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Abstract—Deep convolutional neural networks are today
the new baseline for a wide range of machine vision tasks.
The problem of keyword spotting is no exception to this
rule. Many successful network architectures and learning
strategies have been adapted from other vision tasks to create
successful keyword spotting systems. In this paper, we argue
that various details concerning this adaptation could be re-
examined, to the end of building stronger spotting models.
In particular, we examine the usefulness of a pyramidal
spatial pooling layer versus a simpler approach, and show
that a zoning strategy combined with fixed-size inputs can
be just as effective while less computationally expensive. We
also examine the usefulness of augmentation, class balancing
and ensemble learning strategies and propose an improved
network. Our hypotheses are tested with numerical experi-
ments on the IAM document collection, where the proposed
network outperforms all other existing models.

I. INTRODUCTION AND RELATED WORK

In the recent years, convolutional neural networks (con-

vnets, CNNs) have been established as the state-of-the-

art models in a wide range of vision tasks. The task of

searching for relevant word images given an image or text

query, known in the related literature as keyword spotting

or word spotting (KWS) [1], is no exception to this rule.

Several variants of convolutional networks for keyword

spotting have been proposed [2], [3] and employed with

success.

In [2], the PHOCNet architecture has been proposed.

PHOCNet is a typical feed-forward convolutional network,

comprising pairs of convolutional and max-pooling layers,

topped by fully connected layers leading to a stack of

sigmoid outputs. The latter resembles the structure of

the Pyramidal Histogram of Character (PHOC) vectors

[1], [4]. PHOC vectors have been originally proposed

in [4] as an attribute-based, pyramidal descriptor of the

content of either a word image or a text string. PHOCNet

inputs are segmented word images. A spatial pyramidal

pooling layer (SPP) [5] bridges the convolutional layers

to the fully connected layers and the output. In effect, this

allows for accepting inputs of any size, with fixed-size

output vectors. SPP can be seen as a pyramidal extension

of zoning, used in various contexts in document image

processing [6]. Temporal pyramidal pooling (TPP) has also

been proposed, being effectively a special case of SPP

where zones are partitioned over the horizontal axis only.

A convnet employing a TPP layer in place of the SPP,

yields slightly improved results [7].

Training neural networks can lead to the undesirable

event of overfitting to their training set. Neural networks

are notorious for supposedly being “data-hungry”, in the

sense of requiring vast amounts of data during train-

ing. Dropout is one standard technique that can improve

network generalization. Another standard practice in the

literature is data augmentation, used to artificially create

a bigger training set. Augmentation has been used with

its class balancing variant. All of these techniques have

been employed in the PHOC-based convnets of [2], [7].

To the same end, alternative techniques using aggregations

of intermediate layer activations as features have been

proposed [6], [8].

In this paper, we aim to review some of the most crucial

architectural and training choices made when training

CNNs, assuming word-level segmented, keyword spotting

context. We examine the pros and cons of each choice,

and whether employing a particular technique outweighs

the drawbacks, if any. In particular, we explore different

strategies of input image resizing and combining with

different strategies of spatial pooling, and we argue that

a non-pyramidal, zoning approach can be equally if not

more useful while being less computationally expensive.

We check the extent of usefulness of augmentation with

and without class balancing. Finally, we examine the

usefulness of ensemble learning in this context [9]. All

of the considered network parameters are evaluated with

numerical experiments on the well-known IAM document

dataset [1].

The remainder of this paper is organized as follows. In

section II we review the baseline convolutional network

that we shall assume for our experiments. In sections III

and IV respectively, we define what architectural and train-

ing aspects of the model we choose to further examine, our

motivation for choosing them and related implications. In

section V we present our motivation for using an ensemble

strategy and define ensemble learning in the context of

KWS. We present numerical results in section VI, and

review our conclusion and future work in section VII.

II. BASELINE CONVOLUTIONAL NETWORK

The core model of the considered keyword spotting

scheme is a convolutional neural network, designed to

produce a fixed-length word representation given an input

word image. Representations are created for the query

word image and the database images, then the database
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representations closest to the query representation are

returned as the keyword spotting result. In this section

we consider the PHOCNet model architecture proposed in

[2] as our baseline system. Subsequently, we examine a

number of ways to tweak the baseline model’s architecture

and review their impact on model performance.

The PHOCNet baseline architecture has been inspired

by the “very deep” VGG architecture [10], proposed for

image recognition. PHOCNet borrows from VGG the

ideas of having convolutional layers with small receptive

filters (3 × 3) and incrementally increasing the depth of

successive convolutional layers, resulting to a relatively

large number of layers.

