
NATIONAL KAPODISTRIAN UNIVERSITY OF ATHENS

DOCTORAL THESIS

Scalable Relational Learning for Event
Recognition

Author:

Nikolaos KATZOURIS

Supervisor:

Prof. Panagiotis RONDOGIANNIS

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy in the

National Kapodistrian University of Athens

Department of Informatics and Telecommunications

in collaboration with the

National Centre for Scientific Research “Demokritos”

Institute of Informatics and Telecommunications

THESIS COMMITTEE

February 2017

http://www.uoa.gr/
http://users.iit.demokritos.gr/~nkatz/
http://cgi.di.uoa.gr/~prondo/
http://www.uoa.gr/
http://www.di.uoa.gr/
http://www.demokritos.gr
http://www.iit.demokritos.gr

Abstract

Event recognition systems rely on knowledge bases of event definitions to infer occur-

rences of events in time. Using a logical framework for representing and reasoning about

events has several advantages, including robust temporal reasoning via the incorpora-

tion of action formalisms, such as the Event Calculus, while it offers direct connections

to machine learning, via Inductive Logic Programming (ILP), thus allowing to avoid

the tedious and error-prone task of manual knowledge construction. However, learning

Event Calculus theories is a challenging task, which most ILP systems cannot fully un-

dertake. A few systems that are capable of rising to the task do not scale to large data

volumes, typical of event recognition applications. In this thesis we address the issue of

scalable learning for event recognition with ILP and propose two scalable frameworks

for the automated construction of event definitions in the form of first-order rules in the

Event Calculus. The first of these frameworks is an incremental learner that learns by

progressively revising an initial hypothesis in the face of new evidence that arrives over

time. It is based on an existing state-of-the-art ILP learner capable of learning theories

in the Event Calculus, which however is an “one-shot” system, i.e. it learns whole theo-

ries from the entirety of available training examples, resulting in a typically intractable

search space. The second of our proposed frameworks adapts a standard hill-climbing

ILP search strategy to work in an online fashion, i.e. learning in a single-pass over an

arbitrarily large stream of training examples. We present an experimental evaluation for

both of our proposed frameworks, using large-scale real and synthetic datasets from the

domains of human activity recognition and city transport management.

Acknowledgements

Completing a PhD is, well, hard. It takes devotion and hard work, and demands to get

acquainted with the ways of doing research, which is not always easy. One must learn

to be patient and thorough, since the road from “an idea that might work” to something

that actually does is usually long. Part of the road involves the harder-than-it-seems task

of clearly explaining the idea to people who usually know better, which often requires to

be able to cope with disappointment productively. The people that surround and support

you during the course of a PhD are key to its success. I was fortunate enough to work

with some exceptional researchers and colleagues, who I’d like to thank deeply.

I owe a lot to my supervisors, Prof. Panos Rondogiannis from the university of Athens

and Dr. Giorgos Paliouras from NCSR “Demokritos”. I had the chance to meet Panos

as my teacher during my time at a post-graduate program in logic and computation. I

learned a lot from him back then and I was no stranger to his reputation as a researcher.

So, I am sincere when I say that I was honoured when he accepted me as his PhD student.

He has been there for me ever since, offering his help and support.

I met Giorgos during a period that was not the easiest for me. One of the reasons is

that my current job at the time just didn’t seem enough for me. Giorgos offered me the

chance to do research and work with his team at NCSR “Demokritos”, while he accepted

to co-supervise my PhD, making it all possible financially. That alone is enough for me

to be greatly indebted to him. But Giorgos offered many more reasons for that. It’s hard

to imagine in what way could I have been better guided during the course of this PhD.

Giorgos has been enormously patient in explaining things, listening to poorly conceived

arguments, reading bad versions of “first attempts” and so on. At the same time, and

while he’s always been involved in a million things, he was also always actively involved

in my research, suggesting new ideas and workarounds in a way that cannot stop to

impress me. For his knowledge and his will to pass it on, he has my deep admiration and

respect.

I had the privilege of having my PhD co-supervised by Dr. Alexander Artikis, who is the

head of the complex event recognition group at NCSR “Demokritos”. The completion of

this thesis owes a lot to him. In addition to him offering his deep knowledge of artificial

intelligence, Alex spent countless hours reading and commenting one poorly-written

paper draft after another, and countless more discussing my ideas and suggesting ways

to improve them. His persistence in not letting go of attempts that I myself considered

as failed is one reason why these attempts finally worked, and a valuable lesson on how

to get things done.

During the course of this PhD, I worked at the Software and Knowledge Engineering

lab (SKEL), at NCSR “Demokritos”. It’s a vibrant place with lots of people working

on interesting stuff, which is motivating in its own right. During my time there, I had

the privilege of working in several research projects, which, in addition to getting my

PhD funded, has been a great opportunity to get familiarized with interesting ideas and

difficult problems. I am deeply grateful to SKEL for giving me this chance and to all the

people I worked with. I have some special thanks for my closer colleagues from SKEL’s

complex event recognition group. Tasos Skarlatidis has been influential in our team, and

although he’s no longer part of it, he has set some “tech standards”. It’s hard to be both a

good researcher and a good software engineer, and Tasos is, which is somewhat inspiring.

Although Elias Alevizos and Vagelis Micheloudakis did not have, strictly speaking, any

immediate involvement in the completion of this thesis, they deserve a special credit

for making our group worth of wanting to be part of it. Moreover, these guys are really

funny.

I am too lucky to have the parents that I do, Ανδρέας and Αλεξάνδρα. I don’t think that

there is room here (or anywhere, for that matter), for even beginning to explain how

much I owe to them. It only seems natural to dedicate this thesis to them (but especially

my mom, she has been more consistent in asking “how’s that PhD going?”)

I am also lucky enough to have great friends. Some of them know from their own

experience what’s it like to go through a PhD and have offered their advice. All of them

have been amazingly supportive in the best way your friends can do that: Being there,

along with the beer.

Last but not least, I am deeply grateful to Nefeli, who I met shortly after the beginning of

my PhD work, and who has been here since, with endless affection and patience. She’s

an artistic spirit, she likes to hand-craft things and she’s lots of fun. So, she re-assured

me early on, that if I proved totally worthless for research, she would make me my own

Turing award and even throw a party for it. It’s been tempting...

Nikos Katzouris

Athens, February 2017

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures ix

List of Tables xi

1 Introduction 17

1.1 Complex Event Recognition . 17

1.2 Motivation of this Thesis . 19

1.3 Thesis Contribution . 21

1.3.1 Incremental Learning of Event Definitions 21

1.3.2 Online Learning of Event Definitions 22

1.3.3 Publications . 23

1.4 Thesis Outline . 24

2 Background 25

2.1 Logic Programming Basics . 25

2.2 The Event Calculus . 26

2.2.1 Domain-independent Axioms . 27

2.2.2 Domain-specific Axioms: An activity recognition use-case 28

2.2.3 Other Action Formalisms . 30

vi Contents

2.3 Inductive Logic Programming . 30

2.3.1 The Learning Setting . 30

2.3.2 The Hypothesis Space . 32

2.4 Learning Programs in the Event Calculus 35

2.4.1 Non-Observational Predicate Learning 35

2.4.2 Problems with Negation as Failure 37

2.4.3 The XHAIL system . 39

2.5 Related Work . 43

2.5.1 Related ILP Systems . 43

2.5.2 Logical Learning in Temporal Domains 46

2.6 Summary . 50

3 ILED: Incremental Learning of Event Definitions 53

3.1 Theory Revision and Incremental Learning 54

3.2 The ILED System . 55

3.2.1 Support Set . 58

3.2.2 Implementing Revisions . 65

3.3 Discussion and Related Work . 68

4 Experimental Evaluation for ILED 73

4.1 Activity Recognition . 73

4.1.1 ILED vs XHAIL . 74

4.1.2 ILED Scalability . 75

4.2 City Transport Management . 76

4.2.1 ILED vs XHAIL . 78

4.2.2 Learning With Hierarchical Bias . 79

4.3 Summary . 81

5 OLED: Online Learning of Event Definitions 83

5.1 Learning from Data Streams . 84

5.1.1 Learning From Data Streams . 84

5.2 Online Inductive Logic Programming . 86

5.3 Online Learning of Event Calculus Theories 87

Contents vii

5.3.1 Evaluating Clauses . 87

5.3.2 The OLED system . 90

5.4 Discussion and Related Work . 95

6 Experimental Evaluation for OLED 97

6.1 Comparison with Manually Constructed Rules and Batch Learning 97

6.2 Activity Recognition on the Entire CAVIAR Dataset 99

6.3 Comparison with an Incremental Learner 99

6.4 Scalability . 100

6.5 Summary . 101

7 Conclusions and Future Work 103

7.1 Conclusions . 103

7.2 Future Work . 105

Bibliography 107

List of Figures

1.1 An illustration of the event recognition process. 18

3.1 Revision of a hypothesis Hn in response to a new example window wn . . 57

4.1 Average times needed for ILED to revise an initial hypothesis in the face of new

evidence presented in windows of size 10, 50 and 100 examples. The initial

hypothesis was obtained from a training set of varying size (1K, 10K, 50K and

100K examples) which subsequently served as the historical memory. 76

4.2 City Transport Management partial event hierarchy (we omit the whole

hierarchy to save space). Additional high-level events, not presented here

are noise level, vehicle temperature, and passenger density, which depend

on corresponding low-level events and affect driving quality. 78

5.1 Illustration of OLED’s learning process. 91

5.2 Generation of a new clause r and its specializations in ρ1(r). 92

6.1 OLED’s mean processing time and mean ground program size per training inter-

pretation, for varying interpretation sizes. 101

List of Tables

2.1 The basic predicates and domain-independent axioms of the SDEC dialect. . . . 27

2.2 An annotated stream of low-level events . 28

2.3 Two domain-specific axioms for the domain of activity recognition 29

2.4 A set of mode declarations for the domain of activity recognition. 33

2.5 Hypothesis generation by XHAIL for Example 2.5. 40

3.1 Knowledge for Example 3.1 . 62

3.2 Syntactic transformations performed by ILED. 66

3.3 Clause refinement by ILED. 67

4.1 Comparison of ILED and XHAIL. G is the window granularity. 75

4.2 Comparative performance of ILED and XHAIL on selected subsets of the CTM

dataset each containing 20 examples. G is the granularity of the windows. . . . 79

4.3 ILED with hierarchical bias. 80

5.1 Action dispatching scheme for OLED’s initiatedAt (Linit) and terminatedAt (Lterm)

parallel processes. 90

6.1 Experimental results for OLED from the CAVIAR dataset 98

1 | Introduction

At an increasing rate, information systems need to deal with massive data flows that

stream-in from a multitude of sources. Daily activities in business and industry are

being automated, probes and sensors are being deployed on infrastructures and physical

devices, large data volumes are being produced by virtual agents in enterprise software

systems, while an overwhelming amount of information is being exchanged on the web,

as various aspects of people’s daily lives are moving online. Most of these data are time-

stamped, conveying information about events. To make sense of these data, the assistance

of automated tools is required, and complex event processing, as a set of methodologies

and techniques for computing with events [Etzion and Niblett, 2010], comes to the

rescue.

1.1 Complex Event Recognition

Complex Event recognition, or “event pattern-matching” [Luckham, 2001], is a sub-field of

complex event processing that seeks to detect interesting event patterns in temporal data.

This allows to analyze and extract insights from the data, provide reactive measures in a

timely fashion, assist human operators in decision making and so on. Examples include

the detection of computer network attacks [Dousson and Le Maigat, 2007], recognition

of human activity from videos [Brendel et al., 2011], emerging stories and trends on the

web and social networks1, traffic and transport management [Artikis et al., 2015b], fraud

detection in online transactions [Schultz-Møller et al., 2009], medical applications, such

as recognition of cardiac arrhythmias [Callens et al., 2008a], epidemic spread [Chaudet,

2006], business process management [Janiesch et al., 2011], maritime surveillance

[Patroumpas et al., 2015], assisted living [Storf et al., 2009], the Internet-of-Things

[Wang et al., 2013] and so on.

An event is a time-stamped piece of information that represents an occurrence within a

system or domain of interest [Etzion and Niblett, 2010]. For instance, an event may be a

sensor reading, a video frame, an online activity (e.g. a tweet), a financial transaction, a
1https://www.recordedfuture.com/

https://www.recordedfuture.com/

18 Introduction

INPUT I RECOGNITION I OUTPUT �

Event
Recognition

System

CE Definitions

Streams of SDEs

.

.

Recognised CEs

.

.

FIGURE 1.1: An illustration of the event recognition process.

GPS signal etc. It may also be a piece of information resulting from some computational

process, e.g. a statement representing the fact that a person is walking towards some

direction at a particular time, resulting by feeding the person’s (x, y) coordinates and her

speed over a period of time to an activity classification model; or a statement saying that

a credit card transaction is fraudulent, resulting by matching some of the transaction’s

attributes against a fraud pattern.

An event may be correlated with other events that tend to occur together, or in close

temporal proximity. For instance, in a traffic management application, a traffic congestion
event may be related to a slow average car speed event, which in turn results by aver-

aging raw sensor data over a period of time. Such correlations between events may be

expressed in rule-like patterns of the form “if a slow average car speed event occurs, then

a traffic conjunction event occurs”. An event may occur instantaneously, or it may be

durative. For instance, a fraudulent credit card transaction event occurs instantaneously,

while once a traffic congestion event occurs, it persists for a period of time, until some

other event that signifies the resolution of the congestion occurs. Additionally, events

often involve relations between entities. Consider for instance the event “person1 and
person2 are walking together at a particular time” in the context of an activity recognition

application, which involves two different entities (person1 and person2).

Figure 1.1 illustrates the event recognition process. The input to an event recognition

system consists of a stream of low-level, or simple events. These are event “primitives”,

meaning that, in a particular application, their occurrence is assumed not to depend

on other events. A knowledge base of event patterns defines high-level, or complex
events of interest, as combinations of simple events, other complex events and potentially

additional domain-specific knowledge. At the core of the system lies a reasoning engine

that matches the input stream against the event patterns in the knowledge base to

recognize complex events. The stream of recognized complex events is passed to the

output of the system for further processing.

Introduction 19

1.2 Motivation of this Thesis

Event recognition systems may be divided into three broad categories, based on the

different processing mechanisms and event pattern specification languages they use

Cugola and Margara [2012]. The first category descents from database theory and

consists of systems that operate by executing so-called “standing queries”, i.e. queries

that run constantly and provide updated answers as new data arrives. Event pattern

specification languages for this category are extensions of SQL for preforming relational

algebra operations on data streams, like selections, aggregates, joins and so on. A well-

known, open-source representative of this category is the ESPER2 system. The second

category comprises rule-based systems, where event patterns are sets of rules that fire

when their preconditions are satisfied by the incoming events. Most rule-based systems

use ad-hoc languages for event pattern specification. Examples of such systems are AMIT
[Adi and Etzion, 2004] and DROOLS3. Finally, the third category of event recognition

systems consists of logical approaches. Systems in this category use a first-order logical

formalism to represent event patterns and rely on logical inference to perform event

recognition. Some examples of systems in this category are ETALIS [Anicic et al., 2012],

RTEC [Artikis et al., 2015b] and SAGE [Broda et al., 2009]. Overviews on systems of

all three categories may be found in [Cugola and Margara, 2010, 2012; Paschke, 2006;

Paschke and Kozlenkov, 2009].

Logic-based systems have a number of significant advantages over the non-logic-based

ones [Artikis et al., 2010a, 2015b, 2012; Paschke, 2006; Paschke and Kozlenkov, 2009].

In many real-life applications, temporal reasoning and event recognition require model-

ing the effects of event occurrences on several properties of a time-evolving system, as

well as the duration of such effects. This is a well-studied problem in the field of artificial

intelligence and several temporal logical formalisms exist, designed precisely for that task,

such as the Event Calculus [Kowalski and Sergot, 1986b]. Such formalisms may be easily

incorporated in logic-based event recognition systems, in contrast to non-logic-based

systems.

Additionally, logic-based systems exhibit a formal, declarative semantics. In contrast,

non-logic based event recognition systems typically have an informal, procedural seman-

tics [Cugola and Margara, 2010; Eckert and Bry, 2010; Paschke, 2006; Paschke and

Kozlenkov, 2009]. As pointed-out in [Paschke, 2006; Paschke and Kozlenkov, 2009],

this is a serious omission in many real-life applications, where it is crucial to be able to

trace and validate several aspects of the event recognition process, such as the effects of

occurring events. Moreover, logic-based event recognition systems allow to represent and

reason with complex relations between entities and utilize rich background knowledge,

contrary to non-logic-based systems.
2http://www.espertech.com/esper/
3http://www.drools.org/

http://www.espertech.com/esper/
http://www.drools.org/

20 Introduction

An additional important advantage of logic-based systems is that they offer direct con-

nections to machine learning. Typically in an event recognition system, the event specifi-

cation patterns are manually authored by human domain experts. This is an expensive,

time consuming and error prone task [Artikis et al., 2010a], and a limiting factor for the

diffusion of event recognition systems [Margara et al., 2014]. To alleviate the problem,

machine learning techniques may be used to automatically construct event patterns from

data. The field of Inductive Logic Programming (ILP) [De Raedt, 2008; Lavrač and

Džeroski, 1993; Muggleton and De Raedt, 1994; Nienhuys-Cheng and De Wolf, 1997]

lies at the intersection of machine learning and logic programming and provides tools

and algorithms for learning logical theories from relational data. With ILP, expressive

relational event specification patterns in the form of first-order rules may be generated

in an automated way and used directly for reasoning in a logic-based event recognition

system.

In contrast, learning event patterns from data in non-logic based event recognition

approaches is still hard, due to the fact that such approaches use diverse and ad-hoc

reasoning tools and event pattern specification languages. A few approaches have been

proposed [Margara et al., 2014, 2013], but they themselves resort to ad-hoc machine

learning algorithms. Such algorithms are hard to evaluate outside their domain of use.

The Event Calculus has been used for event recognition in the past [Cervesato and

Montanari, 2000; Chittaro and Dojat, 1997; Paschke, 2006; Paschke and Bichler, 2008;

Paschke et al., 2010]. A downside of such approaches is that they are considered less

efficient than the non-logic-based ones [Artikis et al., 2015b]. This is the case with most

logic-based event recognition systems, but not with RTEC (Run Time Event Calculus)

[Artikis et al., 2015b], a recent Event Calculus-based system for event recognition. RTEC
uses reasoning over time intervals and various optimization techniques for efficient event

recognition and is able to scale to large data volumes. Moreover, it has been evaluated in

a number of challenging large-scale applications [Artikis et al., 2015b, 2014; Patroumpas

et al., 2016, 2015].

However, learning Event Calculus theories with ILP remains a challenging task [Katzouris

et al., 2015; Ray, 2009a] that only very few ILP systems can fully undertake [Corapi et al.,

2012; Ray, 2009a]. These systems though, are only able to learn from small datasets

and do not scale to the volumes of data collected in event recognition applications.

This is the problem that we address in this thesis: The development of scalable algorithms

for learning domain-specific event patterns in the form of Event Calculus theories, from

large volumes of temporal data. Throughout the thesis we use machinery based on logic

programming, where rules (clauses, in a logic programming context) are definitions for

first-order predicates. Therefore, we henceforth refer to event specification patterns as

event definitions.

Introduction 21

1.3 Thesis Contribution

In the remainder of this thesis, we present two scalable machine learning approaches for

the automated construction of event definitions in the form of Event Calculus theories.

Moreover we present experimental evaluation of various aspects of these approaches on

real and synthetic datasets. The specific contribution of the thesis is summarized below.

1.3.1 Incremental Learning of Event Definitions

Learning Event Calculus theories in the form of logic programs imposes two main chal-

lenges: (a) it requires learning in a non-monotonic setting, due to the Negation as Failure

operator [Clark, 1977] that it uses as a means for modeling inertia, i.e. persistence of

properties of the world through time [Mueller, 2014]; and (b) it requires to derive possi-

ble causes of observed events at learning time [Moyle and Muggleton, 1997]. Traditional

Inductive Logic Programming systems cannot rise to these challenges, since they are

either restricted to Horn logic, or they lack a robust Negation as Failure semantics [Ray,

2009a; Sakama, 2000], and their abilities to reason with missing, or indirectly observable

knowledge are limited [Muggleton, 1995a].

