Valuable works, ranging from
formalisms on discourse structure and content salience, to overviews of what
summarization systems have achieved, have shown that the domains of Natural
Language Processing and Knowledge Representation are intertwined in a way
that offers incentives on interdisciplinary collaboration.

The use of Machine Learning in the process of summarization together with
the integration of background knowledge, in the form of thesauri (e.g. WordNet)
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or semi-structured text (e.g. Wikipedia), also indicate the fact that the summa-
rization process is and should be viewed as a number of individual subprocesses.
Such subprocesses need to be determined and judged individually.

Furthermore, knowledge-rich summarization approaches need to take into
account user preferences and human subjectivity when determining their output,
probably by using a user model and, ideally, pragmatic knowledge.

13.1 Expression of Information Needs and Hu-
man Interface

Ontologies, as a means to describe information needs (see information need
model in section 2.2), will probably allow to perform user-driven (actually
information-need driven) summarization based on reasoning processes, where
the desired pieces of information will be required to belong to the classes of
information expressed in the information need model.

To put it in simpler words, if someone is interested in the cause of an event,
he may construct a model that describes the restrictions for the required infor-
mation, i.e. the set of restrictions over data extracted from the original text.
The aim is to support filtering out anything but causes. We will call the set of
information compatible with these restrictions a facet of the original informa-
tion, and the actual restrictions a facet restriction set. It should be noted that
the facet and its restriction set are defined by the point-of-view (POV) of the
consumer, i.e. the position the consumer holds relative to a subject.

Thus, one may be able to construct a facet restriction set using ontologies,
according to one’s information need model, and use reasoning processes to ex-
tract the subset of information required to feed the summarizing process. This
could be by itself a salience selection method.

Currently, systems do not use advanced user-interfaces to gather user needs
to facilitate the summarization process: this limits the expressivity of informa-
tion needs to a boolean query or similar representation. Existing approaches do
not exploit the individual aspects of a summarization process, where a number
of qualities define the overall quality of the result. It would be interesting to see
how one can lead the user to define his information needs in a complete and well-
defined fashion using qualitative criteria as well as informational ones. Thus,
a user should be able to ask for a strongly cohesive, brief summary, well-based
on existing research concerning summarization, or a low-intertextuality, low-
redundancy but highly informative summary concerning comments on a movie.

Expressing information needs is mostly an interface problem. We would like
to be able to express queries such as the following:‘What happened with Iran
today?’, or even worse ‘What’s new about Iran?’ (see also section 2 of [EN00]
for an indication of problematic interfaces). The pragmatic context (i.e. world
knowledge) of a fellow speaker would probably link the question to the temporal
context of today (e.g. 29/6/2006) or the last few days. Then the same kind of
knowledge, together with a salience selection process about facts for Iran, would
lead to international politics concerning my query. Finally, the recall of our last
talk, one day before, would lead to a redundancy removal process, leaving only
new information at our disposal.

Current interfaces do not facilitate expressing user needs and preferences in
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a detailed way. In the human-to-human interface, the underlying pragmatics
aid the communication process immensely, even in a very brief query. Of course
the requester of information knows what to expect of his fellow speaker, i.e.
knows the common underlying pragmatics. Should we, then, try to approach
the summarization process in a more dialectic pattern? Should we let the user
define the common knowledge between him and the system or try to deduce it?
These matters need to be studied to allow for better human-machine interaction.

13.2 Textual Qualities

Intentionality, i.e. the ability of a text to convey the intention of the writer,
can play a vital role in summarization. It is rather self-evident that if one omits
the intention of the writer in the sentence ‘I expect you believe I do not have
better things to do’ by reducing the sentence to ‘I do not have better things
to do’, one has lost a vital part of the semantics. A second example would
be the sentences: ‘The troops believe they are holding up democracy. Is that
serious thinking?’. The main point of the sentence is that troops do not follow
the correct train of thought, and not that they are holding democracy. Thus,
a reductive transformation would have to take the intention of communication
into account, which would give a very different result. The questions arising
are:

• How can one model communication intention?

• How can one locate and capture these communicative semantics?

• How can one use it in the summarization process?

For the communication intention and communicative semantics perhaps the
summarization community should consult, among other, the agent community,
as well as psycholinguistics.

Anaphora resolution, on the other hand, seems to play a vital role in the
semantic representation of a text. If a system fails to connect an attribute to
its rightful owner, it will also fail to represent the provided information cor-
rectly. Many systems appear to have reduced effectiveness due to this exact
problem, so more effort should be put towards this. Summarization research
seems to have already focused on the alleviation of anaphora resolution prob-
lems (e.g. [CIK+06, WKB06]) and the problem has been indicated in various
papers (see [LOSG06]).

The vision of a human-oriented, pragmatics-rich summarization system,
achieving high quality on output evaluation by humans, as well as featuring
a set of flexible interface tools seems quite difficult to complete at this point in
time. But breakthroughs can often occur on the basis of a different perspec-
tive. That change of perspective, as well as the combination of inter-disciplinary
knowledge may offer the momentum required to achieve excellence. This is what
we think that the vivid summarization community should strive for.