From input to output, we can divide the PHOCNet

model into three basic components (following the nomen-

clature of [11]): a) The network convolutional backbone.

This is made up of stacks of convolutional layers paired

with max-pooling layers. There are 2 convolutional layers

followed by a 2 × 2 max-pooling layer, followed again

by 2 more convolutional layers and a 2 × 2 max-pooling

layer. These are followed by 9 convolutional layers. b) A

spatial pyramidal pooling (SPP) layer [5]. c) The network

head. This is a stack of fully-connected layers. There are

in total 3 fully-connected layers in PHOCNet, trained with

dropout.

All non-pooling layers are topped by ReLU non-

linearities, except the output layer. The final fully-

connected layer on the output is topped by per-unit sig-

moid activations. Each sigmoid output corresponds to the

probability estimate related to a particular word image at-

tribute. This layout effectively reflects the Pyramidal His-

togram of Characters (PHOC) representation [4], where

attributes correspond to character unigrams or bigrams in

different relative positions in the word. This representation

has proven very effective, lending easily to definition

extensions and enabling query-by-string keyword spotting.

The PHOCNet model achieved state-of-the-art keyword

spotting results in tests with various document collections.

While the model as a whole has proven to work very well,

we argue that several choices concerning its architecture,

the way it is trained, as well as the way the trained model

is used for keyword spotting, are worth examining further.

We present the considered choices in more detail in the

three following sections (sections III, IV, V).

III. CONSIDERED NETWORK ARCHITECTURE CHOICES

Input size: One difference of the PHOCNet archi-

tecture versus the “very deep” VGG model [10] is the

addition of the SPP layer (cf. discussion in sec. II) between

the convolutional backbone and the network head. The

SPP layer bears the special trait of transforming variable-

size inputs into fixed-size outputs. In a sense, the whole

model inherits this trait: the PHOCNet architecture indeed

accepts variable-size word image inputs and produces

outputs of the same size. This trait leads to the seemingly

important advantage of not resizing the input image to

a fixed size (as done in [10] for example, where all

images are resized to 224× 224 pixels). One could argue

that not resizing the input is an obvious advantage, as

resizing will change the aspect ratio and scale of the input.

However, this advantage is not as clear as one may expect.

We propose two different strategies concerning the input

image, besides keeping the initial input size the same: a)

resizing to a fixed height while keeping the aspect ratio

of the original image, b) resizing to a fixed image size. It

should be noted that a sufficiently deep network with a vast

number of parameters and filters can model specific word

text image structures (e.g. characters) at various aspect

ratios in one class.

Spatial pooling strategy: The original SPP layer

considers a pyramidal hierarchy of layers, where each

layer pools from progressively less divisions of the input

(in our case, the output of the convolutional backbone).

An alternative layout of pooling has been proposed in [7],

where the input is partitioned only across the horizontal

direction. This layer has been dubbed Temporal Pyramidal

Pooling (TPP) layer.

Since the standard layer operation at all levels of the

hierarchy is max-pooling, the output of the SPP will con-

tain largely redundant information. For example, consider

an input that is split into 4 equal-size horizontal zones on

one hierarchical level and 2 equal-size horizontal zones

on the next level. All the information on a coarser level

already exists on a finer level. The redundancy of the

pyramidal pooling output is our motivation to consider

only a single finer level of pooling. Hence, this strategy is

akin to zoning [6], where a pooling operation is applied on

a non-hierarchical partition of the input into spatial zones.

Replacing pyramidal pooling with single-layer pooling /

zoning results in a significant reduction of the number

of learning parameters. This leads to a smaller parameter

search space and in principle to an easier optimization. In

the current model, replacing pyramidal pooling translates

to a reduction of up to 20 million parameters.

Nevertheless, we have to note that pyramidal descrip-

tions can be very useful, under a specific context. Bag of

Visual Words (BoVW) approaches are one well-known ex-

ample [1]. In that case, a pyramidal / hierarchical scheme

is used to construct a descriptor; the redundancy trait

of this descriptor helps in enabling matching in different

levels of coarseness, which in turn lends to the robustness

of the descriptor. However, in the context of convnets,

where they are used as a non-output, intermediate layer,

the picture is slightly different. The linear transformation

of the pyramidal output before the non-linearity of the

first fully connected layer can be trivially transformed to

an equivalent linear transformation where we consider a

single layer / zoning output. Hence, we can argue that

in this case, pyramidal pooling does not have as much

usefulness, if any.