Non-monotonic Inductive Logic Programming offers a solution to both (a) and (b) above,

by utilizing Abductive Logic Programming (ALP) [Denecker and Kakas, 2002; Kakas

et al., 1993; Kakas and Mancarella, 1990]. Abduction in logic programming is given a

non-monotonic semantics [Eshghi and Kowalski, 1989] and in addition, it is by nature

an appropriate framework for reasoning with incomplete knowledge. A number of such

non-monotonic Abductive-Inductive Logic Programming systems exists, that are able to

learn theories in the Event Calculus [Corapi et al., 2010; Ray, 2009a].

However, in a non-monotonic setting, a theory cannot be learnt one clause at a time,

as is common in traditional Inductive Logic Programming approaches, since adding

new clauses to a theory may invalidate previously constructed ones. As a result, the

aforementioned non-monotonic learners are forced to learn the entire theory in one shot,

using all training examples simultaneously. This results in an intractable search space,

even with relatively small amounts of data.

In this thesis we address this issue, by building upon one such non-monotonic learner,

XHAIL[Ray, 2009a], and proposing a methodology for scaling-up its core functionality to

large data volumes, via an incremental learning approach. In more detail, our proposed

system, ILED (Incremental Learning of Event Definitions) [Katzouris et al., 2015] has

the following features:

• It is designed to work with training examples that arrive over time, by revising

previously constructed hypotheses to fit new observations. This is a particularly

22 Introduction

suitable setting for event-oriented learning tasks, where data are often collected

at different times and under various circumstances, or they arrive in streams. On

such occasions, batch learning systems have no alternative but discarding past hy-

potheses and learning from scratch, which is a bottleneck for scalability, especially

in cases where the data arrive with high velocity.

• ILED revises a hypothesis so that it accounts for the entirety of accumulated experi-

ence, in addition to incoming observations. Moreover, it does so with a single pass
over the past data, while ensuring the soundness of the outcome.

• In the case where the entire dataset is in place when learning begins, ILED scales-

up the XHAIL methodology by splitting the dataset into data chunks and learning

from each chunk separately, in a sequential fashion, thus “simulating” the incre-

mental setting described above. Given a dataset D of size k, XHAIL would learn a

hypothesis in one shot, form the entirety of k examples. The search space for this

task is typically huge, due to increased combinatorial complexity, even for small

values of k. In contrast, ILED splits D into n data chunks, each consisting of m

training examples, and learns a sound hypothesis by operating on it at most twice,

therefore, with no more than 2n operations in the worst case. Moreover, the unit

cost of operating on the revisable hypothesis w.r.t. a single chunk depends on the

chunk size m, and it may be kept low, by partitioning D into sufficiently small data

chunks. Therefore, ILED may scale to datasets of arbitrary size, while ensuring the

soundness of the learnt theory. The price to pay for this scalability is that ILED
learns slightly larger, more complex theories than XHAIL.

1.3.2 Online Learning of Event Definitions

Learning sound hypotheses, as ILED does, is desirable, however it is often of low prac-

tical value. Most of the time, real-life data contain noise and the induction of sound

hypotheses from such data is not possible. In such cases it is preffered to relax the re-

quirement for soundness and learn a less-than-perfect model with an adequate fit in the

data, rather than nothing at all. Additionally, preserving a full memory of past experience

and requiring “backward compatibility” from a model that is constantly updated in the

face of new evidence, as ILED does, is also often impractical. In many event-related

applications, data arrive at a high velocity, in continuous, potentially infinite streams,

which are impossible to store for offline analysis. Methods that extract insights from such

streams need to be capable of fast processing of new data and building a decision model

by a single pass over the training data [Gama, 2010; Gama and Gaber, 2007].

To address these issues, we present OLED (Online Learning of Event Definitions) [Kat-

zouris et al., 2016], a method that learns event definitions in the form of Event Calculus

theories in an online fashion, with a single pass over a data stream. To do so, we utilize

a methodology widely used in stream mining, based on so-called (ε, δ)-approximations

Introduction 23

[Gaber et al., 2014]. Learning algorithms based on this methodology use statistical tools

to make decisions that are optimal within an error margin ε and with some probability

1−δ, where δ is a user-defined parameter. This allows for making decisions using limited

resources, in our case, a limited amount of data from the training stream. In more detail,

OLED has the following features:

• OLED is capable of handling noisy data by learning imperfect theories that account

for most of the positive examples, as well as some of the negatives.

• It adapts a standard Inductive Logic Programming clause learning technique based

on hill-climbing, to work in an online fashion. OLED learns gradually specializes

an over-general clause by evaluating its candidate specializations, much like the

well-known FOIL [Quinlan, 1990a] Inductive Logic Programming system does.

However, instead of evaluating the candidate specializations on the entire training

set, which is practically infeasible, OLED relies on the Hoeffding bound [Hoeffding,

1963] to find specializations that are only (ε, δ)-optimal, using a limited amount of

training data.

• Using this online hill-climbing technique requires to learn each clause indepen-

dently. This is hard to do in the case of Event Calculus theories, because candidate

clauses depend on each other via the core axioms of the Event Calculus. To address

this issue, OLED uses a technique that allows to evaluate clauses in isolation, based

on a scoring function that takes into account the potential utility of each clause in

a theory that results by joining these clauses together.

1.3.3 Publications

Parts of this thesis have been published in the following papers.

Journal publications:

• Katzouris N., Artikis, A. and Paliouras, G. (2016) “Online learning of event defini-

tions”, Theory and Practice of Logic Programming, 16(5-6), pp. 817-833.

• Katzouris N., Artikis A., Paliouras G. (2015) “Incremental Learning of Event Def-

initions with Inductive Logic Programming”. Machine Learning, 100(2-3), pp.

555-585.

Conference publications:

• Patroumpas K., Artikis A., Katzouris N., Vodas M., Theodoridis Y., and Pelekis N.

(2015) “Event Recognition for Maritime Surveillance”, International Conference on
Extending Database Technology (EDBT) pp. 629-640.

24 Introduction

• Billis A., Katzouris N., Artikis A. and Bamidis P. (2015), “Clinical Decision Support

for Active and Healthy Ageing: an intelligent monitoring approach of daily living

activities”. Portuguese Conference on Artificial Intelligence, pp. 128-133.

• Katzouris N., Artikis A. and Paliouras G. (2014) “Event Recognition for Unobtrusive

Assisted Living”, Hellenic Conference on Artificial Intelligence, pp. 475-488.

Workshop publications:

• Katzouris N., Artikis A. and Paliouras G. (2015) “Semi-Supervised Learning of

Event Calculus Theories”, Proceedings of the ECML-2015 Doctoral Consortium.

1.4 Thesis Outline

The remainder of this thesis is structured as follows: In chapter 2 we present the basics

of the Event Calculus and Inductive Logic Programming. We also discuss in detail the

difficulties of learning Event Calculus theories with Inductive Logic Programming and

present XHAIL, as well as a number of related abductive-inductive learners. We also

discuss related work on learning from temporal data with Inductive Logic Programming.

In Chapter 3 we present the basics of theory revision in Inductive Logic Programming and

we then discuss ILED in detail, while in Chapter 4 we present an experimental evaluation

for ILED. In Chapter 5 we present the OLED system, after some basic background

on learning from data streams, while in Chapter 6 we present OLED’s experimental

evaluation. Finally, in Chapter 7 we indicate directions for future work and conclude.

2 | Background

This chapter provides some necessary background material for the thesis. We begin with

basic notions from logic programming in the subsequent paragraphs. We then review the

Event Calculus formalism and the fundamentals of Inductive Logic Programming, using

a running example of the learning problem we address, which is used frequently in the

remainder of the thesis. The chapter concludes with a review of related work.

2.1 Logic Programming Basics

In what follows, we assume a first-order language where constants, variables, predicate/-

function symbols and terms are defined in the regular way [Lloyd, 1987]. Following

Prolog’s convention, throughout this thesis predicates and ground (variable-free) terms

in logical formulae start with a lower case letter, while variable terms start with a capital

letter. An atom is an expression of the form p(t1, . . . , tn), where t1, . . . , tn are terms, and a

literal is either an atom or a negated atom, i.e. an expression of the form not p(t1, . . . , tn),

where not denotes Negation as Failure [Clark, 1978]. A clause is an expression of the

form α← δ1, . . . , δn, where α is an atom, called the head of the clause and δ1, . . . , δn are

literals, which collectively form the body of the clause. Commas in clause bodies denote

conjunction, therefore the expression α ← δ1, . . . , δn is equivalent to α ← δ1 ∧ . . . ∧ δn,

and when readability requires it we use the latter notation. We use lower-case Greek

letters to denote clause literals and lower-case Latin letters to refer to clauses, as in “let

r be the clause α← δ1, . . . , δn”.

A normal logic program is a collection of clauses. A Horn logic program is a collection of

definite clauses, i.e. clauses whose body contains non-negated literals only. The terms

“logic program” and “theory” are used interchangeably in what follows. A unit clause
is a clause with an empty body, denoted by α ←, which is shorthand for α ← true.

An integrity constraint is a clause with an empty head, denoted by ← δ1, . . . , δn, which

is shorthand for false ← δ1, . . . , δn. We use capital-case Latin letters to denote logic

programs.

26 Background

Although different semantics is possible, in this work we assume that all logic programs

are subject to the stable model semantics for logic programs with Negation as Failure

[Baral, 2003; Gebser et al., 2012; Gelfond, 2008; Gelfond and Lifschitz, 1988]. Given

a logic program P , a Herbrand interpretation I is a subset of the set of all possible

groundings of P . I satisfies a literal a (resp. not a) iff a ∈ I (resp. a /∈ I). I satisfies

a set of ground atoms iff it satisfies each one of them and it satisfies a ground clause

iff it satisfies the head, or does not satisfy at least one body literal. I is a Herbrand
model of P iff it satisfies every ground instance of every clause in P and it is a minimal
Herbrand model iff no strict subset of I is a model of P . I is a stable model of P iff it is

a minimal Herbrand model of the Horn program that results from the ground instances

of P after the removal of all clauses with a negated literal not satisfied by I, and all

negative literals from the remaining clauses. Each Horn logic program has a unique

minimal Herbrand model, which coincides with its stable model. In contrast, a normal

logic program may have no, or more that one stable models. There are two primal

alternatives for the logical entailment relation under the stable model semantics. In

the cautious (resp. brave) version, a program P1 logically entails a program P2 (den.

P1 � P2) iff every (resp. at least one) stable model of P1 satisfies P2. Unless otherwise

stated, in this thesis the cautious version of entailment is adopted.

2.2 The Event Calculus

The Event Calculus [Kowalski and Sergot, 1986a] is a first-order temporal logic for rea-

soning about events and their effects, which has been successfully used in numerous

event recognition applications [Artikis et al., 2015a; Cervesato and Montanari, 2000;

Chaudet, 2006; Katzouris et al., 2014; Paschke, 2005; Patroumpas et al., 2015]. Several

dialects of the Event Calculus have been proposed over the years, either in logic pro-

gramming or in full first-order logic – see [Miller and Shanahan, 2002; Mueller, 2008,

2014] for a review. Most of these dialects share an ontology consisting of time points,
fluents and events, along with a set of domain-independent axioms. Time points are simply

integers or real numbers; Fluents are properties which have certain values in time; and

events are occurrences in time that may affect fluents and alter their value. The set of

domain-independent axioms model the common sense law of inertia, according to which

fluents persist over time, unless they are affected by the occurrence of an event. Typically,

an Event Calculus program contains additionally a set of domain-specific axioms, which

specify how events effect fluents. We next discuss the domain independent/specific

axiomatization of the Event Calculus in further detail.

Background 27

Predicate Meaning

happensAt(E, T) Event E occurs at time T

initiatedAt(F, T) At time T a period of time
for which fluent F holds is initiated

terminatedAt(F, T) At time T a period of time
for which fluent F holds is terminated

holdsAt(F, T) Fluent F holds at time T

Axioms

holdsAt(F, T + 1)←
initiatedAt(F, T).

holdsAt(F, T + 1)←
holdsAt(F, T),
not terminatedAt(F, T).

TABLE 2.1: The basic predicates and domain-independent axioms of the SDEC dialect.

2.2.1 Domain-independent Axioms

We assume a linear time model, where time points range over the set of integers. The

complete formulation of the Event Calculus may be found in [Mueller, 2008, 2014], but

its presentation is beyond the scope of this thesis, we thus omit it. Instead, we focus on

the particular dialect that we employ in this work, whose expressive power suffices for

most event recognition tasks [Artikis et al., 2015a]. This dialect is a simplified version

of the Discrete Event Calculus DEC1. It can be shown that the DEC dialect is logically

equivalent to the complete Event Calculus when time ranges over the set of integers

[Mueller, 2008].

The building blocks of our dialect, which we call SDEC (Simplified Discrete Event Calcu-

lus) and its domain-independent axioms are presented in Table 2.1. The first axiom in

Table 2.1 states that a fluent F holds at time T if it has been initiated at the previous time

point, while the second axiom states that F continues to hold unless it is terminated.

The basic difference between SDEC and DEC is that the latter contains some additional

axioms that involve four more predicates: releases and releasedAt, which are domain-

specific predicates and are used to specify the conditions under which the law of inertia

for a fluent is disabled; and the trajectory and antiTrajectory predicates, that are used

to model the change of a fluent, based on the effects of some domain-specific function,

e.g. the height of a falling ball [Mueller, 2014]. We omit the axioms that define the

releases, releasedAt, trajectory and antiTrajectory predicates and refer to [Mueller, 2014]

for further details. By removing these axioms from DEC (thus obtaining the SDEC
dialect), we assume that all fluents are always subject to inertia and we do not allow

1An open-source implementation of the Discrete Event Calculus is available in http://decreasoner.
sourceforge.net

http://decreasoner.sourceforge.net
http://decreasoner.sourceforge.net

28 Background

Narrative Annotation

......
happensAt(inactive(id1), 999) not holdsAt(moving(id1, id2), 999)
happensAt(active(id2), 999)
holdsAt(coords(id1, 201, 432), 999)
holdsAt(coords(id2, 230, 460), 999)
holdsAt(direction(id1, 270), 999)
holdsAt(direction(id2, 270), 999)

happensAt(walking(id1), 1000) not holdsAt(moving(id1, id2), 1000)
happensAt(walking(id2), 1000)
holdsAt(coords(id1, 201, 454), 1000)
holdsAt(coords(id2, 230, 440), 1000)
holdsAt(direction(id1, 270), 1000)
holdsAt(direction(id2, 270), 1000)

happensAt(walking(id1), 1001) holdsAt(moving(id1, id2), 1001)
happensAt(walking(id2), 1001)
holdsAt(coords(id1, 201, 454), 1001)
holdsAt(coords(id2, 227, 440), 1001)
holdsAt(direction(id1, 275), 1001)
holdsAt(direction(id2, 278), 1001)
......

TABLE 2.2: An annotated stream of low-level events

representing and reasoning about discrete change of fluents, under the effects of domain-

specific functions. These simplifications improve significantly the efficiency of the SDEC
reasoning engine, while they do not compromise the expressive power of the SDEC
formalism, as far as event recognition applications are concerned [Artikis et al., 2015a].

In what follows and unless otherwise stated, by “Event Calculus” we refer to the SDEC
dialect.

2.2.2 Domain-specific Axioms: An activity recognition use-case

initiatedAt/2 and terminatedAt/2 predicates in the axioms of Table 2.1 are defined in

an application-specific manner by a set of domain-specific axioms that specify the way in

which the occurrence of events affects fluents by changing their truth value. To illustrate

the domain-specific axiomatization of the Event Calculus, we use the task of activity

recognition, as defined in the CAVIAR2 project. The same task is used frequently as a

running example in the remainder of this thesis.

The CAVIAR dataset consists of videos of a public space, where actors walk around,

meet each other, browse information displays, fight and so on. These videos have been

manually annotated by the CAVIAR team to provide the ground truth for two types

of activity. The first type corresponds to low-level events, that is, knowledge about a

person’s activities at a certain time point (for instance walking, running, standing still and
2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

Background 29

initiatedAt(moving(X,Y), T)← terminatedAt(moving(X,Y), T)←
happensAt(walking(X),T), happensAt(inactive(X),T),
happensAt(walking(Y),T), not holdsAt(close(X ,Y , 30),T).
holdsAt(close(X ,Y , 25),T),
holdsAt(orientation(X ,Y , 45),T)

TABLE 2.3: Two domain-specific axioms for the domain of activity recognition

so on). The second type corresponds to high-level events, activities that involve more

than one person, for instance two people moving together, fighting, meeting and so on.

The aim is to recognize high-level events by means of combinations of low-level events

and some additional domain knowledge, such as a person’s position and direction at a

certain time point.

Low-level events are represented in SDEC by streams of ground happensAt/2 atoms

(see Table 2.2), while high-level events and other domain knowledge are represented

by ground holdsAt/2 atoms. Streams of low-level events together with domain-specific

knowledge will henceforth constitute the narrative, while knowledge about high-level

events is the annotation. Table 2.2 presents an annotated stream of low-level events. We

can see for instance that the person id1 is inactive at time 999, her (x, y) coordinates

are (201, 432) and her direction is 270◦. The annotation for the same time point informs

us that id1 and id2 are not moving together. Fluents are used to express both high-level

events and narrative knowledge, such as the coordinates of a person. We discriminate

between inertial and statically defined fluents. High-level events are of the former type,

and they should be inferred by the Event Calculus axioms, while parts of the narrative

expressed by means of fluents are of the latter type and are provided with the input. For

instance holdsAt(moving(id1 , id2), 100) is an inertial fluent (since it represents a high-

level event), while holdsAt(close(id1 , id2 , 25), 100) is a statically defined fluent, since it

is part of the narrative.

A set of domain-specific axioms in the Event Calculus is a set of clauses that define

conditions under which fluents are initiated or terminated. As an example, consider the

two clauses in Table 2.3. The first clause dictates that moving of two persons X and Y

is initiated at time T if both X and Y are walking at time T , their euclidean distance is

less than 25 and their difference in direction is less than 45◦. The second clause dictates

that moving of X and Y is terminated at time T if one of them is standing still at time T

(exhibits an inactive behavior) and their euclidean distance at T is greater that 30.

A set of domain-specific axioms, i.e. definitions for initiatedAt/2 and terminatedAt/2

predicates, specify how the occurrence of simple events affects the truth values of fluents

that represent complex events, by initiating or terminating them. In what follows we use

the terms “domain-specific axioms” and “(complex) event definitions” interchangeably.

30 Background

2.2.3 Other Action Formalisms

In addition to the Event Calculus, various action formalisms, i.e. formal frameworks

for reasoning about time and change have been proposed within the field of artificial

intelligence. Prominent examples include the Situation Calculus [McCarthy, 2002], the

Fluent Calculus [Thielscher, 1999], action language C+ [Akman et al., 2004; Giunchiglia

et al., 2004] and Temporal Action Logics [Doherty et al., 1998].

The ontologies of all action formalisms rely on two basic sorts of entities: Events (or

actions) Kowalski and Sergot [1986b]; McCarthy [2002], which are instantaneous occur-

rences; and fluents (or features) [Sandewall, 1992], properties that are used to describe

the state of the world and are inert, i.e. they persist in time unless they are affected by

an event. An important difference between action formalisms however, is the representa-

tion of time. The Situation Calculus and the Fluent Calculus allow for different possible

futures by using a multiple time-line model, where each point in time has a single prede-

cessor point, but it may have multiple successor points. Also events are atemporal and

sequential: A point in time is a situation, the result of a particular sequence of events. In

contrast, the Event Calculus, C+ and Temporal Action Logics, assume a single time-line

on which events occur. For the purposes of event recognition, a single time-line model is

preferred, since it allows to express temporal constraints between events.

2.3 Inductive Logic Programming

Given a domain description in the language of SDEC, the aim of machine learning ad-

dressed in this thesis is to derive as set of domain-specific axioms that provide definitions

for the complex events in the domain, in terms of their initiation and termination condi-

tions. To this end, we use Inductive Logic Programming (ILP) [De Raedt, 2008; Lavrač

and Džeroski, 1993; Muggleton and De Raedt, 1994; Nienhuys-Cheng and De Wolf,

1997], a sub-field of machine learning, where the goal is to induce definitions for some

target predicates, given positive and negative examples of these predicates. In this sec-

tion, we present the basics of ILP and outline the main challenges involved in using ILP

for learning theories in the Event Calculus.