13.3 Language and Application Neutrality

The notion of language-neutrality is somewhat neglected in the basis of Natural
Language Processing tasks, in that we often make basic assumptions concerning
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the underlying grammar, the syntax and even the direction of writing. The
n-gram graph representation can help remove some of these assumptions and
determine how semantic features that are common over all languages can be
extracted and represented in a common fashion.

We consider that the implications originating from the use of n-gram graphs
will have a serious impact to how the language will be treated in future research.
The sense of proximity, either surface or conceptual, appears to be quite a
powerful feature for a variety of tasks. Higher order relations can be extracted
by mining on the n-gram graph structure, using such tools as cliques or even
generic models on the evolution of text graphs over space or time. The models
that function upon bag-of-words may offer richer information when applied to
proximity-based representations, that offer information on sequence.

To determine whether language neutrality can be maintained within various
tasks, we are going to present in the immediate future a variety of tests involving
the use of n-gram graphs and their corresponding algorithms in such tasks as
text classification, authorship identification, text stemmatology and sentiment
analysis.

Concerning the neutrality of the n-gram graphs in the application level, we
will try to prove via a set of experiments on image and video applications, such
as behaviour recognition and optical character recognition. If these experiments
offer the results we expect, then a whole range of new tools based on the n-gram
graph notion, will be available to the research community, providing the existing
scientific arsenal with more than a new set of tools: it will offer a new perspective
of data and information, based on neighbourhood and proximity.

13.4 Improvements over Presented Research

13.4.1 AutoSummENG

As far as AutoSummENG is concerned, it would be interesting to use only sym-
bols in our analysis of the summary texts, to see if there is hidden information in
what we have called ‘non-symbols’ or not. On the same basis, a parameter-free
version of the method would determine n-grams of various length and synthesize
a single n-gram graph, not requiring any input but the corpus of summaries. It
would also be interesting to investigate different types of neighbourhood and dif-
ferent functions of importance for neighbourhood, as well as different weighting
functions for the importance of matching n-grams of specific rank (e.g. longer
vs. shorter n-grams) or nature (e.g. rare vs. common n-grams). We are plan-
ning to investigate the evaluation of other characteristics, like grammaticality,
cohesion and so forth, using the same scheme with different parameters. In this
investigation, the word n-gram dimension should be re-examined, because it
may provide more noise-free information, considering the fact that whole words
usually follow our definition of symbols by being meaningful.

13.4.2 Query Expansion

Within the redundancy removal method presented in section 10.4.2 we only use
morphology, through the n-gram graphs’ representation of sentences, to deter-
mine overlap. However, it would be interesting to determine whether redun-
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dancy based on the concepts apparent in a sentence would prove more fruitful.
An alternative we plan to apply in the future is that of using the semantic index
(see section 10.1.2) to annotate a sentence with its ‘meaning’ and then perform
the comparison between ‘meanings’, as described in 10.1.2.

13.4.3 Summarization System

It is our aim for the future to determine the effect of each individual component
of our presented summarization systems better, by implementing methodologies
and experiments that may judge individual components. Furthermore, we plan
to research new evaluation methods that will be able to measure other textual
qualities (also see part I)
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Chapter 14

Summary of Presented
Research

Within this work, we have provided a set of tools and methodologies usable
both in the domain of document summarization, as well as other NLP tasks.
We have illustrated how the proposed methodologies can be adapted to tackle
such problems as sentence salience detection, redundancy removal and novelty
detection in summaries, summary system evaluation and the quantification of
textual qualities. We believe that this research offers the basis for the evolution
of current NLP algorithms through the use of n-gram graphs. We further hope
to have provided a new view for the modeling of textual representation while
retaining language-neutrality and usefulness, aiming at generic NLP usability
algorithms, operators and functions.

Recapitulating, this work has made the following basic contributions.

• A statistically extracted, language neutral, generic usability representation
— namely n-gram graphs — that offers richer information than the feature
vector. The representation is accompanied by a set of theoretical and
practical tools for the application of the n-gram graph representation and
algorithms in NLP tasks. (Part I)

• An automatic evaluation system, aiming to capture the textual quality of
given summaries in a language-neutral way, by using the n-gram graph
representation. (Part II) The evaluation system we call AutoSummENG
has achieved state-of-the-art performance while maintaining language neu-
trality and simplicity.

• The Symbol Sequence Statistical Normality measure, as a quality indica-
tive feature of text, based on the statistics of character sequences within
a given text.

• An automatic summarization system based on the use of n-gram graphs,
focusing on the tackling of content selection and redundancy removal in
a language-neutral manner. (Part III) The proposed variations of our
summarization system offered competitive results on the TAC 2008 cor-
pus, without using complex features and machine learning techniques to
optimize the performance.
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Within the presented research we dedicated some time to help promote the
collaboration between summarization community researchers. This time gave
birth to:

• The FABLE framework, aiming to support the AESOP (Automatically
Evaluating Summaries Of Peers) task of the Text Analysis Conference
upcoming in 2009, by providing a common framework for the integration
and evaluation of summary evaluation techniques.

• The JINSECT toolkit, which is a Java-based toolkit and library that sup-
ports and demonstrates the use of n-gram graphs within a whole range of
Natural Language Processing applications, ranging from summarization
and summary evaluation to text classification and indexing. The toolkit
is a contribution to the NLP community, under the LGPL licence that
allows free use in both commercial and non-commercial environments.
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