We also consider a model where we dispense altogether

with zoning and pyramidal pooling techniques. The al-

ternative would be to simply flatten the output of the

convolutional backbone and use that as input to the fully-

connected layers. However, since these are necessary when

working with variable-size input, this is applicable only
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when we choose to resize to a fixed-size image input.

IV. CONSIDERED NETWORK TRAINING CHOICES

Augmentation vs no augmentation: Data augmenta-

tion (otherwise known as data jittering) [12] is a stan-

dard strategy employed for training neural networks when

training examples are relatively scarce. The general idea

is the application of a random transformation on each of

the original data to produce new, artificial data. Typically

a family of spatial transformations is employed to pro-

duce new data, with the choice of the family depending

on the nature of the problem. In the work introducing

PHOCNet [2], affine transformations have been used to

produce warped word images. The affine parameters are

constrained in order to have meaningful transformations

considering text images.

Class balancing vs no class balancing: In [2], a class

balancing strategy is used to mitigate the negative effect

of under-represented classes (meaning in this context,

words) in the training data. This is originally combined

with the affine-based augmentation scheme. In particular,

under-represented classes are used to produce augmented

examples much more often than over-represented ones, so

that eventually all training classes are equal with respect

the number of their respective data.

The class balancing scheme can be easily decoupled

from augmentation procedure as follows. When choosing

the next datum to be used with the net training algorithm,

we select an image at random. Instead of considering uni-

form probability for this random selection, we adjust the

probability distribution so that asymptotically all classes

are equally represented during training.

The problem with this type of class balancing is that the

model, due to its structure, does not learn the target classes

directly. Instead, classes are only learned indirectly as a

result of learning to estimate sets of attributes [13] (i.e.

unigrams/bigrams per word image position). We therefore

argue that class balancing, at least in the sense previously

described and employed in [2], is inadequate in terms of

mitigating class under-representation.

V. CONSIDERED ENSEMBLE STRATEGIES

As solving for a convnet’s optimal weights is treated as

a local optimization task, different (random) initializations

will in general lead to different local minima, and therefore

different models. Combining a set of different models to

obtain increased performance, known as ensemble learn-
ing is a strategy that has been employed for various pattern

recognition tasks, including document image processing

tasks [9], [14], [15]. The rationale behind ensembles is that

different models will excel with respect to performance in

different parts of the input space. Therefore, combining the

models in some way, should lead to a better overall model.

In the current work, we experiment with two different

strategies for combining different trained convnets. The

first strategy (feature fusion) consists of averaging over

L convnet outputs given the same input word image.

Concerning the second strategy (late fusion), we begin by

computing L word spotting retrieval lists that correspond

to the L convnets. Each retrieval list consists of the

distance of the query example to the database instances,

ordered in terms of increasing distance. Subsequently, we

construct a single retrieval list, where we determine the

position of each retrieved instance in the list by taking its

minimum over the corresponding distances found on the L
separate retrieval lists. We show that ensemble strategies,

even when using a relatively low number of models L,

can lead to significant accuracy improvement.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The keyword spotting experiments are evaluated on the

challenging IAM dataset [1]. Other datasets (for example,

the George Washington dataset [1]) may pose challenges

on training due to their limited training sets, but the close

to perfect existing results prove otherwise [7]. The IAM

dataset contains a total of 115, 320 words written by 657
different writers. IAM dataset has been initially proposed

for evaluating handwriting recognition methods. Lately,

this dataset has become perhaps the most popular as well

as reliable testbed for keyword spotting techniques. The

large number of comprised words, as well as their diversity

in writing style, make it ideal for training and testing deep

neural networks. Generalization of the trained methods

can be evaluated by selecting a test set that consists of

writers unseen in the training set, as in [4]. Training and

testing partitions are selected according to [4]. We focus

on QbE KWS scenario and therefore images in the testing

set that correspond to stop words or appearing only once

are excluded from the query set but are kept as distractors.

Given the outputs of the PHOCNet architecture for the

images consisting the testing set, i.e. the PHOC estima-

tions, the retrieval list is computed by nearest neighbor

search using the cosine distance [7]. As performance

metric for a single query we use the interpolated Average

Precision (AP). The performance on the whole test set is

evaluated in terms of mean Average Precision (MAP) by

computing the mean AP value for all the queries.

B. Training Setup

Training is performed assuming a binary logistic loss.