2.3.1 The Learning Setting

An ILP task is a triplet ILP 〈B,E,M〉 where B is a normal logic program called back-

ground knowledge, M is some language bias, i.e. a set of directives of some form, that

specify the structure of target clauses and E = E+ ∪ E− is a set of positive (E+) and

negative (E−) examples for the target predicates, i.e. the predicates whose definitions

we wish to learn. Typically in ILP, positive examples are assumed to be encoded by a set

Background 31

of logical facts (ground unit clauses), while negative examples are either given explic-

itly by a different set of logical facts, or they are obtained implicitly from the positive

examples, by assuming a closed world (i.e. any instance of a target predicate that is not

contained in the positive examples is considered a negative one).

Given an ILP task ILP 〈B,E,M〉, the goal is to derive an inductive hypothesis H, i.e. a

non-ground normal logic program H in the language defined by M , such that B ∪ H
covers (den. cov(B ∪H ,E+)) the positive and does not cover (den. ¬ cov(B ∪H ,E−))

the negative examples. The coverage relation is typically defined in two alternative ways

based on the learning setting, i.e. whether we are Learning from Entailment [De Raedt,

2008; Muggleton and De Raedt, 1994; Plotkin, 1970], or Learning from Interpretations
[De Raedt, 1997, 2008; De Raedt and Džeroski, 1994]. We next review these learning

settings and fix a definition for the coverage relation for the remainder of this thesis.

In the Learning from Entailment setting, a training example e is typically a single logical

atom and the coverage relation is defined via logical entailment, i.e. covers(B ∪H , e)

iff B ∪H � e. In the Learning from Interpretations setting, a training example is a

Herbrand interpretation, i.e. a set of logical facts. We then say that a hypothesis covers

the example e (relative to the background knowledge) iff e is a model of B ∪ H, i.e.

e ` B ∪H. In particular, in the case of Horn logic programs, covers(B ∪H , e) iff e is the

minimal Herbrand model ofB∪H; in the case of normal logic programs covers(B ∪H , e)

iff the program B ∪H ∪ e is satisfiable, i.e. it has at least one stable model.

The selection of a particular learning setting depends on the learning problem at hand

[De Raedt, 2008]. Each setting has its own merits. Specifically, the Learning from

Interpretations setting is considered more scalable than the Learning from Entailment

setting, since each training interpretation is assumed to be independent from the others,

in essence, a “small database that may be queried independently” [Blockeel et al., 1999].

In contrast, the main source of inefficiency when learning from entailment lies in the

assumption that several examples may be related to each other, so they cannot be handled

independently. The prize to pay for the scalability of Learning from Interpretations is

that it is less general than its counterpart, i.e. the class of hypotheses learnable from

interpretations is a strict subset of those learnable from entailment (e.g. the former

cannot learn recursive definitions, while that latter can). However, as pointed out in

[Blockeel et al., 1999], Learning from Interpretations suffices for most learning tasks in

ILP. We therefore adopt this more scalable framework in the remainder of this thesis and

fix the coverage relation in what follows to cov(B ∪H , e) iff B ∪ e is a stable model of

H.

In our learning setting, a training interpretation is a set of ground atoms consisting of

anything known true at at least two consecutive time points T and T+1. For instance, if

we denote by e999, e1000 and e1001 the knowledge (narrative and annotation) about time

points 999, 1000 and 1001 in Table 2.2, each of the following sets of atoms is a training

32 Background

interpretation:

I1 = e999 ∪ e1000, I2 = e1000 ∪ e1001, I3 = e999 ∪ e1000 ∪ e1001

This formulation of training examples is possible, due to the domain-independent axioms

of SDEC (see Table 2.1), which allow the initiation/termination of complex events to

depend only on the narrative and annotation of the previous time-point. Therefore,

each interpretation containing knowledge about at least two consecutive time points

is independent from others and may be queried in isolation. This complies with the

requirements of the Learning from Interpretations setting and it allows for more scalable

learning.

Finally, throughout this thesis, and unless otherwise stated, we assume that negated

annotation instances are obtained via the closed world assumption. To avoid confusion

however, we show negated annotation instances in tables and examples throughout the

text (e.g. see Table 2.2).

2.3.2 The Hypothesis Space

ILP algorithms search a hypothesis space to find a logical theory that matches some

quality criteria. This space is defined by means of some language bias (the M in the

ILP task ILP 〈B,E,M〉) and is typically structured by generality. A program H1 is at

least as general as a program H2, iff all the examples covered by H2 are also covered

by H1. We begin the description of the hypothesis space by the presentation of mode
declarations [Muggleton, 1995a], a widely used language bias in ILP, and the definition

of the hypothesis language. We then discuss structuring the hypothesis space by means

of θ-subsumption, the formalization of generality in logic programming.

Mode declarations. A mode declaration is an atom of the form modeh(s) or modeb(s),

where s is called a schema. A schema s is a ground literal containing placemarkers. A

placemarker is one of +type (input placemarker), −type (output placemarker) or #type

(ground placemarker), where type is a constant. mode declarations serve as templates for

constructing literals, by replacing placemarkers by actual variables or constants, which

are “typed”, i.e. they are assumed to be of the “sort” indicated by the type of the

corresponding placemarker. These literals constructed out of mode declaration atoms,

may subsequently be used to construct hypothesis clauses. In particular, a set M of mode

declarations defines a language L(M), as follows: A clause C is in L(M) iff its head atom

(respectively each of its body literals) is constructed from the schema s in a modeh(s)

atom (resp. in a modeb(s) atom) in M by: (a) replacing an output placemarker by a new

variable; (b) replacing an input placemarker by a variable that appears in the head atom,

or in a previous body literal; (c) replacing a ground placemarker by a ground term. A

hypothesis H is in L(M) iff C ∈ L(M) for each C ∈ H.

Background 33

1. modeh(initiatedAt(moving(+person,+person),+time))
2. modeh(terminatedAt(moving(+person,+person),+time))
3. modeb(happensAt(walking(+person),+time))
4. modeb(not happensAt(walking(+person),+time))
5. modeb(happensAt(active(+person),+time))
6. modeb(not happensAt(active(+person),+time))
7. modeb(happensAt(inactive(+person),+time))
8. modeb(not happensAt(inactive(+person),+time))
9. modeb(happensAt(running(+person),+time))
10. modeb(not happensAt(running(+person),+time))
11. modeb(happensAt(abrupt(+person),+time))
12. modeb(not happensAt(abrupt(+person),+time))
13. modeb(holdsAt(close(+person,+person,#distance),+time))
14. modeb(not holdsAt(close(+person,+person,#distance),+time))
15. modeb(holdsAt(orientation(+person,+person,#direction),+time))
16. modeb(not holdsAt(orientation(+person,+person,#direction),+time))

TABLE 2.4: A set of mode declarations for the domain of activity recognition.

Example 2.1. Table 2.4 presents a set of mode declarations for the domain of activity
recognition. For instance, declarations 1 & 2 dictate that heads of target clauses may be
atoms of the form initiatedAt(moving(X,Y), T) or terminatedAt(moving(X,Y), T), where
X,Y are input variables of type +person and T is an input variable of type +time. Mode
declarations 3-16 specify the form of possible body literals in the target clauses. E.g.
modes 3 & 4 state that a body literal may be of the form happensAt(walking(X), T),
or not happensAt(walking(X), T), where variables X and T are input variables of type
+person and +time respectively. Similarly, Mode 13 dictates that holdsAt(close(X,Y, 35), T)

is also a valid body literal in a target hypothesis clause (note the “#” in front of the distance
placemarker in mode 13, indicating that a term that replaces this placemarker should be
a constant. Output variable placemarkers (not present in any of the mode declarations in
Table 2.4), allow free variables to appear in a clause. For instance, the clause p(X,Y) ←
q(X,Z), r(Z, Y) belongs to the language defined by the following set of mode declarations:
M = { modeh(p(+any,+any)),modeb(q(+any,−any)),modeb(r(−any,+any)) }

θ-subsumption. A clause r1 θ-subsumes a clause r2, denoted r1 � r2, if there exists a

substitution θ such that head(r1)θ = head(r2) and body(r1)θ ⊆ body(r2). Two clauses

r1 and r2 are equivalent under θ-subsumption if r1 � r2 and r2 � r1. A logic program

program Π1 θ-subsumes a program Π2 if for each clause r1 ∈ Π1 there exists a clause

r2 ∈ Π2 such that r1 � r2. A clause r1 (resp. program Π1) is more general than a clause

r2 (resp. program Π2) if r1 � r2 (resp. Π1 � Π2), in which case r2 (resp. Π2) is more

specific than r1 (resp. Π1).

Given a clause r, the set of clauses that θ-subsume r and the set of clauses that are θ-

subsumed by r form a lattice [G.Plotkin, 1970]. Generalizing a clause r, or “moving-up”

into the θ-subsumption lattice, means to replace r with a clause r′ such that r′ � r. A

34 Background

generalization operator is a function that generates such an r′, by e.g. removing a literal

from r or replacing a constant with a variable. In contrast, to specialize r, or “moving-

down” into the θ-subsumption lattice, means to replace it with r′, such that r � r′. A

specialization operator does this by e.g. adding a literal to the body of r, or replacing a

variable with a constant.

Most ILP algorithms construct a theory by learning one clause at a time and joining

those clauses together. A clause is generated either in a top-down, or in a bottom-up

fashion. In the former case the starting point is a most general clause that covers all

the examples, which is gradually specialized, via a specialization operator, in order to

exclude negative examples, while still covering as many positives as possible. In the

latter case the starting point is a most specific clause that usually covers a few positive

examples, which is gradually generalized using a generalization operator, in order to

cover as many positive examples as possible, while excluding the negatives.

Some examples of top-down ILP learners are FOIL [Quinlan, 1990b], HYPER [Bratko,

2001] and TopLoG [Muggleton et al., 2008]. A downside of the top-down approaches

is that they are “knowledge-driven”, i.e. they rely only on the language bias to guide

the search. As a result, they may spend resources in generating a large number of

useless clauses that do not cover even a single positive example. In contrast, bottom-up

approaches are more “data-driven”, i.e. they try to use the training data to identify

potentially promising parts of the search space. E.g. Golem [Muggleton et al., 1990], a

system based on relative least-general generalization (rlgg), generalises pairs of examples

creating the least upper bound of the two in the θ-subsumption lattice, each time greedily

selecting the clause with the best coverage among a set of rlgg-generated candidates. A

downside of bottom-up systems is that they tend to produce overly specific solutions and

impose several restrictions to their input language [Corapi, 2012].

A particularly successful family of ILP systems are those that try to combine the best of

the two approaches (top-down and bottom-up). Systems like Progol [Muggleton, 1995a]

and ALEPH [Srinivasan, 2000] rely on the notion of the Bottom Clause. Given a set of

mode declarations M and a training example e, a Bottom Clause relative to e, denoted

by ⊥e, is the most-specific clause of L(M), up to e.g. a maximum clause length, that

covers e. Typically, and provided that target predicate instances are observable in the

training data, a Bottom Clause is constructed by selecting such an instance (a positive

example e) as a “seed” and placing it in the head of a newly generated clause ⊥e with an

empty body. A set of ground atoms that follow deductively from e and the background

knowledge are placed in the body of ⊥e. Subsequently, constants in ⊥e are replaced

by variables, where appropriate, as indicated by mode declarations, and a hypothesis

clause is learnt in a top-down fashion, by searching the clauses that θ-subsume ⊥e. This

strategy allows for a more targeted search, in a space of clauses bounded below by ⊥e,
where each candidate clause covers at least one positive example (e in particular).

Background 35

2.4 Learning Programs in the Event Calculus

In this section we present the main challenges related to learning Event Calculus pro-

grams with ILP and we discuss the state of the art w.r.t. this task. We present in detail

XHAIL, one of the few ILP system that are able to learn theories in the Event Calculus

and we discuss XHAIL’s scalability issues that we address in the remainder of this thesis.

2.4.1 Non-Observational Predicate Learning

A first difficulty with Event Calculus theories is that the Bottom Clause-based strategy

described in Section 2.3.2 cannot be applied directly. The reason is that learning domain-

dependent Event Calculus axioms falls in the non-Observational Predicate Learning (non-

OPL) class of problems Muggleton [1995b]. In non-OPL, instances of target predicates,

that are normally used as seeds for the construction of Bottom Clauses, are not directly

observable in the training data. In our case, target predicates are initiatedAt/2 and

terminatedAt/2 (see Table 2.3), while the annotation in the training interpretations

consists of complex event instances in terms of the holdsAt/2 predicate (see Table 2.2).

A workaround is to use abduction as an intermediate step in Bottom Clause construction,

to obtain the missing target predicate instances. Abduction is a mode of logical inference

that seeks to extract a set of explanations that make a set of observations true. Abduc-

tive Logic Programming (ALP) [Denecker and Kakas, 2002; Kakas et al., 1993; Kakas

and Mancarella, 1990] is an abductive framework for logic programming. In ALP the

observations are represented by a set of queries, and one derives explanations for these

observations in the form of ground facts that make the queries succeed. Formally, an

ALP task is a triplet ALP 〈B,A,E〉, where B is some background theory, A is a set of

predicates called abducibles and E is a set of observations (ground logical atoms) that

must be explained in terms of abducible predicates. The goal is to find an abductive ex-

planation ∆ of the observations E, i.e. is a set of abducible predicate instances, such that

B∪∆ � E. In ALP, abductive inference is tightly coupled with Negation as Failure and its

semantics [Eshghi and Kowalski, 1989]. Therefore, combining ALP with ILP provides a

powerful framework for handling incomplete knowledge in clausal logic. A disadvantage

of ALP is that it is an expensive operation, mainly due to the usually very large number

of alternative abductive explanations. In an effort to tame the complexity of the task,

and also to guide the abductive search towards more meaningful explanations, most

ALP implementations use a minimality bias, i.e. they seek for a minimal (and therefore

simplest) set of abducible predicates that explain the observations.

Example 2.2. Assume that we wish to explain the observations (i.e. the annotation)
in Table 2.2 in terms of initiatedAt/2 and terminatedAt/2 predicates. Therefore, the set
of abducibles for our ALP task is A = {initiatedAt/2, terminatedAt/2}. The background
knowledge consists of the axioms of the SDEC (the two axioms in Table 2.1) and all the

36 Background

narrative atoms in Table 2.2. Using ALP, we may use the SDEC axioms to explain when the
complex events in the observations were initiated or terminated, given that they hold (or
not), as stated by the annotation. The smallest set of such explanations is simply

∆ = {initiatedAt(moving(id1, id2), 1000)}

stating that moving(id1 , id2) is initiated at time 1000 (since it holds at time 1001).

The abduced atom may now be used to construct a Bottom Clause from the knowledge in
Table 2.2. Starting with the clause ⊥ = initiatedAt(moving(id1, id2), 1000) ← (a clause
with an empty body) and using the mode declarations from Table 2.4, we can construct a
bottom clause by adding to the body of ⊥ all atoms that match a body declaration schema
and are derivable from the background knowledge, obtaining the clause

⊥ = initiatedAt(moving(id1, id2), 1000)←
happensAt(walking(id1), 1000),

happensAt(walking(id2), 1000),

holdsAt(close(id1, id2, 25), 1000),

holdsAt(close(id2, id1, 25), 1000),

holdsAt(orientation(id1, id2, 45), 1000),

holdsAt(orientation(id2, id1, 45), 1000).

(2.1)

Replacing constants with variables where appropriate, as indicated by mode declarations,
we obtain the variabilized Bottom Clause

⊥′ = initiatedAt(moving(X,Y), T)←
happensAt(walking(X), T),

happensAt(walking(Y), T),

holdsAt(close(X,Y, 25), T),

holdsAt(close(Y,X, 25), T),

holdsAt(orientation(X,Y, 45), T),

holdsAt(orientation(Y,X, 45), T).

(2.2)

As mentioned in Section 2.3.2, once ⊥′ is constructed, a potentially good clause, i.e. one
that covers many positive and none of the negative examples may be found by searching the
space of clauses that θ-subsume ⊥′. Note for instance that the initiatedAt domain-specific
axiom of Table 2.3 is derivable from ⊥′, since it θ-subsumes ⊥′.

Background 37

2.4.2 Problems with Negation as Failure

Another difficulty that arises when learning Event Calculus theories is related to the

Negation as Failure operator that Event Calculus uses to model inertia. In this section

we discuss the problems that arise in detail.

A first problem is that Negation as Failure is incompatible with the mainstream separate-

and-conquer strategy used by the majority of ILP learners, where clauses that cover

subsets of the examples are constructed one by one recursively, until all examples are

covered. At each step, the positive examples that are covered by a newly generated

clause are removed, and the process continues until no more positives are left. However,

the non-monotonicity of Negation as Failure makes this strategy essentially unsound. An

example, adapted from Ray [2006], follows.

Example 2.3. Assume that we are given the ILP task ILP 〈B,E,M〉, where

B = {p(X, 1)← q(X) ∧ not r(X), p(X, 2)← r(X)}
E+ = {p(a, 1), p(a, 2)}
E− = ∅
M = {modeh(q(+any)),modeh(r(+any))}

(2.3)

i.e. the goal is to induce definitions for the q/1 and r/1 predicates from the given examples
and the background theory. The mainstream, separate-and-conquer ILP approach would
start from an empty hypothesis H = ∅ and the first positive example p(a, 1), and then use
the first clause from B to abduce the atom q(a). The abduced atom would be generalized
to the clause q(X)←, which would be then added to H. So after the first example is taken
into account, H = {q(X)←}. The positive example p(a, 1) is now covered by H and thus it
is removed. Similarly, in response to the second positive example, p(a, 2), the atom r(a) is
abduced from the second clause of B, and it is generalized to the new clause r(X)←, which
is also added to H, so H = {q(X)←, r(X)←}. As previously, the positive example p(a, 2)

is now covered by H, so it is retracted. Since no more positives remain, learning terminates
returning H. However, the second clause in H invalidates the first one, so only one of the
positive examples can be covered by H, therefore H is unsound.

A second problem is related to the θ-subsumption-based heuristics used to guide the

search in Horn logic, as described in Section 2.3.2, which are known to be inapplicable

in general in the case of normal logic programs [Fogel and Zaverucha, 1998]. These

heuristics are based on the assumption that “moving up” the subsumption lattice, i.e.

from specific to general, increases example coverage, while “moving down”, from gen-

eral to specific, restricts example coverage. However, this does not always hold in normal

logic programs, where generalizing (resp. specializing) a clause may result in a hypoth-

esis that covers less (resp. more) examples. An example from the domain of activity

recognition follows.

38 Background

Example 2.4. Consider the following annotated narrative related to the fighting high-level
event from CAVIAR:

Narrative :

happensAt(abrupt(id1), 1).

happensAt(abrupt(id2), 1).

holdsAt(close(id1, id2, 23), 1).

happensAt(walking(id1), 2).

happensAt(abrupt(id2), 2).

holdsAt(close(id1, id2, 23), 2).

Annotation :

not holdsAt(fighting(id1, id2), 1).

holdsAt(fighting(id1, id2), 2).

holdsAt(fighting(id1, id2), 3).

where close(X,Y,D) is a statically defined fluent which states that the Euclidean distance
between persons X and Y is less than threshold D. Consider also the clauses:

C1 = initiatedAt(fighting(X,Y), T)←
happensAt(abrupt(X), T),

not happensAt(inactive(Y), T),

holdsAt(close(X,Y, 23), T).

C2 = terminatedAt(fighting(X,Y), T)←
happensAt(walking(X), T).

C ′
2 = terminatedAt(fighting(X,Y), T)←

happensAt(walking(X), T),

not holdsAt(close(X,Y, 23), T).

Clause C1 states that fighting between two persons id1 and id2 is initiated if one of them
exhibits an abrupt behavior, the other is not inactive and their distance is less than 23 pixel
positions on the video frame. Clause C2 states that fighting is terminated between two people
if one of them walks. Clause C ′2 is a specialization of C2 and dictates that fighting between
two persons is terminated when one of them walks away. Consider two hypotheses H1, H2

where H1 = {C1, C2} and H2 = {C1, C
′
2}. Observe that SDEC ∪ H1 is an incomplete

hypothesis, because it does not cover the positive example holdsAt(fighting(id1, id2), 3).
Indeed, by means of clause C2 the fluent fighting(id1 , id2) is terminated at time 2, and thus
it does not hold at time 3. On the other hand, hypothesis SDEC∪H2 does cover the positive
example at time 3 because clause C ′2 does not terminate the fighting fluent at time 2. We
thus have that hypothesis H2, though more specific than H1, covers more examples.

The shortcomings discussed in this section indicate that mainstream ILP strategies that

learn a theory in a clause-by-clause manner cannot by used to induce sound hypotheses in

the presence of Negation as Failure. One solution is to employ theory-level search [Badea,

2001; Bratko, 1999], i.e. learn a hypothesis in one go, from all available examples at

once. In the next section we present the details of XHAIL [Ray, 2009a], an ILP system

that learns whole theories and it is also able to address non-OPL problems by combining

Background 39

Algorithm 1 The XHAIL algorithm
Input: background knowledge B, examples E, mode declarations M , and integer d > 0
Output: Hypothesis H

Step 1: Abductive Phase
Let A1 be the set of head mode declarations predicates.
Let ∆ be any explanation in ALP 〈B,A1, E〉.
Step 2: Deductive Phase – Kernel Set Generation
Let A2 be the empty set of predicates ∅.
Let T2 be the program obtained by adding to B each fact in ∆.
for all facts αi ∈ ∆ do

Let mi be any head declaration in M whose schema subsumes αi.
Set ni to the set of terms in αi corresponding to + placemarkers in mi.
Set Ki to the fact αi.
repeat up to d times:

Let Q be the set of goals ?type(m)σ, schema(m)σ where m is a body declaration
and σ is a substitution binding all input variables in m to a term in ni
Let R be the set of ground literals of the form schema(m)σθ
where schema(m)σθ appears in a goal G ∈ Q and θ is an answer substitution
in ALP 〈T2, A2, G〉.
Add to the body of Ki all literals in R (not already in ki).
Add to ni all (new) terms in R corresponding to − placemarkers.

Let K ′i be the clause obtained from Ki by replacing all distinct terms corresponding
to + and − placemarkers with fresh variables.
Let Kv (resp. K) be the set of clauses {K ′1, . . . ,K ′n} (resp. {K1, . . . ,Kn})

Step 3: Inductive Phase
Let A3 = {use/2}
Let T3 be the program obtained by adding to B one clause of the form
αi ← use(i, 0), try(i, 1, v(δ1i)), . . . , try(i, n, v(δni)) for each clause
ri = αi ← δ1i , . . . δ

n
i ∈ Kv

and two clauses try(i, j, v(δji))← use(i, j), δji , try(i, j, v(δji))← not use(i, j)
for each literal δji in clause ri, where v(δji) is a term wrapping the variables of δji .
Let U be any explanation in ALP 〈T3, A3, E〉.
Let H be the program obtained from Kv by removing every body atom δji for which
the abducible use(i, j) /∈ U , and removing every clause whose head atom αi does
not have a corresponding atom use(i, 0) in U .
Return H.

ILP with ALP, as discussed in Section 2.4.1. We present XHAIL in detail because parts of

its methodology are useful throughout this thesis.

2.4.3 The XHAIL system

XHAIL is an abductive-inductive system that constructs hypotheses in a three-phase

process. Each of these phases is presented in detail in Algorithm 1, adapted from [Ray,

2009a].

40 Background

Input

Narrative Annotation

happensAt(abrupt(id1), 1). holdsAt(fighting(id1 , id2), 1).
happensAt(walking(id2), 1). not holdsAt(fighting(id3 , id4), 1).
not holdsAt(close(id1 , id2 , 23), 1). not holdsAt(fighting(id1 , id2), 2).
happensAt(abrupt(id3), 2). not holdsAt(fighting(id3 , id4), 2).
happensAt(abrupt(id4), 2). not holdsAt(fighting(id1 , id2), 3).
holdsAt(close(id3 , id4 , 23), 2). holdsAt(fighting(id3 , id4), 3).

Mode declarations (Table 2.4) Background knowledge: SDEC (Table 2.1)

Phase 1 (Abduction):

∆1 = {initiatedAt(fighting(id3, id4), 2),
terminatedAt(fighting(id1, id2), 1)}

Phase 2 (Deduction):

Kernel Set K: Variabilized Kernel Set Kv:

initiatedAt(fighting(id3 , id4), 2) ← initiatedAt(fighting(X ,Y), T) ←
happensAt(abrupt(id3), 2), happensAt(abrupt(X), T),
happensAt(abrupt(id4), 2), happensAt(abrupt(Y), T),
holdsAt(close(id3 , id4 , 23), 2). holdsAt(close(X ,Y , 23), T).

terminatedAt(fighting(id1 , id2), 1) ← terminatedAt(fighting(X ,Y), T) ←
happensAt(abrupt(id1), 1), happensAt(abrupt(X), T),
happensAt(walking(id2), 1), happensAt(walking(Y), T),
not holdsAt(close(id1 , id2 , 23), 1). not holdsAt(close(X ,Y , 23), T).

Phase 3 (Induction):

Program UKv (Syntactic transformation of Kv):

initiatedAt(fighting(X ,Y), T) ← terminatedAt(fighting(X ,Y), T) ←
use(1 , 0), try(1 , 1 , vars(X ,T)), use(2 , 0), try(2 , 1 , vars(X ,T)),
try(1 , 2 , vars(Y ,T)), try(2 , 2 , vars(Y ,T)),
try(1 , 3 , vars(X ,Y ,T)). try(2 , 3 , vars(X ,Y ,T)).

try(1 , 1 , vars(X ,T)) ← try(2 , 1 , vars(X ,T)) ←
use(1 , 1), happensAt(abrupt(X), T). use(2 , 1), happensAt(abrupt(X), T).

try(1 , 1 , vars(X ,T)) ← not use(1, 1). try(2 , 1 , vars(X ,T)) ← not use(2, 1).

try(1 , 2 , vars(Y ,T)) ← try(2 , 2 , vars(Y ,T)) ←
use(1 , 2), happensAt(abrupt(Y), T). use(2 , 2), happensAt(walking(Y), T).

try(1 , 2 , vars(X ,T)) ← not use(1, 2). try(2 , 2 , vars(Y ,T)) ← not use(2, 2).

try(1 , 3 , vars(X ,Y ,T)) ← try(2 , 3 , vars(X ,Y ,T)) ←
use(1 , 3), holdsAt(close(X ,Y , 23), T). use(2 , 3), not holdsAt(close(X ,Y , 23), T).

try(1 , 3 , vars(X ,T)) ← not use(1, 3). try(2 , 3 , vars(X ,Y ,T)) ← not use(2, 3).

Search: Abductive Solution:

ALP(SDEC ∪UKv , {use/2},Narrative ∪Annotation) ∆2 = {use(1 , 0), use(1 , 3),
use(2 , 0), use(2 , 2)}

Output hypothesis

initiatedAt(fighting(X ,Y), T) ← terminatedAt(fighting(X ,Y), T) ←
holdsAt(close(X ,Y , 23), T). happensAt(walking(Y), T).

TABLE 2.5: Hypothesis generation by XHAIL for Example 2.5.

Background 41

Given an ILP task ILP〈B ,E ,M 〉, the first two phases of the XHAIL algorithm return a

ground program K, called Kernel Set of E, such that covers(B ∪K ,E). The first phase

generates the heads of K ’s clauses by abductively deriving from B a set ∆ of instances of

head atoms, as defined by the language bias M , such that covers(B ∪∆,E). The second

phase generates the Kernel Set K, by forming clauses with a previously abduced atom

in the head, and instances of body declaration atoms that deductively follow from B ∪∆

in the body.

The Kernel Set is a “multi-clause equivalent” [Ray, 2005, 2006; Ray et al., 2004] of the

Bottom Clause. That is, just as a Bottom Clause is a most-specific clause that covers

a single positive example, the Kernel Set is, by construction, a most-specific program

that covers all the positive examples. Its purpose in the induction process is similar to

that of a Bottom Clause: To provide a syntactic and semantic bias that delimits a part of

the search space that is likely to contain hypotheses. Just as ILP algorithms that learn

from Bottom Clauses use a clause refinement operator to generate and test clauses that

θ-subsume the Bottom Clause, XHAIL uses a theory refinement operator, that generates

and tests candidates in the space of theories that θ-subsume the Kernel Set, in an effort

to find a hypothesis that covers all the positive and none of the negative examples.

To this end, the Kernel Set is first variabilized, i.e. constants are replaced by variables

where appropriate, as indicated by the mode declarations. The variablized Kernel Set, Kv,

is subject to a syntactic transformation of its clauses, which involves two new predicates

try/3 and use/2 . For each clause ri ∈ Kv, where 1 ≤ i ≤ |K|, and each body literal

δji ∈ ri, where 1 ≤ j ≤ |body(ri)|, a new atom v(δj
i) is generated, as a special term that

contains the variables that appear in δji . The new atom is wrapped inside an atom of

the form try(i , j , v(δj
i)). An extra atom use(i , 0) is added to the body of Ci and two new

clauses try(i , j , v(δj
i))← use(i , j), δj

i and try(i , j , v(δj
i))← not use(i , j) are generated,

for each body literal δji ∈ Ci.

All these clauses are put together into a program UKv . UKv serves as a “defeasible”

version of Kv from which literals and clauses may be selected, or discarded, in order to

construct a hypothesis that accounts for the examples. This is realized by solving an ALP

task with use/2 as the only abducible predicate. The intuition behind this transformation

is as follows: In order for the head atom of clause Ci ∈ UKv to contribute towards the

coverage of an example, each of its try(i , j , v(δj
i)) atoms must succeed. By means of

the two rules added for each such atom, this can be achieved in two ways: Either by

assuming not use(i, j), or by satisfying δji and abducing use(i, j). A hypothesis clause is

constructed by the head atom of the i-th clause ri of Kv, if use(i, 0) is abduced, and the

j-th body literal of ri, for each abduced use(i, j) atom. All other clauses and literals from

Kv are discarded. Search is biased by minimality, i.e. preference towards hypotheses

with fewer literals. This is realized by means of abducing a minimal set of use/2 atoms.

42 Background

Example 2.5. Table 2.5 presents the process of hypothesis generation by XHAIL. The input
consists of a set of examples, a set of mode declarations (presented in Table 2.4) and the
axioms of the SDEC as background knowledge. The annotation says that fighting between
persons id1 and id2 holds at time 1 and it does not hold at times 2 and 3, hence it is
terminated at time 1. Respectively, fighting between persons id3 and id4 holds at time 3
and does not hold at times 1 and 2, hence it is initiated at time 2. XHAIL obtains these
explanations for the holdsAt/2 literals of the annotation abductively, using the head mode
declarations as abducibles. In its first phase, it derives the two ground atoms in ∆1 (Phase 1,
Table 2.5). In its second phase, XHAIL forms a Kernel Set (Phase 2, Table 2.5), by generating
one clause from each abduced atom in ∆1, using this atom as head, and body literals that
deductively follow from SDEC ∪∆1 as the body of the clause.

The Kernel Set is variabilized and the third phase of XHAIL, i.e. the actual search for a
hypothesis starts. This search is biased by minimality, i.e. preference towards hypotheses
with fewer literals. A hypothesis is thus constructed by dropping as many literals and
clauses from Kv as possible, while correctly accounting for all the examples. The syntactic
transformation on Kv results in the defeasible program UKv .

Literals and clauses necessary to cover the examples are selected from UKv by means of
abducing a set of use/2 atoms, as explanations of the examples, from the ALP task presented
in Phase 3 of Table 2.5. ∆2 from Table 2.5 is a minimal explanation for this ALP task.
use(1 , 0) and use(2 , 0) correspond to the head atoms of the two Kv clauses, while use(1 , 3)

and use(2 , 2) correspond respectively to their third and second body literal. The output
hypothesis in Table 2.5 is constructed by these literals, while all other literals and clauses
from Kv are discarded.

By means of abduction, XHAIL is able to learn definitions for unobserved predicates,

thus dealing with non-Observational Predicate Learning. Moreover, thanks to the non-

monotonic semantics of abduction in ALP, and the fact that XHAIL bases its entire func-

tionality on abduction (note that XHAIL “implements” deductive and inductive inference

by means of an abductive process), XHAIL can learn Negation as Failure and ensure

soundness in non-monotonic learning tasks. Therefore, it can fully address the problem

of learning event definitions as logic programs in the Event Calculus. Its major draw-

back, however, is that it scales poorly. The reason is that XHAIL employs a theory-level

refinement operator that learns whole hypotheses from all the training data at once.

This is necessary in order to overcome the difficulties, discussed earlier in this section,

that standard sequential covering ILP algorithms face when learning in the presence of

Negation as Failure. The downside is the increased combinatorial complexity of jointly

optimizing all clauses in a hypothesis.

Background 43

2.5 Related Work

In this section we discuss relevant work from the literature on a number of related ILP

approaches. This discussion is divided into two parts: In the first part (Section 2.5.1),

we present an overview of ILP systems that, like XHAIL, attempt to learn normal logic

programs with unobserved target predicates. In the second part (Section 2.5.2), we

present a more general discussion on the task of learning temporal theories with ILP.

Some applications to event recognition tasks are included in this discussion, while the

rest of the presented approaches are judged to be relevant, due to temporal aspects of

the learning domains and the learnt theories.

2.5.1 Related ILP Systems

Several ILP approaches have addressed the problem of learning normal logic programs

[Ade and Denecker, 1995; Bain and Muggleton, 1990; Bergadano et al., 1996; Dimopou-

los and Kakas, 1995; Martin and Vrain, 1996; Nicolas and Duval, 2001; Sakama, 1999;

Seitzer, 1997]. However, as pointed out in [Ray, 2009a], none of these approaches is

general enough to learn Event Calculus theories, since they are capable of Observational

Predicate Learning only. Also, they assume restrictions on the use of Negation as Failure,

for instance, they are able to learn normal logic programs, but not with a normal logic

program as background knowledge.

Similar restrictions hold for more recent approaches. For instance, PROGOL-5 [Muggle-

ton and Bryant, 2000b] is an extension of PROGOL that uses the technique of theory

completion to perform a form of abduction. However the so-called “contra-positive”

method on which theory completion relies does not work in the presence of Negation

as Failure [Ray, 2005, 2006; Ray et al., 2003]. A similar limitation holds for a number

of Inverse Entailment-based systems, like ALECTO, HAIL, CF-Induction [Inoue, 2004],

Residue Hypothesis Finding [Yamamoto, 2003] and the SOLAR system [Nabeshima et al.,

2003] for consequence finding: They are all capable of handling non-Observational Pred-

icate Learning via some form of abductive reasoning, but not with a normal program as

background knowledge.

IMPARO [Kimber et al., 2009] uses a proof procedure called Induction on Failure, that

handles the non-Observational Predicate Learning problem, but it is also limited to Horn

logic. Induction on Failure has been generalized to the case of full clausal logic in [Kimber,

2012]. However, the work in [Kimber, 2012] (as well as that of [Kimber et al., 2009])

focuses on theoretical results that address limitations of PROGOL’s Inverse Entailment

proof procedure, as identified first in [Yamamoto, 1997], related to its incompleteness

(hypotheses that cannot be found by Inverse Entailment). No experimental evaluation

of Induction on Failure is presented in [Kimber, 2012], while in the same work it is

44 Background

reported, based on empirical observations, that significant work is required in order for

this proof procedure to be made efficient for any practical purposes [Kimber, 2012].

In contrast to the above-mentioned approaches, a family of abductive-inductive systems

has been proposed that is capable of solving the same class of problems as the XHAIL sys-

tem (and therefore these systems are capable of learning theories in the Event Calculus).

TAL [Corapi et al., 2010] is the first system in this family. It is a top-down non-monotonic

learner that works by appropriately mapping an ILP problem to a corresponding ALP

instance, so that solutions for the latter may be translated to solutions for the initial

ILP problem. Given an ILP task I, the machinery behind TAL involves three steps: The

first step establishes a transformation that allows to represent every possible clause r

in a potential inductive hypothesis for I as a single fact, that references the mode dec-

larations that are used to form the clause r. A second step uses the mode declarations

themselves to define a so-called “top theory”, a concept introduced in [Muggleton et al.,

2008]. Intuitively (and omitting technical details), a top theory is a mode-declarations-

based meta-theory that allows to generate hypotheses from the space defined by the

mode declarations. In a third step, an abductive task A is instantiated on this top theory.

The goals in this task are the training examples and the abducibles are the predicates

used in step 1, to codify candidate clauses for I as facts that reference their generating

mode declarations. Then learning an inductive hypothesis for the original ILP task I is

translated into finding an abductive solution for A: An abduced atom may be used as

a set of prescriptions for forming a clause by properly combining the mode declaration

specifications that are codified in this atom.

TAL uses Prolog’s SLDNF resolution to realize the abductive process. Its ideas were

employed in the ASPAL system [Corapi et al., 2012], an ILP learner which relies on

Answer Set Programming as a unifying abductive-inductive framework. Interesting as

it may be, the approach of TAL and ASPAL ultimately faces the same problems as that

of XHAIL, at least with respect to scalability: To ensure soundness in the presence of

Negation as Failure, TAL must learn a hypothesis in one shot, from the entirety of training

examples, resulting to an intractable search space.

This issue is addressed to some extent, in [Athakravi et al., 2013], where the method-

ology of TAL and ASPAL has been ported into a learner that constructs hypotheses

progressively, towards more scalable learning. To address the fact that the top theory

of TAL/ASPAL grows exponentially with the length of its clauses, causing a grounding

bottleneck, RASPAL, the system proposed in [Athakravi et al., 2013], imposes bounds on

the length of the top theory. Partial hypotheses of specified clause length are iteratively

obtained in a refinement loop. At each iteration of this loop, the hypothesis obtained

from the previous refinement step is further refined by dropping or adding literals or

clauses, using theory revision as described in [Corapi et al., 2008]. The process contin-

ues until a complete and consistent hypothesis is obtained. However, in order to ensure

soundness, RASPAL still has to process all examples simultaneously. At each iteration of

Background 45

its refinement loop, all examples are taken into account repeatedly, in order to ensure

that the revisions account for all them. Therefore, the grounding bottleneck that RASPAL
faces is expected to persist in domains that involve large volumes of sequential data,

typical of temporal applications, as the ones that we address in this work. This is because

even by imposing a small initial maximum clause length to RASPAL, in order to constrain

the search space, with a sufficient amount of data the resulting ground program will still

be intractable, if the data is processed simultaneously.

In [Law et al., 2014], a framework for learning in Answer Set Programming (ASP) is

introduced. This framework, call ASILP, extends previous related work on learning from

partial interpretations [De Raedt, 1997; Inoue et al., 2014], i.e. incomplete examples in

the Learning from Interpretations setting, as well as learning from stable models [Otero,

2001; Sakama and Inoue, 2009] in the presence of incomplete information. The aim of

this extension is to obtain a general-purpose methodology for learning ASP programs

with ILP. ASILP learns a hypothesis H in the presence of background knowledge B, that

allows observations to be “bravely entailed”, i.e. to be true in some, but not all, the stable

models of B ∪H. The rationale follows an argument from [Sakama and Inoue, 2009],

where it is argued that such a framework (called brave induction), should be preferred

over the regular ILP setting, where an acceptable hypothesis H should be such that the

observations are true in all stable models of B ∪ H. The reason in that the regular

ILP framework is often “too strong”, particularly in cases with indefinite/incomplete

information. Thanks to its connection to ASP and the stable model semantics, ASILP can

fully handle non-Observational Predicate Learning and Negation as Failure. However, as

pointed out in [Law et al., 2014] ASILP does not scale adequately.

The combination of ILP with ALP has recently been applied to meta-interpretive learning
(MIL), a learning framework where the goal is to obtain hypotheses in the presence of

a meta-interpreter. The latter is a higher-order program, referencing predicates or even

rules of the domain. Given such background knowledge and a set of examples, MIL uses

abduction w.r.t. the meta-interpreter to construct first-order hypotheses. MIL can be

realized both in Prolog and in Answer Set Programming, and it has been implemented

in the METAGOL system [Muggleton et al., 2014]. MIL is an elegant framework, able

to address difficult problems like predicate invention and mutually recursive programs.

However, it has a number of important drawbacks. First, its expressivity is limited, as MIL

is currently restricted to dyadic Datalog, i.e. Datalog where the arity of each predicate

is at most two. Second, given the increased computational complexity of higher-order

reasoning, scaling to large volumes of data becomes a potential bottleneck.