Following [7], we use a batch size of 10 images. At

this point, it is important to note that using batches of

images of different sizes comes with the drawback of not

fully utilizing GPU capabilities, as the batch cannot be

described as a single 4-dimensional tensor. This results in

slower training time compared to using same-sized images.

In contrast to previous works, we do not normalize the

resulting loss of an image with respect to the batch size.

Such normalization corresponds to updating the weights

based on one image in terms of gradient magnitude. By

avoiding this, we can achieve faster training convergence.

All networks are trained for 100, 000 iterations using

Adam [16] with optimizer hyperparameters set to β1 =
0.9, β2 = 0.99 and weight decay = 5 · 10−5. An iteration

corresponds to computing the gradients for a single batch
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and updating the weights accordingly. The initial learning

rate is 10−4 and is divided by 10 after 60, 000 training

iterations.

Training of a deep architecture will converge to, in

general different, local optima that may differ slightly in

terms of KWS performance. In order to better compare the

architecture and training choices that we explore in this

work, our networks are re-trained 5 times from different

random initializations and their results are averaged.

The PHOCNet architecture and training procedure have

been implemented using the Pytorch 1 deep learning

framework and are publicly available 2.

C. Results & Discussion

Input Size and Spatial Pooling Strategy
First, we aim to explore the impact of both the input

size and the spatial pooling strategy. We consider three

different scenarios with respect to the input size: 1) initial

image size 2) fixed height while keeping aspect ratio and

3) fixed-sized images. We use fixed sized images or even

fixed height in order to speed-up training and inference,

since resizing usually reduces the image size. The fixed

height was selected as 50, whereas the fixed width was

selected as 100. This choice was not further explored.

We also evaluate two different spatial polling strategies:

1) 5-level Temporal Pyramidal Pooling (TPP): Uniformly

segment the output of the last convolutional layer along the

x-axis into i zones at perform max pooling at each zone.

This is repeated for 5 pyramid levels (i = 1, . . . , 5) from

fine to coarse level. 2) Zoning: use only the finer level

of TPP (5th level, i.e. 5 zones), discarding the pyramidal

scheme.

We trained a network for each combination of the

aforementioned scenarios and the KWS evaluation results

are summarized on Figure 1. Two main observations are

derived: 1) Changing the aspect ratio of an image does

not affect the result. The seemingly preferable choice of

keeping the initial image size has no performance impact,

even though it has greater training and inference time

requirements. 2) Pyramidal approach of spatial pooling

has no advantage in performance over a simple zoning

approach. However, TPP generates ×3 more features than

zoning to be fed to the first fully connected layer, which

results to an excessive number of redundant parameters

(over 20 million parameters in our case).

These two observations can notably reduce the time

of the training procedure. The impact on training time

is presented in Table I. It is evident that using fixed-sized

images along with zoning drastically reduces training time.

For each spatial pooling scenario, we also report the

evolution of MAP while training the network. These

results are depicted in Figure 2 for both TPP and zoning

scenarios. Both figures share a similar behavior on training

convergence over the different input size cases: resizing

to a fixed-size provides a faster convergence compared to

1http://pytorch.org
2https://github.com/georgeretsi/pytorch-phocnet
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Figure 1. Performance of the trained models while different input size
and spatial pooling strategies are considered.

Table I
TRAINING TIME PER BATCH

approach time (sec)
TPP, initial-size 0.295
TPP, fixed aspect ratio 0.176
TPP, fixed-size 0.064
Zoning, initial-size 0.274
Zoning, fixed aspect ratio 0.163
Zoning, fixed-size 0.051

using the initial images. Furthermore, concerning conver-

gence, we depict the MAP evolution for both spatial pool-

ing strategies assuming fixed-sized images at Figure 3. The

resulting evaluation curves are almost identical, supporting

our claim that a pyramidal structure is redundant.

Up to this point, we have examined the effectiveness of

the different spatial pooling schemes and have claimed that

using fixed-size images does not affect the performance.

However, the spatial pooling layer was introduced in order

to handle images of arbitrary size. Therefore, a follow-up

question should be: is an adaptive spatial pooling layer

necessary when the input images are of the same size?

To answer this question we will compare the performance

of a PHOCNet architecture with zoning layer against a

PHOCNet architecture where the convolutional output is

simply flattened. The second architecture is infeasible on

our GPU due to memory limitations, since the output of

the convolutional part has almost 150, 000 dimensions.