46 Background

2.5.2 Logical Learning in Temporal Domains

The Chronicle Recognition System (CRS) [Dousson and Le Maigat, 2007; Ghallab, 1996]

is a temporal reasoning system that allows for efficient and scalable temporal reason-

ing. CRS has been used for event recognition in various domains, including medical

applications and computer network management [Callens et al., 2008b; Carrault et al.,

2003; Dousson and Le Maigat, 2007]. A chronicle is a temporal constraint network

[Dechter et al., 1991] (although a Petri nets-based semantics has also been formulated

for CRS [Choppy et al., 2009]). It can be seen as a definition of a high-level event that

links together a set of low-level events via a set of temporal (and possibly atemporal)

constraints. Chronicle high-level event specifications can be expressed in an ad-hoc first

order language. Moreover high-level event patterns in the CRS language may be learnt

with ILP. For instance, in [Carrault et al., 2003] the authors use the ICL system [De Raedt

and Van Laer, 1995] to learn a set of first order temporal clauses for characterization of

cardiac arrhythmia, based on training interpretations extracted from a time series. These

clauses are subsequently translated into CRS language rules.

An interesting ILP application in a challenging temporal domain is presented in [Badea,

2000], where PROGOL is used to learn a set of first-order stock market trading rules

in the form of “buy/sell” policies from historical market time series. Each trading rule

defines a pattern of temporal combinations of stock trading technical indicators (e.g.

moving averages, the Relative Strength Index, the Average Directional Movement In-

dex, stochastic oscillators and so on) and is able to indicate promising buying/selling

opportunities by matching this pattern on temporal incoming data.

In [Dubba et al., 2010], an ILP approach is presented that uses videos recorded in an

airport to learn definitions of interesting high-level events in the form of first order

temporal clauses. Spatio-temporal relations between objects are extracted from video

footage, forming a set of time-stampled training interpretations, which are subsequently

properly annotated with events of interest. Then, standard learning-from-interpretations

ILP techniques are used to extract a set of high-level event definitions. The learnt event

patterns include definitions for rear loading/unloading, aircraft arrival/departure, jet
bridge positioning and so on. In [Dubba et al., 2011, 2015], this work is extended with

the addition of a spatial logical calculus [Randell et al., 1992] that allows abstracting and

reasoning about quantitative spatial information, and also by interleaving induction with

abduction to improve the learning outcome. This interleaved framework learns in a set

cover loop. At each iteration, an induced clause r is added to the background knowledge

B and all positive examples covered by B ∪ r are removed. Then B ∪ r is used to

abductively “guess” a set of explanations for the remaining positive examples. A scoring

scheme based on a notion of “distance” between positive examples and such abductive

explanations is defined and the examples that are “close enough” to the explanations

Background 47

are considered covered and are removed from the yet-to-be-covered positives. The loop

continues until all positives are covered.

In [Needham et al., 2005], the PROGOL ILP system is used to learn protocols of simple

table top games – a simple card game called “snap”, as well as “paper-scissors-rock” –

from real sensory data originating form a video camera and a microphone, collected

while two persons were playing these games. Game protocols learnt by PROGOL are

in the form of actions that should be executed at particular times, given a state of the

game at that time. A more recent similar approach is included in [Laguna, 2014], where

the TILDE ILP system is used to learn first-order theories for activity recognition, using

training interpretations compiled from videos of an internal space.

Common to the aforementioned approaches is the fact that the temporal theories they

induce cannot reason about the effects of event occurrences. In contrast, formalisms

described collectively with the term “temporal action theories” [Gelfond and Lifschitz,

1993, 1998] are designed for that particular type of reasoning. As a result, a substantial

amount of work exists for learning such theories from narrative histories describing

a system’s dynamic behavior. Early attempts include [Moyle and Muggleton, 1997]

and [Moyle, 2002], where ILP techniques are used to learn domain-specific axioms

in the Event Calculus. The work in [Moyle and Muggleton, 1997] relies on theory
completion [Mueller, 2008; Muggleton and Bryant, 2000b] for eliminating initiatedAt and

terminatedAt predicates, and re-writing the Event Calculus axioms in terms of a single

“flips” predicate, thus effectively nullifying the non-monotonic effects of the Negation as

Failure operator. Then PROGOL is used to learn a definition for the “flips” predicate. In

[Moyle, 2002], the ALECTO ILP system is used to learn a set of domain-specific axioms

in the Event Calculus representing a set of robot navigation instructions. ALECTO is

an extension of PROGOL that uses SOLD resolution [Yamamoto, 2000] as an abductive

procedure, via which it abduces instances of initiatedAt and terminatedAt predicates

and then uses PROGOL to learn domain-specific axioms from these instances and the

narrative.

The approaches in [Moyle and Muggleton, 1997] and [Moyle, 2002] are restrictive

in several ways. In addition to the re-writing of the Event Calculus axioms in terms

of the “flips” predicate, the work in [Moyle and Muggleton, 1997] also requires extra

artificial constraints that specify time intervals in which fluents are not clipped [Moyle,

2003; Ray, 2009a]; Also, in order to learn in the presence of Negation as Failure in the

background knowledge, the approach in [Moyle, 2002] relies on PROGOL’s monotonic

induction technique, which, as was pointed out in [Lorenzo and Otero, 2000; Otero,

2001; Sakama, 2000, 2005], does not extend well to normal programs.

A number of approaches attempted to learn temporal action theories using entirely mono-

tonic methods [Könik and Laird, 2006; Lorenzo, 2002; Lorenzo and Otero, 2000; Otero,

48 Background

2003, 2004; Rodrigues et al., 2010a,b, 2011]. These approaches modify the underly-

ing formalisms by replacing inertial axioms, which involve non-monotonic operators, by

frame axioms, i.e. rules that explicitly specify the “non-effects” of events/actions, and use

standard monotonic ILP techniques for learning from “complete narratives” [Inoue et al.,

2005] (i.e. narratives that contain explicit truth values for fluents at each time point).

However, this approach is hardly a solution, since it introduces the well-known frame

problem [Gelfond and Lifschitz, 1993; McCarthy, 1986] into the learning task, which

action formalisms were created to resolve at the first place, [Inoue et al., 2005; Ray,

2009a]. All these difficulties are successfully handled by more recent non-monotonic ILP

learners, such as XHAIL and TAL [Corapi et al., 2010; Ray, 2009a].

Relational learning techniques have also been used in the temporal domain of process

mining [Van der Aalst et al., 2003]. In process mining applications the input consists of

logs, i.e. sets of sequences of time stamped actions (traces), collected within a period

of time. The goal is to learn a set of interesting processes, i.e. temporally ordered

sets of actions that capture some particular business logic. Although the dominant

paradigm in process mining has been the discovery of procedural process models, like

Petri nets [Van Dongen et al., 2009] or Event-driven Process Chains [Van Dongen and

Van der Aalst, 2004], logic-based methods have been attracting attention, thanks to their

ability to induce declarative processes in the from of informative first-order rules that

describe dependencies between actions. In [Chesani et al., 2009] the authors use a logic

programming-based framework called SCIFF [Alberti et al., 2008], to represent actions,

and an ILP system to learn first-order process patterns from action traces in the form

of SCIFF rules. The ontology of the SCIFF formalism comprises events (occurrences of

actions in time) and positive (resp. negative) expectations, i.e. a special type of event

that is expected to happen (resp. not happen) in the near future, once a sequence of

normal events has taken place. SCIFF rules comprise events in the body and conjunctions

or disjunctions of expectations in the head. A set of SCIFF rules defines a set of inter-

dependent constraints on the actions (and their order) in the domain. In [Chesani et al.,

2009], a training interpretation is formed from each action trace and each interpretation

is annotated as positive or negative, based on whether or not it complies to a particular

business logic. This input is passed to the ICL system [De Raedt and Van Laer, 1995],

which learns a SCIFF theory representing a process.

In [Cattafi et al., 2010], the SCIFF framework is combined with the Declarative Process

Model Learner (DPML) [Lamma et al., 2007], a simplification of the ICL system tailored

for inducing logical process models, to address the problem of incremental learning of

process models, where new logs arrive over time and the current process model must

account for them. The resulting system uses a set of standard ILP revision operators to

modify current process models in the face of new evidence. The same problem (revising

process models) is also addressed in [Maggi et al., 2011], this time within the framework

of non-monotonic ILP [Sakama, 2001]. In particular, [Cattafi et al., 2010] uses TAL

Background 49

[Corapi et al., 2010] to revise a process model within the framework of “theory revision

as non-monotonic ILP” [Corapi, 2012; Corapi et al., 2011a, 2008; Maggi et al., 2011]

(this framework is discussed in detail in Section 3.1 of this thesis).

Requirements engineering [Dardenne et al., 1993] refers to the task of identifying and

analyzing particular specifications and stakeholder requirements during software devel-

opment. In such a context, extracting formal requirements from a set of high-level,

intuitive descriptions is a challenging task. In [Alrajeh et al., 2006, 2009], the XHAIL
system is used for extracting requirements from positive and negative examples, repre-

senting respectively descriptions of desirable and undesirable system behaviour over time.

The input also comprises some initial (but incomplete) requirement specifications in the

form of domain-specific background knowledge. The goal is to learn a logical theory

representing additional requirement specifications, so that the complete requirements’

set covers all positive but none of the negative scenarios. The approach in [Alrajeh et al.,

2006, 2009] uses a translation of Linear Temporal Logic [Pnueli and Manna, 1992], a for-

mal specification language used by software engineers, to the Event Calculus, and then

uses XHAIL to learn formal specifications in the form of an Event Calculus theory. Closely

related work is that in [Alrajeh et al., 2011], where XHAIL is used to learn specifica-

tions, in the Event Calculus, for Modal Transition Systems, a formalism for modeling and

reasoning about the behavior of a system over time; [Corapi et al., 2011a] and [Corapi

et al., 2011b], where TAL [Corapi et al., 2010] is used to learn normative frameworks

for virtual societies in the form of Event Calculus programs; and [Corapi et al., 2008],

where XHAIL is used to learn mobile phone user preferences from historical traces of her

behavior over short periods of time, it the form of Event Calculus programs.

Another important field where temporal relational learning has been used is systems

biology. In [Tamaddoni-Nezhad et al., 2006, 2007], a combination of abduction and

induction is used, to model inhibition between enzymes in metabolic networks (networks

of interlinked chemical reactions that take place during the metabolism process). The

goal is to derive formal models for inhibition prediction in such networks, which may

be used to identify drugs that may have undesirable inhibitory effects on other enzymes

in a metabolic network. To this end, PROGOL-5 [Muggleton and Bryant, 2000a] is

used, which is capable for abductive reasoning to some extent (in particular, in domains

with no negation in the background knowledge), to adbuce a set of ground facts about

inhibited enzymes from observations of metabolite concentration. The abduced atoms

are subsequently generalized to obtain a set of lifted first-order rules describing inhibition

in the metabolic network. The work in [Tamaddoni-Nezhad et al., 2006, 2007] builds

upon earlier results on modeling inhibition in metabolic networks [Tamaddoni-Nezhad

et al., 2004] by taking into account important temporal aspects of the observations.

However, as the authors in [Tamaddoni-Nezhad et al., 2006] point out, the temporal

model used in that work is over-simplified and transition to a more robust model based

on the Event Calculus-based is desirable in the particular biological domain.

50 Background

The same problem of learning logical inhibition models has been addressed in several

other works that improve on the approach of [Tamaddoni-Nezhad et al., 2006, 2007].

In [Demolombe et al., 2013] the authors use SOLAR for learning in this domain, an ILP

system with superior abductive capabilities compared to PROGOL-5, which was used in

[Tamaddoni-Nezhad et al., 2006, 2007]. XHAIL has also been used for learning relations

in metabolic networks in [Bragaglia and Ray, 2015; Ray, 2009b; Ray et al., 2010],

offering better handling of negation and abduction, while in [Ray and Bryant, 2008] it

is used to infer gene functions from mutations. The SOLAR system has also been used

for completing metabolic networks by discovering missing causal relations [Inoue et al.,

2013] with meta-level abduction. The CF-Induction abductive-inductive framework of

the IMPARO system has also been applied for learning relational models from metabolic

networks [Doncescu et al., 2007; Yamamoto et al., 2008, 2010].

In the field of systems biology, a domain of particular interest is large-scale modeling of

biochemical processes, in order to predict the behavior of a complex biological system

under various circumstances [Calzone et al., 2006]. ILP methods have been used in

this domain, which is inherently temporal. [Calzone et al., 2006; Fages and Soliman,

2008] introduced BIOCHAM, a Datalog-based, domain-specific language for reasoning

about properties and dynamics of biochemical processes, and used an ILP approach to

learn relational models of such processes. Each BIOCHAM entity is associated with a

boolean variable representing its presence or absence in the system. Reaction rules

are then interpreted as an asynchronous transition system over states defined by the

vector of boolean variables. The Computation Tree Logic [Clarke et al., 1999] (CTL)

was used to specify temporal interactions between BIOCHAM entities. A set of first-order

rules capturing the dynamics of a biochemical process was learnt by providing a CTL

specification of temporal constraints in the system and searching for good rules, i.e. rules

whose most of their groundings satisfy these constraints. Closely related is [Synnaeve

et al., 2011], where the SOLAR aductive-inductive learner is used to learn first-order

models of biochemical processes from temporal data.

2.6 Summary

In this chapter we presented the basics of the Event Calculus formalism that we use in

this thesis, in addition to some necessary background on ILP. We analyzed, by means of

concrete examples, the challenges involved in learning Event Calculus theories with ILP,

namely, handling Negation as Failure in the background knowledge and learning defini-

tions for predicates (initiatedAt and terminatedAt) that are not directly observable in the

input to the learning task. We then presented and discussed in detail the XHAIL system,

an ILP system that overcomes these difficulties via a combination of ILP techniques with

Abductive Logic Programming.

Background 51

We also discussed related work on similar ILP approaches that combine abductive and

inductive reasoning and are also able, to some extent, to address the same issues. We

pointed out the limitations of all such approaches, that ultimately render them insufficient

for the learning task that we address in this thesis: Most of these approaches are not

general enough for the particular task, since they are capable of handling unobserved

predicates via abductive reasoning, but not in the general case of normal logic programs,

where Negation as Failure is allowed both in the background knowledge and in the bodies

of hypothesized clauses. A few approaches that are able to successfully overcome both

obstacles, like XHAIL itself, the systems of the TAL family (TAL, ASPAL and RASPAL),

ASILP and METAGOL do not scale to the data volumes of event recognition applications.

Additionally, we discussed related work on learning first-order temporal theories with

ILP, as well as applications to particular domains that require temporal reasoning, like

process mining, requirements engineering, systems biology and event recognition. These

approaches fall into two main categories: Those that utilize some temporal formalism,

like the Event Calculus, or the Situation Calculus, to reason about the effects of events

on properties of the modeled domain, and those that do not. Approaches in the former

category suffer from the limitations outlined above: They cannot fully address all aspects

involved in learning such temporal formalisms and as a result, they often resort to ad-hoc

workarounds that are mostly sub-optimal, while they do not scale to large data volumes.

On the other hand, approaches in the latter category lack a domain-independent method-

ology for reasoning about the evolution of a system in time, and therefore, they are

neither general, nor robust enough to be used in applications, like event recognition,

where this type of reasoning is necessary in principle.

3 | ILED: Incremental Learning of Event

Definitions

In the previous chapter we described the XHAIL system and showed that it provides

an appropriate framework for learning event definitions in the form of domain-specific

axioms in the Event Calculus. As mentioned in Section 2.4.3, however, its main lim-

itation is that it scales poorly, due to its theory-level refinement operator that learns

whole hypotheses from all the training data at once, which results in a search space

of increased combinatorial complexity. Furthermore, XHAIL is designed for inducing

sound hypotheses (i.e. hypotheses that cover all the positive and none of the negative

examples). This makes inappropriate any type of heuristic search (e.g. a search strategy

aiming to cover/reject a good portion of the positive/negative examples respectively),

leaving no other option but a complete search in the space of theories that θ-subsume the

Kernel Set. The hardness of this task increases with the size of the training data, since

the increase in the number of domain constants results in a combinatorial explosion in

the size of the program obtained by fully grounding the search space that the Kernel Set

defines, a necessary step in the Learning from Interpretations setting.

In this chapter, we address the problem of scaling-up the basic XHAIL methodology. We

do so by proposing an incremental learning setting [Langley, 1995; Maloof and Michalski,

2004; Utgoff, 2011], where the XHAIL functionality is adapted to work with training

examples that arrive over time. The resulting system, called ILED (Incremental Learning

of Event Definitions) [Katzouris et al., 2015], is designed to induce sound theories (as

XHAIL itself) and scales well beyond the data volumes that XHAIL can handle. Central

to our approach is the process of theory revision [Wrobel, 1994, 1996], where an initial

hypothesis, obtained from the first incoming batch of examples, is gradually revised to

account for new training instances. In contrast to sequential covering algorithms, which

are designed for Horn logic and discard each positive example once it is covered by a

gradually constructed hypothesis, ILED preserves past examples in an external database,

called historical memory. By periodically accessing these examples and evaluating candi-

date revisions on them, ILED is able to avoid cases like the one illustrated in Example 2.3

where modifications to a hypothesis may invalidate parts of the hypothesis that remain

unmodified.

54 Incremental Learning of Event Definitions

ILED subsumes the core XHAIL machinery, i.e. it learns/revises whole theories using an

abductive search procedure to generalize Kernel Sets. However, this search procedure

remains overall tractable, by learning from relatively small data chunks. Typically, in

each of these chunks, the number of domain constants is small, ensuring that the cost

of ILED’s expensive revision process remains low w.r.t. each chunk. Moreover, by means

of the support set, a compressive memory structure that encodes the coverage, in the

historical memory, of each clause in the running hypothesis, ILED is ensured to learn a

sound hypothesis with no more than 2n revisions, where n is the number of data chunks.

To summarize, while XHAIL learns a theory in one go from all the training data at once,

ILED gradually revises an initial theory on data chunks that arrive over time. And while

XHAIL deals with an intractable search space, even with relatively small data volumes,

ILED needs a linear, in the size of the training set, number of relatively “cheap” operations

to learn a hypothesis, while ensuring soundness of the outcome. It therefore significantly

scales up the XHAIL algorithm. Moreover, we present experiments which demonstrate

that ILED learns hypotheses of comparable quality (w.r.t. predictive accuracy and size)

to those of XHAIL’s.

In the remainder of this chapter the details of the ILED system are presented, starting

with some necessary background on theory revision and incremental learning. We then

provide a formal definition of the underlying incremental learning setting, define the

support set, give an overview of ILED’s strategy and prove its soundness and the upper

bound in the number of revisions required to compute a hypothesis. Finally, we present

the details of ILED’s theory revision technique and conclude with a discussion on some

of ILED’s features and limitations.

3.1 Theory Revision and Incremental Learning

In this section we present some necessary background on theory revision and incremental

learning. Theory revision [Wrobel, 1996] is the task of modifying imperfect hypotheses

to improve their quality. Initially, theory revision systems were developed with the goal

to improve a roughly correct hypothesis in the face of new examples that arrive over

time [Adé et al., 1993; Ade et al., 1994; Richards and Mooney, 1995, 1991; Wogulis

and Pazzani, 1993]. Over the years, theory revision systems became able to induce new

hypotheses from scratch, which may subsequently be refined w.r.t. new training data

[Corapi et al., 2008; D. Raedt, 1992; Esposito et al., 1996, 2000]. As a result, in addition

to a means of improving an input hypothesis, in more recent work [Muggleton et al.,

2012; Paes et al., 2007], theory revision systems are also considered as learning systems

that exploit previous computations to speed-up the learning. This is important, since

revising a hypothesis is generally considered more efficient than learning it from scratch

[Biba et al., 2006a; Cattafi et al., 2010; Esposito et al., 2000].

Incremental Learning of Event Definitions 55

A hypothesis H is called incomplete if it does not account for some positive examples

and inconsistent if it erroneously accounts for some negative examples. Theory revision

systems use a set of revision operators to act upon a hypothesis and alter the set of

examples it accounts for. Incompleteness is typically handled by a generalization operator,

that e.g. adds new clauses, or removes literals from existing clauses. Inconsistency is

handled by a specialization operator, that e.g. removes clauses, or adds new literals to

existing clauses.

In an incremental learning setting examples arrive over time, contrary to a batch setting,

where all examples are available from the start [Biba et al., 2006b; Di Mauro et al.,

2005, 2004; Esposito et al., 2004; Giraud-Carrier, 2000; Langley, 1995; Mooney, 1992;

Semeraro et al., 1997; Westendorp, 2002]. Occasionally, in ILP literature the term

“incremental” is used in a different way (e.g. see Flach [1998]; Ray [2005, 2006]; Ray

and Inoue [2007]), to describe a property (e.g. “incremental theory construction”) of an

otherwise batch learning setting. Sequential covering algorithms belong in this category,

having in place all training examples when learning commences, but processing them

one by one. In what follows, by “incremental learning” we denote a setting where

examples arrive over time and learning relies on theory revision.

Of particular interest for the purposes of our work is the so-called full memory incremental

setting [Biba et al., 2006b]. In this setting, examples are stored in an external database

(historical memory) upon their arrival and revisions to the hypothesis at hand in the

face of new evidence must account for the entire historical memory as well. The main

challenge of a full memory approach is to scale-up to a growing size of experience. This

is in line with a key requirement of incremental learning where “the incorporation of

experience into memory during learning should be computationally efficient, that is,

theory revision must be efficient in fitting new incoming observations” [Di Mauro et al.,

2005; Langley, 1995].

3.2 The ILED System

In this section we present the ILED system. ILED starts with an empty hypothesis Hn = ∅
and an empty database of examples E = ∅. It learns a hypothesis H1 from the first avail-

able example w1 that arrives, which is subsequently stored in E . As new examples arrive,

it gradually revises the hypothesis at hand so that it accounts both for the new examples

and the accumulated experience in the historical memory. Definition 3.1 formalizes our

incremental learning setting. Recall from Section 2.2.1 that SDEC in what follows de-

notes the Event Calculus dialect that we assume in this thesis. Recall also from Section

2.3.1 that a training example is a Herbrand interpretation consisting of anything known

true at at least two consecutive time points T and T+1 and that covers(T, e) means that

the program T ∪ e has at least one stable model.

56 Incremental Learning of Event Definitions

Definition 3.1 (Incremental Learning). Given:

• An initially empty database of examples E , called historical memory, in which

examples that arrive over time are stored.

• A set of mode declarations M .

• A hypothesis Hn ∈ L(M) such that covers(SDEC ∪Hn, E) (i.e. SDEC ∪Hn covers

each example in E)

• A new example wn.

Find

• A hypothesis Hn+1 ∈ L(M) such that covers(SDEC ∪Hn+1, E ∪ wn).

Our main challenge is to scale up ILED to a growing size of experience. To evaluate

its scalability, we use a measure adopted from stream processing, where the number of

passes over a dataset is often used as a measure of the efficiency of algorithms [Li and

Lee, 2009; Li et al., 2004]. In this spirit, the main contribution of ILED, in addition to

scaling up the main XHAIL algorithm to large data volumes, is that it adopts a “single-

pass” theory revision strategy, that is, a strategy that requires at most one pass over E
in order to compute Hn+1 from Hn in Definition 3.1. Note that a single-pass revision

strategy is far from trivial, since in principle, theory revision requires several passes over

the training data [Duboc et al., 2009].

Since experience may grow over time to an extent that is impossible to maintain in the

working memory, we follow an external memory approach [Biba et al., 2006a]. This

implies that the learner does not have access to all past experience as a whole, but to

independent sets of training data, in the form of sliding windows. A sliding window is

a set of training examples (interpretations). The examples in a sliding window may be

merged into a single example by joining the corresponding interpretations. Therefore in

what follows the terms “example window” or simply “example” are used interchangeably.

At time n, ILED is presented with a hypothesis Hn that accounts for the historical memory

so far, and a new example window wn. If Hn covers the new window (i.e. each example

in this window) then it is returned as is, otherwise ILED starts the process of revising

Hn. In this process, revision operators that retract knowledge, such as the deletion of

clauses or antecedents are excluded, due to the exponential cost of backtracking in the

historical memory [Badea, 2001]. The supported revision operators are thus:

• Addition of new clauses.

• Refinement of existing clauses, i.e. replacement of an existing clause with one or

more specializations of that clause.

Incremental Learning of Event Definitions 57

Running Hypothesis Hn:

initiatedAt(fighting(X ,Y),T) ←
holdsAt(close(X ,Y , 23),T).

initiatedAt(fighting(X ,Y),T) ←
happensAt(active(X),T),
happensAt(abrupt(Y),T),
holdsAt(close(X ,Y , 23),T).

initiatedAt(fighting(X ,Y),T) ←
happensAt(active(X),T),
happensAt(kicking(Y),T),
holdsAt(close(X ,Y , 23),T).

. . .

Revised Hypothesis Hn+1

RefinedClauses:

initiatedAt(fighting(X ,Y),T) ←
holdsAt(close(X ,Y , 23),T),
happensAt(abrupt(Y),T).

initiatedAt(fighting(X ,Y),T) ←
holdsAt(close(X ,Y , 23),T),
happensAt(kicking(Y),T).

Revised Hypothesis Hn+1 :

NewClauses:

terminatedAt(fighting(X ,Y),T) ←
happensAt(walking(X),T),
not holdsAt(close(X ,Y , 23),T).

terminatedAt(fighting(X ,Y),T) ←
happensAt(walking(X),T),
happensAt(active(Y),T),
not holdsAt(close(X ,Y , 23),T).

Support set for the
running hypothesis

Kernel Set
construction

Kernel Set
construction

Kernel Set
construction

wnwn−1w0

E
.

FIGURE 3.1: Revision of a hypothesis Hn in response to a new example window wn

To treat incompleteness we add initiatedAt clauses and refine terminatedAt clauses, while

to treat inconsistency we add terminatedAt clauses and refine initiatedAt clauses. The

goal is to retain the preservable clauses of Hn intact, refine its revisable clauses and, if

necessary, generate a set of new clauses that account for new examples in the incoming

window wn. We henceforth call a clause preservable w.r.t. a set of examples if it does not

cover negatives, nor it disproves positives, and call it revisable otherwise.

Figure 3.1 illustrates the revision process with a simple example. New clauses are

generated by generalizing a Kernel Set of the incoming window, as shown in Figure

3.1, where a terminatedAt/2 clause is generated from the new window wn. To facilitate

refinement of existing clauses, each clause in the running hypothesis is associated with

a memory of the examples it covers throughout E , in the form of a “bottom program”,

which we call support set. The support set is constructed gradually, from previous Kernel

Sets, as new example windows arrive. It serves as a refinement search space, where the

single clause in the running hypothesis Hn is refined w.r.t. the incoming window wn

into two specializations. Each such specialization is constructed by adding to the initial

clause one antecedent from the two support set clauses which are presented in Figure

3.1. The revised hypothesis Hn+1 is constructed from the refined clauses and the new

ones, along with the preserved clauses of Hn, if any.

ILED’s support set can be seen as the S-set in a version space [Mitchell, 1979], i.e. the

space of all overly-specific hypotheses, progressively augmented as new examples arrive.

58 Incremental Learning of Event Definitions

Similarly, a running hypothesis of ILED can be seen as an element of the G-set in a version

space, i.e. the space of all overly-general hypotheses that account for all examples seen

so far, and need to be further refined as new examples arrive.

Algorithm 2 iled(SDEC,M,Hn, wn) (ILED’s High-Level Strategy)
Input: The axioms of SDEC, mode declarations M, a hypothesisHn such that covers(SDEC∪
Hn, E) and an example window wn.
Output: A hypothesis Hn+1 such that covers(SDEC ∪Hn+1, E ∪ wn)

if ¬covers(SDEC ∪Hn, wn) then

let Kwn
v be a (variabilized) Kernel Set of wn

let 〈RetainedClauses,RefinedClauses,NewClauses〉 ← revise(SDEC, Hn,K
wn
v , wn)

let H ′ ← Hkeep ∪ RefinedClauses ∪NewClauses

if NewClauses 6= ∅ then

for all wi ∈ E , 0 ≤ i ≤ n− 1 do

if ¬covers(SDEC ∪H ′, wi) then

let 〈RetainedClauses,RefinedClauses, ∅〉 ← revise(SDEC, H ′, ∅, wi)
let H ′ ← RetainedClauses ∪ RefinedClauses

let Hn+1 ← H ′

else

let Hn+1 ← Hn

let E ← E ∪ wn
Return Hn+1

There are two key features of ILED that contribute towards its scalability: First, re-

processing of past experience is necessary only in the case where new clauses are gener-

ated by a revision, and is redundant in the case where a revision consists of refinements

of existing clauses only. Second, re-processing of past experience requires a single pass

over the historical memory, meaning that it suffices to re-visit each past window exactly

once to ensure that the output revised hypothesis Hn+1 is complete & consistent w.r.t.

the entire historical memory. These properties of ILED are due to the support set, which

we next present in detail. A proof of soundness and the single-pass revision strategy of

ILED is given in Proposition 3.5 at the end of this section. The Pseudocode of ILED’s

strategy is presented in Algorithm 2.

3.2.1 Support Set

Given a set of mode declarations M , a clause C in the mode language L(M) is most-

specific if it does not θ-subsume any other clause in L(M). Intuitively, the support set of a

clause C is a “bottom program” that consists of most-specific versions of the clauses that

Incremental Learning of Event Definitions 59

disjunctively define the concept captured by C. A formal account is given in Definition

3.2.

Definition 3.2 (Support Set). Let E be the historical memory, M a set of mode dec-

larations, L(M) the corresponding mode language of M and C ∈ L(M) a clause.

Also, let us denote by covE(C) the coverage of clause C in the historical memory, i.e.

covE(C) = {e ∈ E | covers(SDEC ∪ C , e)}. The support set C .supp of clause C is defined

as follows:

C .supp =
⋃

e∈covE(C)

{D ∈ L(M) | e ∈ covE(D) and C � D and

∀D′ ∈ L(M), if e ∈ covE(D′) then D′ � D}

The support set of clause C is thus defined as the set consisting of one bottom clause per

each example e ∈ covE(C), i.e. one most-specific clause D of L(M) such that C � D and

covers(SDEC ∪D , e). Assuming no length bounds on hypothesized clauses, each such

bottom clause is unique1 and covers at least one example from covE (C); note that since

the bottom clauses for a set of examples in covE(C) may coincide (i.e. be θ-subsumption

equivalent – they θ-subsume each other), a clause D in C .supp may cover more than one

example from covE(C). Proposition 3.3 highlights the main property of the structure.

Proposition 3.3. Let C be a clause in L(M). C .supp is the most specific program of L(M)

such that covE(C .supp) = covE(C).

Proof We first show that covE(C .supp) = covE(C). For the inclusion

covE(C .supp) ⊆ covE(C), assume that e ∈ covE(C .supp), i.e. e is covered by a D ∈ C .supp.

But C θ-subsumes D, therefore e ∈ covE(C). For the inverse inclusion, assume that

e ∈ covE(C) and let D be the most-specific clause of L(M), such that e ∈ covE(D) (?)

(observe that if no such D exists, with D 6= C, then C itself is the most-specific clause

with the required property). Then by definition, D ∈ C.supp and from (?) above we

have that e ∈ covE(C .supp), establishing the inclusion covE(C) ⊆ covE(C .supp).

The fact that C .supp is the most-specific program of L(M) with this property follows

immediately from Definition 3.2, since each clause in Li(C.supp) is most-specific in L(M)

with the property of covering at least one example from covE(C).

�

Proposition 3.3 implies that clause C and its support set C .supp define a space S of

specializations of C, each of which is bound by a most-specific specialization, among
1The bottom clause relative to an example can be large, or even infinite. To constrain its size, several

restrictions are imposed on the language, such as a maximum clause length, or a maximum variable depth.
We refrain from assuming extra language bias related to clause length and instead, for the purposes of this
work, we assume a finite domain and impose no particular bounds on clause length. In such context, the
bottom clause of an example e is unique and results from the ground most-specific clause that covers e, by
properly replacing terms with variables, as indicated by the mode declarations.

60 Incremental Learning of Event Definitions

those that cover the positive examples that C covers. In other words, for every D ∈
S there is a Cs ∈ C .supp so that C � D � Cs and Cs covers at least one example

from covE(C). Moreover, Proposition 3.3 ensures that space S contains refinements

of clause C that collectively preserve the coverage of C in the historical memory. The

purpose of C .supp is thus to serve as a search space for refinements RC of clause C

for which C � RC � C .supp holds. Since such refinements preserve C ’s coverage of

positive examples, clause C may be refined w.r.t. a window wn, avoiding the overhead

of re-testing the refined program on E for completeness. However, to ensure that the

support set can indeed be used as a refinement search space, one must ensure that

C .supp will always contain such a refinement RC . The proof is given in Proposition 3.4.

Proposition 3.4. Let Hn ∈ L(M) be as in the Incremental Learning setting (Definition
3.1), i.e. covers(SDEC ∪Hn , E), and wn be an example window. Assume also that there
exists a hypothesis Hn+1 ∈ L(M), such that covers(SDEC ∪Hn+1 , E ∪ wn), and that a
clause C ∈ Hn is revisable w.r.t. window wn. Then C .supp contains a refinement RC of C,
which is preservable w.r.t. wn.

Proof Assume, towards contradiction, that each refinement RC of C, contained in

C .supp is revisable w.r.t. wn. It then follows that C .supp itself is revisable w.r.t. wn, i.e.

it either covers some negative examples, or it disproves some positive examples in wn.

Let e1 ∈ wn be such an example that C .supp fails to satisfy, and assume for simplicity

that a single clause Cs ∈ C .supp is responsible for that. By definition, Cs covers at

least one positive example e2 from E and furthermore, it is a most-specific clause, within

Li(M), with that property. It then follows that e1 and e2 cannot both be accounted for,

under the given language bias L(M), i.e. there exists no hypothesis Hn+1 ∈ L(M) such

that covers(SDEC ∪Hn+1 , E ∪ wn), which contradicts our assumption. Hence C .supp is

preservable w.r.t. wn and it thus contains a refinement RC of C, which is preservable

w.r.t. wn. �

The construction of the support set, presented in Algorithm 3, is a process that starts

when C is added in the running hypothesis and continues as long as new example

windows arrive. While this happens, clause C may be refined or retained, and its support

set is updated accordingly. The details of Algorithm 3 are presented in Example 3.1,

which also demonstrates how ILED processes incoming examples and revises hypotheses.

Example 3.1. Consider the annotated examples and running hypothesis related to the
fighting high-level event from the activity recognition application shown in Table 3.1. We
assume that ILED starts with an empty hypothesis and an empty historical memory, and
that w1 is the first input example window. The currently empty hypothesis does not cover the
provided examples, since in w1 fighting between persons id1 and id2 is initiated at time 10
and thus holds at time 11. Hence ILED starts the process of generating an initial hypothesis.
In the case of an empty hypothesis, ILED reduces to XHAIL and operates on a Kernel Set of w1

only. The variabilized Kernel Set in this case will be the single-clause program K1 presented

Incremental Learning of Event Definitions 61

Algorithm 3 Support set construction and maintenance

1: let wn /∈ E be an example window, Hn a current hypothesis and
H ′n = NewClauses ∪ RefinedClauses ∪ RetainedClauses a revision of Hn, generated
in wn.

2: for all C ∈ H ′n do
3: if C ∈ NewClauses then
4: C .supp ← {D ∈ K | C � D}, where K is the variabilized Kernel Set of wn

from which NewClauses is generated.
5: else if C ∈ RefinedClauses then
6: C .supp ← {D ∈ Cparent .supp | C � D}, where Cparent is the “ancestor”

clause of C, i.e. the clause from which C results by specialization.
7: else
8: let ewn

C be the true positives that C covers in wn, if C is an initiatedAt clause, or
the true negatives that C covers, if it is a terminatedAt clause.

9: if SDEC ∪ C .supp 2 ewn
C then

10: let K be a variabilized Kernel Set of wn.
11: C .supp ← C .supp ∪K ′, where K ′ ⊆ K, such that SDEC ∪K ′ � ewn

C

in Table 3.1, generated from the corresponding ground clause. Generalizing this Kernel Set
yields a minimal hypothesis that covers w1. One such hypothesis is clause C shown in Table
3.1. ILED stores w1 in E and initializes the support set of the newly generated clause C as
in line 3 of Algorithm 3, by selecting from K1 the clauses that are θ-subsumed by C, in this
case, K1’s single clause.

Window w2 arrives next. In w2, fighting is initiated at time 20 and thus holds at time
21. The running hypothesis correctly accounts for that and thus no revision is required.
However, C .supp does not cover w2 and unless proper actions are taken, property (i) of
Proposition 3.3 will not hold once w2 is stored in E . ILED thus generates a new Kernel
Set K2 from window w2, as presented in Table 3.1, and updates C .supp as shown in lines
7-11 of Algorithm 3. Since C θ-subsumes K2, the latter is added to C .supp, which now
becomes C .supp = {K1,K2}. Now covE(C .supp) = covE(C), hence in effect, C .supp is a
summarization of the coverage of clause C in the historical memory.

Window w3 arrives next, which has no positive examples for the initiation of fighting. The
running hypothesis is revisable in window w3, since clause C covers a negative example at
time 31, by means of initiating the fluent fighting(id1 , id2) at time 30. To address the issue,
ILED searches C .supp, which now serves as a refinement search space, to find a refinement
RC that rejects the negative example, and moreover RC � C .supp. Several choices exist for
that. For instance, the following program

initiatedAt(fighting(X,Y), T)←
happensAt(active(X), T),

happensAt(abrupt(Y), T).

initiatedAt(fighting(X,Y), T)←
happensAt(active(X), T),

happensAt(kicking(Y), T).

is such a refinement RC , since it does not cover the negative example in w3 and subsumes
C .supp. ILED however is biased towards minimal theories, in terms of the overall number

62 Incremental Learning of Event Definitions

Window w1

Narrative Annotation
happensAt(active(id1), 10). not holdsAt(fighting(id1 , id2), 10).
happensAt(abrupt(id2), 10). holdsAt(fighting(id1 , id2), 11).
holdsAt(close(id1 , id2 , 23), 10).

Kernel Set Variabilized Kernel Set
initiatedAt(fighting(id1, id2), 10)← K1 = initiatedAt(fighting(X,Y), T)←

happensAt(active(id1), 10), happensAt(active(X), T),
happensAt(abrupt(id2), 10) happensAt(abrupt(Y), T),
holdsAt(close(id1, id2, 23), 10) holdsAt(close(X,Y, 23), T).

Running Hypothesis Support Set
C = initiatedAt(fighting(X,Y), T)← C .supp = {K1}

happensAt(active(X), T).

Window w2

Narrative Annotation
happensAt(active(id1), 20). not holdsAt(fighting(id1 , id2), 20).
happensAt(kicking(id2), 20). holdsAt(fighting(id1 , id2), 21).
holdsAt(close(id1 , id2 , 23), 20).

Kernel Set Variabilized Kernel Set
initiatedAt(fighting(id1, id2), 20)← K2 = initiatedAt(fighting(X,Y), T)←

happensAt(active(id1), 20), happensAt(active(X), T),
happensAt(kicking(id2), 20) happensAt(kicking(Y), T),
holdsAt(close(id1, id2, 23), 20) holdsAt(close(X,Y, 23), T).

Running Hypothesis Support Set
Remains unchanged C .supp = {K1 ,K2}

Window w3

Narrative Annotation
happensAt(active(id1), 30). not holdsAt(fighting(id1 , id2), 30).
happensAt(walking(id2), 30). not holdsAt(fighting(id1 , id2), 31).
not holdsAt(close(id1 , id2 , 23), 30).

Revised Hypothesis Support Set
C1 = initiatedAt(fighting(X,Y), T)← C1 .supp = {K1 ,K2}

happensAt(active(X), T),
holdsAt(close(X,Y, 23), T).

TABLE 3.1: Knowledge for Example 3.1

of literals and would prefer the more compressed refinement C1, shown in Table 3.1, which
also rejects the negative example in w3 and subsumes C .supp. Clause C1 replaces the initial
clause C in the running hypothesis. The hypothesis now becomes complete and consistent
w.r.t. E . Note that the hypothesis was refined by local reasoning only, i.e. reasoning
within window w3 and the support set, avoiding costly look-back in the historical memory.
The support set of the new clause C1 is initialized (line 5 of Algorithm 3), by selecting
the subset of the support set of its parent clause that is θ-subsumed by C1. In this case
C1 � C .supp = {K1 ,K2}, hence C1 .supp = C .supp.

Incremental Learning of Event Definitions 63

The support set of a clause C is a compressed enumeration of the examples that C

covers throughout the historical memory. It is compressed because each variabilized

clause in the set is expected to encode many examples. In contrast, a ground version

of the support set would be a plain enumeration of examples, since in the general case,

it would require one ground clause per example. The main advantage of the “lifted”

character of the support set over a plain enumeration of the examples is that it requires

much less memory to encode the necessary information, an important feature in large-

scale (temporal) applications. Moreover, given that training examples are typically

characterized by heavy repetition, abstracting away redundant parts of the search space

results in a memory structure that is expected to grow in size slowly, allowing for fast

search that scales to a large amount of historical data.