To overcome this problem we add a typical max pooling

layer before the flattening operation. The aforementioned

bare architecture gives 80.48% MAP, whereas using a

zoning scheme gives 84.42% MAP. The difference in

performance is significant, even though the bare network

performs sufficiently well on this task. We speculate that

this difference stems from the fact that using all the

convolutional responses adds distractions, perhaps, unnec-

essarily enlarging the optimization search space. On the

other hand, choosing a single response per filter and zone

seems to suffice to describe the text structure, provided an

adequate deep network.

Augmentation and Class-Balancing
Another important factor for training a deep CNN, such

as PHOCNet, is the strategy of selecting and transforming

the training images in order to be fed into the network.
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Figure 2. Evaluation curves of MAP performance during training under different input size
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Figure 3. Comparison of evaluation curves during training for pyramidal
and zoning schemes.

In the PHOCNet paper [2], there are two distinct choices

regarding the training images: 1) data augmentation by

(small) affine transformations and 2) class-balancing with

respect to the unique word classes. We have trained models

with or without utilizing these two strategies. For this

experiment we assume zoning pooling at the output of

convolution layers and fixed-sized input images. Figure 4

shows the resulting evaluation curves during the training

process.
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Figure 4. Evaluation curves under different training strategies with
respect to affine augmentation and class balancing.

The results indicate that the PHOCNet architecture

performs considerable well, even without any of these

strategies. However, affine augmentation helps the network

to generalize and produces a notable gain of 4% MAP.

This was expected since small affine transformations ap-

pear frequently in text images are thus are a suitable for

augmentation concerning KWS task. On the contrary, the

class-balancing with respect to word classes has no impact

when considering augmented images, while deteriorates

the performance when no augmentation is involved. This

behavior is seemingly surprising, but we should keep in

mind that the network is trained with respect to PHOC

attributes and not word classes.

Table II
MAP EVALUATION ON IAM DATASET

Method MAP(%)

PHOCNet [2] 72.51
Attribute SVM [4] 55.73
Krishnan et al. [3] 84.24
Wilkinson et al. [17] 81.58
Deep PHOCNet features [8] 81.50
PHOCNet-TPP [7] 83.38
PHOC + bare-architecture 80.48
PHOC + zoning 84.42
5-ensemble, feature fusion 86.94
5-ensemble, late fusion 87.48

Using Ensembles of Convnets
We train L = 5 diffent models of the same architecture

starting from different initializations and use them in

order to evaluate two different ensemble strategies: feature
fusion and late fusion.

The evaluation of the ensemble variants are presented

in Table II, along with the evaluation of some baseline

models from this work and the existing state-of-the-art ap-

proaches on IAM dataset. Baseline models PHOC+bare-
architecture and PHOC+zoning are used as an indication

of the capabilities of the PHOCNet architecture. Bare-

architecture corresponds to discarding the spatial pooling

layer and resembles the common CNN architecture. The

PHOC+zoning is already on par with the best performing

network so far [3] and is the network that we use for

the ensemble approaches. The ensemble strategy utilizes
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the generated models and produces results that clearly

outperform all state-of-the-art approaches. Even though

both fusion techniques provide a significant boost in per-

formance, late fusion performs better than feature fusion,

as the former tries to select the best output out of the

five while the latter combines the generated outputs into

a single PHOC estimation.

VII. CONCLUSION AND FUTURE WORK

We have studied a number of important aspects concern-

ing the architecture and training of a class of convnets used

for keyword spotting. The presented experiments help us

draw some insightful conclusions. First, we conclude that

using images of arbitrary size does not have any positive

impact in performance compared to using images of fixed-

size, while fixed-sized images greatly benefit the training

time of the network. We have noted that the pyramidal

pooling version of the spatial pooling layer generates

a highly redundant output. Based on this observation,

we have proposed that spatial pyramidal pooling can be

replaced by a simple zoning pooling strategy, which has

the effect of drastically reducing the number of network

parameters. The zoning pooling approach appears to be

more effective compared to simply flattening the convolu-

tional output.

Concerning network training, we have validated that

augmenting the training set with extra, affine-transformed

versions of the training words improves performance.

Class balancing, in the sense discussed here, has proven

to be ineffective. We can perhaps envisage an improved

version of class balancing as future work. Such a version

of class balancing should ideally take into account the fact

that the network does not learn word classes directly, but

instead learns word attributes.

We have proposed a model where we integrate our con-

clusions on the better architecture and training strategies.

Furthermore, we enrich the propose model by employing

ensemble learning to construct an improved KWS system.

The end model outperforms all existing state-of-the-art

methods, forming a new baseline on the IAM dataset. As

future work, we would like to examine the performance

of more advanced ensemble strategies [9], [14].
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