We conclude this section with the proof of soundness for ILED and deriving an upper

bound on the number of passes over the data that are required to learn/revise a hypoth-

esis.

Proposition 3.5 (Soundness and Single-pass Theory Revision). Assume the incremen-
tal learning setting described in Definition 3.1. ILED requires at most one pass over E to
compute Hn+1 from Hn.

Proof For simplicity and without loss of generality, we assume that when a new example

window wn arrives, ILED revises Hn by a single-clause revision, i.e. (a) by specializing a

single clause C ∈ Hn or (b) adding a new clause C ′. The case of multi-clause revisions,

i.e. either specializations of multiple clauses or additions of such follows from the basic

argument for the single clause case.

In case (a), clause C is replaced by a refinement RC such that C � RC � C .supp. By

property (iii) of the support set (see Proposition 3.3), RC covers all positive exam-

ples that C covers in E , hence for the hypothesis Hn+1 = (Hn r C) ∪ RC it holds that

covers(SDEC ∪Hn+1 , E) and furthermore covers(SDEC ∪Hn+1 ,wn). Hence

covers(SDEC ∪Hn+1 , E ∪ wn), from which soundness for Hn+1 follows. In this case,

Hn+1 is constructed from Hn in a single step, i.e. by reasoning within wn without

re-seeing other windows from E .

In case (b), Hn is revised w.r.t. wn to a hypothesis H ′n = Hn ∪ C ′, where C ′ is a new

clause that results from the generalization of a Kernel Set of wn. In response to the new

clause addition, each window in E must be checked and C ′ must be refined if necessary.

Let Etested denote the fragment of E that has been tested at each point in time. Initially,

i.e. once C ′ is generated from wn, it holds that Etested = wn. At each window that is

tested, clause C ′ may (i) remain intact, (ii) be refined, or (iii) one of its refinements

may be further refined. Assume that wk, k < n is the first window where the new clause

C ′ must be refined. At this point, Etested = {wi ∈ E | k < i ≤ n}, and it holds that C ′ is

preservable in Etested , since C ′ has not yet been refined. In wk, clause C ′ is replaced by a

64 Incremental Learning of Event Definitions

refinement RC′ such that C ′ � RC ′ � C ′.supp. RC′ is preservable in Etested , since it is a

refinement of a preservable clause, and furthermore, it covers all positive examples that

C ′ covers in wn, by means of the properties of the support set. Hence the hypothesis

H ′′n = (H ′n r C ′) ∪RC′ is complete & consistent w.r.t. Etested . The same argument shows

that if RC′ is further refined later on (case (iii) above), the resulting hypothesis remains

complete and consistent w.r.t. Etested . Hence, when all windows have been tested, i.e.

when Etested = E , the resulting hypothesis Hn+1 is complete & consistent w.r.t. E∪wn and

furthermore, each window in E has been re-seen exactly once, thus Hn+1 is computed

with a single pass over E . �

Proposition 3.5 refers to a setting where examples arrive over time and a hypothesis is

revised w.r.t. each such example. ILED may also be used in a stationary setting, where the

entire training set resides in disk. In this case it can “simulate” the incremental setting

by splitting the training data into chunks (a chunk in this case is simply a window, as

defined in this chapter) and processing one such chunk at a time. Based on Proposition

3.5, it can be shown that in this setting ILED needs two passes over the training data to

learn a sound hypothesis from scratch. That is, if n is the number of data chunks, ILED
sees each data chunk exactly twice and therefore it needs 2n passes over the data. This

is shown in Proposition 3.6.

Proposition 3.6 (Extending Proposition 3.5 to the Stationary Setting). Let D be a
stationary dataset and Dn a partition of D into n example windows (chunks). To learn a
sound hypothesis, ILED needs to see each window twice, therefore it needs 2n passes over
the data.

Proof The argument is based on the following strategy that “simulates” the incremental

learning setting where examples arrive over time: In a first pass over the training set,

ILED uses its core functionality to generate a hypothesis H1 that covers the entirety

of positive examples in D, without taking into account the negative examples in each

window. This can be done in a single pass over D (seeing each window once), by simply

generating new Kernel Sets from each window with uncovered positives and generalizing

these Kernels Sets as much as needed, respecting ILED’s minimality bias. Each set of

clauses that is obtained from each window is added to H1 (which is initially empty),

while the support set of each such clause is properly populated, in the regular way, as

described earlier in this section. What remains in order to obtain a sound hypothesis

is to properly specialize the clauses in hypothesis H1 so that they do not cover any

negative examples. But by means of the properties of the support set and the argument

in Proposition 3.5, it follows that a single additional pass over D suffices to do that: In

each step of that pass, all clauses that are inconsistent w.r.t. a window are specialized

to exclude the negative examples they cover in that window, while they preserve all the

positive examples inDtested , the part ofD that has already been checked at that particular

step. Therefore, ILED needs two passes in total to learn a sound hypothesis. �

Incremental Learning of Event Definitions 65

Algorithm 4 revise(SDEC, Hn, wn,K
wn
v)

Input: The axioms of SDEC, a running hypothesis Hn an example window wn and a
variabilized Kernel Set Kwn

v of wn.
Output: A revised hypothesis H ′n

1: let U (K wn
v ,Hn)← GeneralizationTransformation(K wn

v)∪
RefinementTransformation(Hn)

2: let Φ be the abductive task Φ = ALP(SDEC ∪U (K wn
v ,Hn), {use/2 , use/3},wn)

3: if Φ has a solution then
4: let ∆ be a minimal solution of Φ

5:

let NewClauses = {αi ← δ1
i ∧ . . . ∧ δn

i |
αi is the head of the i−th clause Ci ∈ Kwn

v

and δji is the j−th body literal of Ci
and use(i , 0) ∈ ∆ and use(i , j) ∈ ∆, 1 ≤ j ≤ n }

6:
let RefinedClauses = { head(Ci)← body(Ci) ∧ δj ,k1

i ∧ . . . ∧ δj ,km
i |

Ci ∈ Hn and use(i , j , kl) ∈ ∆,where
1 ≤ l ≤ m, 1 ≤ j ≤ |Ci .supp| }

7: let RetainedClauses = {Ci ∈ Hn | use(i , j , k) /∈ ∆ for any j , k}
8: let RefinedClauses = ReduceRefined(NewClauses,RefinedClauses,RetainedClauses)
9: else

10: Return No Solution
11: Return 〈RetainedClauses,RefinedClauses,NewClauses〉

3.2.2 Implementing Revisions

Algorithm 4 presents the revision function of ILED. The input consists of SDEC as back-

ground knowledge, a running hypothesis Hn, an example window wn and a variabilized

Kernel Set Kwn
v of wn. The clauses of Kwn

v and Hn are subject to the GeneralizationTans-
formation and the RefinementTransformation respectively, presented in Table 3.2. The

former is the transformation discussed in Section 2.4.3, that turns the Kernel Set into a

defeasible program, allowing the construction of new clauses. The RefinementTransfor-
mation aims at the refinement of the clauses of Hn using their support sets. It involves

two fresh predicates, exception/3 and use/3. For each clause Di ∈ Hn and for each of

its support set clauses Γji ∈ Di.supp, one new clause:

head(Di)← body(Di) ∧ not exception(i , j , v(head(Di)))

is generated, where v(head(Di)) is a term that contains the variables of head(Ci). Then

an additional clause exception(i , j , v(head(Di)))← use(i , j , k) ∧ not δj ,k
i is generated,

for each body literal δj,ki ∈ Γji .

The syntactically transformed clauses are put together in a program

U(Kwn
v , Hn) (line 1 of Algorithm 4), which is used as a background theory along with

SDEC. A minimal set of use/2 and use/3 atoms is abduced as a solution to the abductive

task Φ in line 2 of Algorithm 4. Abduced use/2 atoms are used to construct a set of

66 Incremental Learning of Event Definitions

GeneralizationTransformation RefinementTransformation

Input: A variabilized Kernel set Kv Input: A running hypothesis Hn

For each clause Di = αi ← δ1i , . . . , δ
n
i ∈ Fv : For each clause Di ∈ Hn :

Add an extra atom use(i , 0) to the body of Di For each clause Γ j
i ∈ Di .supp

and replace each body literal δji with a new Generate one clause
atom of the form try(i , j , v(δji)), where v(δji) αi ← body(Di) ∧ not exception(i , j , v(αi))

contains the variables that appear in δji . where αi is the head of Di and v(αi)
Generate two new clauses of the form contains its variables. Generate one clause
try(i , j , v(δji))← use(i , j), δji and exception(i , j , v(ai))← use(i , j , k), not δj ,ki

try(i , j , v(δji))← not use(i , j) for each δji . for each body literal δj,ki of Γji .

TABLE 3.2: Syntactic transformations performed by ILED.

NewClauses, as discussed in Section 2.4.3 (line 5 of Algorithm 4). These new clauses

account for some of the examples in wn, which cannot be covered by existing clauses

in Hn. The abduced use/3 atoms indicate clauses of Hn that must be refined. From

these atoms, a refinement RDi is generated for each incorrect clause Di ∈ Hn, such that

Di � RDi � Di.supp (line 6 of Algorithm 4). Clauses that lack a corresponding use/3

atom in the abductive solution are retained (line 7 of Algorithm 4).

The intuition behind refinement generation is as follows: Assume that clause Di ∈ Hn

must be refined. This can be achieved by means of the extra clauses generated by

the RefinementTransformation. These clauses provide definitions for the exception atom,

namely one for each body literal in each clause of Di.supp. From these clauses, one can

satisfy the exception atom by satisfying the complement of the corresponding support

set literal and abducing the accompanying use/3 atom. Since an abductive solution ∆

is minimal, the abduced use/3 atoms correspond precisely to the clauses that must be

refined.

Hence, each inconsistent clause Di ∈ Hn and each Γ j
i ∈ Di .supp correspond to a set

of abduced use/3 atoms of the form use(i, j, k1), . . . , use(i, j, kn). These atoms indicate

that a specialization of Di may be generated by adding to the body of Di the literals

δj,k1i , . . . , δj,kni from Γji . Then a refinement RDi such that Di � RDi � Di .supp may be

generated by selecting one specialization of clause Di from each support set clause in

Di .supp.

Example 3.2. Table 3.3 presents the process of ILED’s refinement. The annotation lacks
positive examples and the running hypothesis consists of a single clause C, with a support
set of two clauses. Clause C is inconsistent since it entails two negative examples, namely
holdsAt(fighting(id1 , id2), 2) and holdsAt(fighting(id3 , id4), 3). The program that results
by applying the RefinementTransformation to the support set of clause C is presented in Table
3.3, along with a minimal abductive explanation of the examples, in terms of use/3 atoms.
Atoms use(1, 1, 2) and use(1, 1, 3) correspond respectively to the second and third body

Incremental Learning of Event Definitions 67

Input

Narrative Annotation

happensAt(abrupt(id1), 1). not holdsAt(fighting(id1, id2), 1).
happensAt(inactive(id2), 1). not holdsAt(fighting(id3, id4), 1).
holdsAt(close(id1 , id2 , 23), 1). not holdsAt(fighting(id1, id2), 2).
happensAt(abrupt(id3), 2). not holdsAt(fighting(id3, id4), 2).
happensAt(abrupt(id4), 2). not holdsAt(fighting(id1, id2), 3).
not holdsAt(close(id3 , id4 , 23), 2). not holdsAt(fighting(id3, id4), 3).

Running hypothesis Support set

C = initiatedAt(fighting(X ,Y), T) ← C 1
s = initiatedAt(fighting(X ,Y), T) ←

happensAt(abrupt(X), T). happensAt(abrupt(X), T),
happensAt(abrupt(Y), T),
holdsAt(close(X ,Y , 23), T).

C 2
s = initiatedAt(fighting(X ,Y), T) ←

happensAt(abrupt(X), T),
happensAt(active(Y), T),
holdsAt(close(X ,Y , 23), T).

Refinement transformation:

From C1
s : From C2

s :

initiatedAt(fighting(X,Y), T)← initiatedAt(fighting(X,Y), T)←
happensAt(abrupt(X), T), happensAt(abrupt(X), T),
not exception(1, 1, vars(X,Y, T)). not exception(1, 2, vars(X,Y, T)).

exception(1, 1, vars(X,Y, T))← exception(1, 2, vars(X,Y, T))←
use(1, 1, 2), not happensAt(abrupt(Y), T). use(1, 2, 2), not happensAt(active(Y), T).

exception(1, 1, vars(X,Y, T))← exception(1, 2, vars(X,Y, T))←
use(1, 1, 3), not holdsAt(close(X,Y, 23), T). use(1, 2, 3), not holdsAt(close(X,Y, 23), T).

Minimal abductive solution Generated refinements

∆ = {use(1 , 1 , 2), use(1 , 1 , 3), use(1 , 2 , 2)} initiatedAt(fighting(X ,Y), T) ←
happensAt(abrupt(X), T),
happensAt(abrupt(Y), T),
holdsAt(close(X ,Y , 23), T).

initiatedAt(fighting(X ,Y), T) ←
happensAt(abrupt(X), T),
happensAt(active(Y), T).

TABLE 3.3: Clause refinement by ILED.

literals of the first support set clause, which are added to the body of clause C, resulting in the
first specialization presented in Table 3.3. The third abduced atom use(1, 2, 2) corresponds
to the second body literal of the second support set clause, which results in the second
specialization in Table 3.3. Together, these specializations form a refinement of clause C
that subsumes C .supp.

Minimal abductive solutions imply that the running hypothesis is minimally revised.

Revisions are minimal w.r.t. the length of the clauses in the revised hypothesis, but are

not minimal w.r.t. the number of clauses, since the refinement strategy described above

may result in refinements that include redundant clauses: Selecting one specialization

from each support set clause to generate a refinement of a clause is sub-optimal, since

there may exist other refinements with fewer clauses that also subsume the whole support

set, as Example 3.1 demonstrates. To avoid unnecessary increase of the hypothesis size,

68 Incremental Learning of Event Definitions

the generation of refinements is followed by a “reduction” step (line 8 of Algorithm

4). The ReduceRefined function works as follows. For each refined clause C, it first

generates all possible refinements from C .supp. This can be realized with the abductive

refinement technique described above. The only difference is that the abductive solver

is instructed to find all abductive explanations in terms of use/3 atoms, instead of just

a single explanation. Once all refinements are generated, ReduceRefined searches the

revised hypothesis, augmented with all refinements of clause C, to find a reduced set of

refinements of C that subsume C .supp.

3.3 Discussion and Related Work

Like XHAIL, ILED aims for soundness, that is, hypotheses which cover all given examples.

XHAIL ensures soundness by generalizing all examples in one go. In contrast, ILED
has access to a memory of past experience for which newly acquired knowledge must

account. Concerning completeness, XHAIL is a state-of-the-art system among its Inverse

Entailment-based peers [Corapi et al., 2010; Ray, 2009a]. Although ILED preserves

XHAIL’s soundness, it does not preserve its completeness properties, due to the fact that

ILED operates incrementally to gain efficiency. Thus there are cases where a hypothesis

can be discovered by XHAIL, but be missed by ILED. As an example, consider cases where

a target hypothesis captures long-term temporal relations in the data, as for instance, in

the following clause:

initiatedAt(moving(X,Y), T)←
happensAt(walking(Y), T1),

T1 < T.

In such cases, if the parts of the data that are connected via a long-range temporal

relation are given in different windows, ILED has no way to correlate these parts in order

to discover the temporal relation. However, one can always achieve XHAIL’s functionality

by increasing appropriately ILED’s window size.

An additional trade-off for efficiency is that not all of ILED’s revisions are fully evaluated

on the historical memory. For instance, selecting a particular clause in order to cover a

new example, may result in a large number of refinements and an unnecessarily lengthy

hypothesis, as compared to one that could have been obtained by selecting a different

initial clause. On the other hand, fully evaluating all possible choices over E requires

extensive inference. Thus simplicity and compression of hypotheses in ILED have been

sacrificed for efficiency.

In ILED, a large part of the theorem proving effort that is involved in clause refinement

reduces to computing subsumption between clauses, which is a hard task. Moreover, just

as the historical memory grows over time, so do (in the general case) the support sets

Incremental Learning of Event Definitions 69

of the clauses in the running hypothesis, increasing the cost of computing subsumption.

However, as in principle the largest part of a search space is redundant and the support

set focuses only on its interesting parts, one would not expect that the support set will

grow to a size that makes subsumption computation less efficient than inference over

the entire E . In addition, a number of optimization techniques have been developed

over the years and several generic subsumption engines have been proposed [Kuzelka

and Zelezny, 2008; Maloberti and Sebag, 2004; Santos and Muggleton, 2010], some of

which are able to efficiently compute subsumption relations between clauses comprising

thousands of literals and hundreds of distinct variables.

The limitations of existing approaches, similar to ours, which combine abduction with

induction to handle non-monotonic learning tasks involving unobserved target predicates,

have been discussed in Section 2.5.1. Similar limitations hold for most of the prominent

theory revision approaches, which could be used in an incremental setting. We next

discuss these limitations by reviewing the most important ILP theory revision systems

and point out their weaknesses w.r.t. to learning with the Event Calculus.

FORTE [Richards and Mooney, 1995] is one of the most widely used ILP theory revision

systems. Its revision strategy starts with the identification of revision points. FORTE’s

revision strategy begins by identifying a set of revision points, i.e. particular clauses in

the hypothesis that fail and need to be revised. A generalization (resp. specialization)

point is a clause that fails to derive a positive example (resp. derives a negative ex-

ample). Each possible revision w.r.t. each revision point is then generated, based on

a set of revision operators and these candidate revisions are sorted by “potential”, i.e.

the expected gain in the quality of the hypothesis, resulting by implementing a revision.

The candidate revisions are then evaluated on the training set and the best revision for

each revision point is selected and implemented. This process is repeated until either

the revised hypothesis accounts for all the examples, or the quality of the hypothesis

cannot be further improved. FORTE’s basic disadvantages w.r.t. its usage with the Event

Calculus theories are that it learns function-free Horn clauses and does not support non-

Observational Predicate Learning. Also, FORTE cannot operate on an empty hypothesis

(i.e. it cannot induce a hypothesis from scratch).

In [Duboc et al., 2009], FORTE is enhanced by PROGOL’s bottom clause construction

routine and mode declarations, towards a more efficient refinement operator. In order

to refine a clause r, FORTE_MBC (the resulting system), uses mode declarations and

inverse entailment to construct a bottom clause from a positive example covered by

r, resulting in a more constrained search space and a more efficient clause refinement

process. However, FORTE_MBC inherits FORTE’s disadvantages mentioned above.

CLINT [De Raedt and Bruynooghe, 1994] is a revision system that relies on two revision

operators: A generalization operator that adds new clauses or ground facts to the theory

at hand and a specialization operator that retracts incorrect clauses from the theory. To

70 Incremental Learning of Event Definitions

generate new clauses, CLINT uses “starting clauses”, i.e. most-specific clauses that cover

a single positive example. These starting clauses are then maximally generalized to

obtain a good hypothesis clause. CLINT is also an abductive-inductive learner, since it

uses abduction in order to explain some examples. However, abduction and induction are

independent and complementary, i.e. abduction is used only when the clauses induced

so far fail to account for an example, in which case a set of ground facts that explain

these examples are abduced and simply added to the theory at hand. As a result, CLINT
cannot handle non-Observational Predicate Learning and cannot be used with the Event

Calculus.

INTHELEX [Di Mauro et al., 2005, 2004; Esposito et al., 2004, 2000] learns/revises

Datalog theories, using clause/literal addition/deletion, abduction and constant/variable

unification as its revision operators.Several limitations make INTHELEX inappropriate for

inducing/revising Event Calculus programs. First, the restriction of its input language to

Datalog limits its applicability to richer, relational event domains. For instance, complex

relations between entities cannot be easily expressed in INTHELEX. A workaround is to

use a set of new function symbols to represent “flattened” predicates Rouveirol [1994].

However, as pointed out in Ray [2009a], this does not always preserve logical entailment

Hirata [1999]. Second, the use of background knowledge is limited in INTHELEX, by

excluding arithmetic functions. For instance auxiliary clauses that may be used for spatio-

temporal reasoning during learning time. Third, although INTHELEX uses abduction

for the completion of imperfect input data, it relies on Observational Predicate Learning,

meaning that it is not able to reason with predicates which are not directly observable in

the examples.

RUTH [Ade et al., 1994] is one of the earliest systems for theory revision in ILP. Given a

revisable theory H and an “integrity theory” I, RUTH’s first step is to identify whether

H violates I and generate an example for each such violation. This example serves as a

starting point for a revision. RUTH specializes clauses in response to covered negative

examples and it adds new clauses, adds exceptions to clause bodies, or abduces missing

explanations in response of uncovered positive examples. Each revision may generate

new contradictions between the revised theory and the integrity theory. The process

continues until the revised hypothesis is consistent with the integrity theory. RUTH’s

basic disadvantage w.r.t. its usage with the Event Calculus is that like INTHELEX, it

operates on Datalog and like FORTE, it cannot learn a hypothesis from scratch.

In addition to the above-mentioned limitations, one thing that all these systems have

in common is that they search the space of possible revisions by means of heuristics

based on the generality order, i.e. they use generalization to handle incompleteness

and specialization to handle inconsistency. This is a viable strategy in Horn logic, but

as the example 2.4 in Section 2.4.2 demonstrates, it is not applicable in principle in

a non-monotonic setting. A more recent approach to theory revision overcomes this

difficulty by viewing theory revision as “non-monotonic ILP” [Corapi, 2012; Corapi et al.,

Incremental Learning of Event Definitions 71

2011a, 2008; Maggi et al., 2011]. Under this approach, given a revisable theory T ,

any off-the-self, non-monotonic ILP learner may be used as a theory revision system,

learning a set of prescriptions based on a “meta-theory” T ′, which is constructed from T .

The learnt prescriptions are subsequently transformed into syntactic modifications on T .

This strategy resembles what XHAIL does in order to generalize a Kernel Set. XHAIL’s

generalization strategy relies on the non-monotonic semantics of Negation as Failure

to form a hypothesis from the Kernel Set, by discarding its non-useful parts. This is

done by constructing a meta-theory from the Kernel Set (using the predicates use/2 and

try/3) and abducing a set of use/2 instances from this meta-theory, using the training

examples as guiding integrity constraints that the meta-theory must satisfy. The abduced

use/2 instances serve as prescriptions for the selection of particular clauses and literals

from the original theory (the Kernel Set), so that the selected parts of the Kernel Set

satisfy the examples. This generic strategy is already a generalization revision operator

(used to generate new clauses) and it may be extended to realize other operators, like

addition/removal of literals to a clause, or removal of clauses from a hypothesis. A

generic algorithm for theory revision as non-monotonic ILP that uses the XHAIL system

as the underlying learner may be found in [Corapi, 2012; Corapi et al., 2008]. Designed

to operate in full clausal logic thanks to the non-monotonic semantics of the underlying

ILP learner, this approach to theory revision is able to learn and revise theories in a

non-monotonic context, it is therefore appropriate to use with the Event Calculus.

Most of the theory revision systems mentioned above do not scale to large data volumes.

The traditional theory revision systems (FORTE, CLINT, RUTH) were designed as “batch

theory revisors”, i.e. they assume a setting were a theory and a set of examples are

given from the start and the goal is to revise the theory w.r.t. these examples. The

same holds for the more recent approach to theory revision as non-monotonic ILP, which

additionally inherits the poor scalability of the underlying non-monotonic learner. As

mentioned at the beginning of this chapter, such learners employ theory-level search to

learn whole theories from the entire training setting, in order to overcome difficulties

with Negation as Failure. The only exception of a theory revision system whose scalability

in a full memory approach has been studied to some extent is INTHELEX. In [Biba et al.,

2006a] the authors propose an approach towards scaling-up INTHELEX by associating

clauses in the theory at hand with examples they cover, via a relational schema. Thus,

when a clause is refined, only the examples that were previously covered by this clause

are checked. Similarly, when a clause is generalized, only the negative examples are

checked again. The scalable version of INTHELEX presented in [Biba et al., 2006a]

maintains alternative versions of the hypothesis at each step, allowing it to backtrack to

previous states. In addition, it keeps in memory several statistics related to the examples

that the system has already seen, such as the number of refinements that each example

has caused, a “refinement history” of each clause, etc. However, despite INTHELEX’s

improved scalability as compared to other prominent theory revisors, its limitations

72 Incremental Learning of Event Definitions

related to its inability to perform non-Observational Predicate Learning and incorporate

background knowledge, make it inappropriate for our purposes.

4 | Experimental Evaluation for ILED

In this section, we present experimental results for ILED from two real-world applica-

tions: Activity recognition, using real data from the benchmark CAVIAR video surveil-

lance dataset1, as well as large volumes of synthetic CAVIAR data; and City Transport

Management (CTM) using data from the PRONTO2 project.

Part of our experimental evaluation aims to compare ILED with XHAIL. To achieve this

aim we had to implement XHAIL, because the original implementation was not publicly

available until recently [Bragaglia and Ray, 2014]. All experiments were conducted

on a 3.2 GHz Linux machine with 4 GB of RAM. The algorithms were implemented in

Python, using the Clingo3 Answer Set Solver [Gebser et al., 2012] as the main reasoning

component, and a Mongodb4 NoSQL database for the historical memory of the examples.

The code and datasets used in these experiments are available online5.

4.1 Activity Recognition

In activity recognition, our goal is to learn definitions of high-level events, such as fighting,
moving and meeting, from streams of low-level events like walking, standing, active and

abrupt, as well as spatio-temporal knowledge. We use the benchmark CAVIAR dataset for

experimentation. Details on the CAVIAR dataset can be found in [Artikis et al., 2010b].

CAVIAR contains noisy data mainly due to human errors in the annotation [Artikis

et al., 2010b; List et al., 2005]. ILED cannot handle noise (it cannot learn non-sound

hypotheses) and therefore for the experiments we manually selected a noise-free subset

of CAVIAR. The resulting dataset consists of 1000 examples (that is, data for 1000 distinct

time points) concerning the high-level events moving, meeting and fighting. These data,

selected from different parts of the CAVIAR dataset, were combined into a continuous

annotated stream of narrative atoms, with time ranging from 0 to 1000.
1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
2http://www.ict-pronto.org/
3http://potassco.sourceforge.net/
4http://www.mongodb.org/
5https://github.com/nkatzz/ILED

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
http://www.ict-pronto.org/
http://potassco.sourceforge.net/
http://www.mongodb.org/
https://github.com/nkatzz/ILED

74 Experimental Evaluation for ILED

In addition to the real data, we generated synthetic data, based on the manually-

developed CAVIAR event definitions described in [Artikis et al., 2010b]. In particu-

lar, streams of low-level events were created randomly and were then classified using

the rules of [Artikis et al., 2010b]. The generated data consists of approximately 105

examples, which amounts to 100 MB of data.

The synthetic data is much more complex than the real CAVIAR data. This is due to

two main reasons: First, the synthetic data includes significantly more initiations and

terminations of a high-level event, thus much larger learning effort is required to explain

it. Second, in the synthetic dataset more than one high-level event may be initiated or

terminated at the same time point. This results in Kernel Sets with more clauses, which

are hard to generalize simultaneously.

4.1.1 ILED vs XHAIL

The purpose of this experiment was to assess whether ILED can efficiently generate

hypotheses comparable in size and predictive quality to those of XHAIL. To this end, we

compared both systems on real and synthetic data using 10-fold cross validation with

replacement. For the real data, 90% of randomly selected examples, from the total of

1000 were used for training, while the remaining 10% was retained for testing. At each

run, the training data were presented to ILED in example windows of sizes 10, 50, 100.

The data were presented in one batch to XHAIL. For the synthetic data, 1000 examples

were randomly sampled at each run from the dataset for training, while the remaining

data were retained for testing. Similar to the real data experiments, ILED operated on

windows of sizes of 10, 50, 100 examples and XHAIL on a single batch.

Table 4.1 presents the experimental results. Training times are significantly higher for

XHAIL, due to the increased complexity of generalizing Kernel Sets that account for the

whole set of the presented examples at once. These Kernel Sets consisted, on average,

of 30 to 35 clauses consisting on average of 16-20 literals, in the case of the real data,

and 60 to 70 clauses with the same average length in the case of the synthetic data.

In contrast, ILED had to deal with much smaller Kernel Sets (fewer number of clauses

in a Kernel Set). The complexity of abductive search though, affects ILED as well, as

the size of the input windows grows. ILED handles the learning task relatively well (in

approximately 30 seconds) when the examples are presented in windows of 50 examples,

but the training time increases almost 15 times if the window size is doubled.

Concerning the size of the produced hypothesis, the results show that in the case of real

CAVIAR data, the hypotheses constructed by ILED are comparable in size with a hypothe-

sis constructed by XHAIL. In the case of synthetic data, the hypotheses returned by both

XHAIL and ILED were significantly more complex. Note that for ILED the hypothesis size

decreases as the window size increases. This is reflected in the number of revisions that

Experimental Evaluation for ILED 75

ILED XHAIL

Real CAVIAR data G = 10 G = 50 G = 100 G = 900

Training Time (sec) 34.15 23.04 286.74 1560.88
Revisions 11.2 9.1 5.2 −

Hypothesis size 17.82 17.54 17.5 15
Precision 98.713 99.767 99.971 99.973

Recall 99.789 99.845 99.988 99.992

Synthetic CAVIAR data G = 10 G = 50 G = 100 G = 1000

Training Time (sec) 38.92 33.87 468 21429
Revisions 28.7 15.4 12.2 −

Hypothesis size 143.52 138.46 126.43 118.18
Precision 55.713 57.613 63.236 63.822

Recall 68.213 71.813 71.997 71.918

TABLE 4.1: Comparison of ILED and XHAIL. G is the window granularity.

ILED performs, which is significantly smaller when the input comes in larger batches of

examples. In principle, the richer the input, the better the hypothesis that is initially

acquired, and consequently, the less the need for revisions in response to new training

instances. There is a trade-off between the window size (thus the complexity of the

abductive search) and the number of revisions. A small number of revisions on complex

data (i.e. larger windows) may have a greater total cost in terms of training time, as

compared to a greater number of revisions on simpler data (i.e. smaller windows). For

example, in the case of window size 100 for the real CAVIAR data, ILED performs 5

revisions on average and requires significantly more time than in the case of a window

size 50, where it performs 9 revisions on average. On the other hand, training times

for windows of size 50 are slightly better than those obtained when the examples are

presented in smaller windows of size 10. In this case, the “unit cost” of performing

revisions on a single window are comparable between windows of size 10 and 50. Thus

the overall cost in terms of training time is determined by the total number of revisions,

which is greater in the case of window size 10.

Concerning predictive quality, the results indicate that ILED’s precision and recall scores

are comparable to those of XHAIL’s. For larger input windows, precision and recall are

almost the same as those of XHAIL’s. This is because ILED produces better hypotheses

from larger input windows. Precision and recall are lower in the case of synthetic data

for both systems, because the test set in this case is much larger and more complex than

in the case of real data.

4.1.2 ILED Scalability

The purpose of this experiment was to assess the scalability of ILED. The experimental

setting was as follows: Sets of examples of varying sizes were randomly sampled from

the synthetic dataset. Each such example set was used as a training set in order to

acquire an initial hypothesis using ILED. Then a new window which did not satisfy the

76 Experimental Evaluation for ILED

0

10

20

30

40

50

60

70

1K examples ≈
6K atoms

10K examples ≈
60K atoms

50K examples ≈
300K atoms

100K examples ≈
600K atoms

Ti
m

e
(i

n
 m

in
u

te
s)

Historical Memory size

50 100Incoming window size:

FIGURE 4.1: Average times needed for ILED to revise an initial hypothesis in the face
of new evidence presented in windows of size 10, 50 and 100 examples. The initial
hypothesis was obtained from a training set of varying size (1K, 10K, 50K and 100K
examples) which subsequently served as the historical memory.

hypothesis at hand was randomly selected and presented to ILED, which subsequently

revised the initial hypothesis in order to account for both the historical memory (the

initial training set) and the new evidence. For historical memories ranging from 103

to 105 examples, a new training window of size 10, 50 and 100 was selected from the

whole dataset. The process was repeated ten times for each different combination of

historical memory and new window size. Figure 4.1 presents the average revision times.

The revision times for window sizes of 10 and 50 examples were very close and therefore

omitted to avoid clutter. The results indicate that revision time grows polynomially in

the size of the historical memory.

4.2 City Transport Management

In this section we present experimental results from the domain of City Transport Man-

agement (CTM), using data from the PRONTO6 project. In PRONTO, the goal was to

inform the decision-making of transport officials by recognising high-level events related

to the punctuality of a public transport vehicle (bus or tram), passenger/driver comfort

and safety. These high-level events were requested by the public transport control centre

of Helsinki, Finland, in order to support resource management. Low-level events were

provided by sensors installed in buses and trams, reporting on changes in position, ac-

celeration/deceleration, in-vehicle temperature, noise level and passenger density. At

the time of the project, the available datasets included only a subset of the anticipated

low-level event types as some low-level event detection components were not functional.

Therefore, a synthetic dataset was generated. The synthetic PRONTO data has proven

to be considerably more challenging for event recognition than the real data [Artikis

6http://www.ict-pronto.org/

http://www.ict-pronto.org/

Experimental Evaluation for ILED 77

et al., 2015a], and therefore we chose the former for evaluating ILED. The CTM dataset

contains 5 · 104 examples, which amount approximately to 70 MB of data.

In contrast to the activity recognition application, the manually developed event defini-

tions of CTM form a hierarchy. In these definitions, it is possible to define a function

level that maps high-level events to non-negative integers as follows: A level-1 event is

defined in terms of low-level events (input data) only. A level-n event is defined in terms

of at least one level-n−1 event and a possibly empty set of low-level events and high-level

events of level below n−1. Hierarchical definitions are significantly more complex to

learn compared to non-hierarchical ones. This is because initiations and terminations

of events in the lower levels of the hierarchy appear in the bodies of event definitions

in the higher levels, hence all target definitions must be learnt simultaneously. As we

show in the experiments, this has a striking effect on the learning effort. A solution for

simplifying the learning task is to utilize knowledge about the domain (the hierarchy),

learn event definitions separately, and use the acquired theories from lower levels of the

hierarchy as non-revisable background knowledge when learning event definitions for

the higher levels. A part of the CTM hierarchy is presented in Figure 4.2. Consider the

following fragment:

initiatedAt(punctuality(Id , nonPunctual), T)←
happensAt(stopEnter(Id, StopId, late), T).

(4.1)

initiatedAt(punctuality(Id , nonPunctual), T)←
happensAt(stopLeave(Id, StopId, early), T).

(4.2)

terminatedAt(punctuality(Id , nonPunctual), T)←
happensAt(stopEnter(Id, StopId, early), T).

(4.3)

terminatedAt(punctuality(Id , nonPunctual), T)←
happensAt(stopEnter(Id, StopId, scheduled), T).

(4.4)

initiatedAt(drivingQuality(Id , low), T)←
initiatedAt(punctuality(Id, nonPunctual), T),

holdsAt(drivingStyle(Id, unsafe), T).

(4.5)

initiatedAt(drivingQuality(Id , low), T)←
initiatedAt(drivingStyle(Id, unsafe), T),

holdsAt(punctuality(Id, nonPunctual), T).

(4.6)

terminatedAt(drivingQuality(Id , low), T)←
terminatedAt(punctuality(Id, nonPunctual), T).

(4.7)

terminatedAt(drivingQuality(Id , low), T)←
terminatedAt(drivingStyle(Id, unsafe), T).

(4.8)

Clauses (4.1) and (4.2) state that a period of time for which vehicle Id is said to be non-
punctual is initiated if it enters a stop later, or leaves a stop earlier than the scheduled

time. Clauses (4.3) and (4.4) state that the period for which vehicle Id is said to be non-

punctual is terminated when the vehicle arrives at a stop earlier than, or at the scheduled

78 Experimental Evaluation for ILED

Abrupt
Acceleration

Start

Abrupt
Acceleration

End

Abrupt
Deceleration

Start

Abrupt
Deceleration

End

Sharp
Turn
Start

Sharp
Turn
End

Enter
Stop

Leave
Stop

Abrupt
Acceleration

Abrupt
Deceleration

Punctuality
Sharp
Turn

Driving
Style

Driving
Quality

FIGURE 4.2: City Transport Management partial event hierarchy (we omit the whole
hierarchy to save space). Additional high-level events, not presented here are noise level,
vehicle temperature, and passenger density, which depend on corresponding low-level
events and affect driving quality.

time. The definition of non-punctual vehicle uses two low-level events, stopEnter and

stopLeave.

Clauses (4.5)-(4.8) define low driving quality. Essentially, driving quality is said to be

low when the driving style is unsafe and the vehicle is non-punctual. Driving quality

is defined in terms of high-level events (we omit the definition of driving style to save

space). Therefore, the bodies of the clauses defining driving quality include initiatedAt/2

and terminatedAt/2 literals.

4.2.1 ILED vs XHAIL

In this experiment, we tried to learn simultaneously definitions for all target concepts,

a total of nine interrelated high-level events, seven of which are level-1, one is level-2

and one is level-3. The total number of low-level events is eleven, while for both high-

level and low-level events, their negations are considered during learning. According

to the employed language bias, the definitions of all high-level events must be learnt

from data, while at the same time the high-level events may appear in the body of other

high-level event definitions, in the form of (potentially negated) holdsAt/2, initiatedAt/2,

or terminatedAt/2 predicates.

We used ten-fold cross validation with replacement, on small amounts of data, due to

the complexity of the learning task. In each run of the cross validation, we randomly

sampled 20 examples from the CTM dataset, 90% of which was used for training and

10% was retained for testing. This example size was selected after experimentation,

in order for XHAIL to be able to handle it in an acceptable time frame. Each sample

consisted of approximately 150 atoms (narrative and annotation). The examples were

given to ILED in windows of granularity 5 and 10, and to XHAIL in one batch. Table 4.2

Experimental Evaluation for ILED 79

ILED XHAIL

G = 5 G = 10 G = 20

Training Time (hours) 1.35 1.88 4.35
Hypothesis size 28.32 24.13 24.02

Revisions 14.78 13.42 −
Precision 63.344 64.644 66.245

Recall 59.832 61.423 62.567

TABLE 4.2: Comparative performance of ILED and XHAIL on selected subsets of the
CTM dataset each containing 20 examples. G is the granularity of the windows.

presents the average training times, hypothesis size, number of revisions, precision and

recall.

ILED took on average 1-2 hours to complete the learning task, for windows of 5 and

10 examples, while XHAIL required more than 4 hours on average to learn hypotheses

from batches of 20 examples. Compared to activity recognition, the learning setting

requires larger Kernel Set structures that are hard to reason with. An average Kernel Set

generated from a batch of just 20 examples consisted of approximately 30-35 clauses,

with 60-70 literals each.

Like the activity recognition experiments, precision and recall scores for ILED are com-

parable to those of XHAIL, with the latter being slightly better. Unlike the activity

recognition experiments, precision and recall had a large diversity between different

runs. Due to the complexity of the CTM dataset, the constructed hypotheses had a large

diversity, depending on the random samples that were used for training. For example,

some high-level event definitions were unnecessarily lengthy and difficult to be under-

stood by a human expert. On the other hand, some level-1 definitions could, in some

runs of the experiment, be learnt correctly even from a limited amount of data. Such

definitions are fairly simple, consisting of one initiation and one termination rule, with

one body literal in each case.

This experiment demonstrates several limitations of learning in large and complex appli-

cations. The complexity of the domain increases the intensity of the learning task, which

in turn makes training times forbidding, even for a small amount of data such as 20

examples (approximately 150 atoms). This forces one to process small sets of examples

at a time, which in complex domains like CTM, results in over-fitted theories and rapid

increase in hypothesis size.

4.2.2 Learning With Hierarchical Bias

In an effort to improve the experimental results, we utilized domain knowledge about

the event hierarchy in CTM and attempted to learn high-level events in different levels

separately. To do so, we had to learn a complete definition for a level-n event from the

entire dataset, before utilizing it as background knowledge in the learning process of a

80 Experimental Evaluation for ILED

ILED

level-1 G = 10 G = 50 G = 100

Training Time (min) 4.46 – 4.88 5.78 – 6.44 6.24 – 6.88
Revisions 2 – 11 2 – 9 2 – 9

Hypothesis size 4 – 18 4 – 16 4 – 16
Precision 100% 100% 100%

Recall 100% 100% 100%

level-2 G = 10 G = 50 G = 100

Training Time (min) 8.76 9.14 9.86
Revisions 24 17 17

Hypothesis size 31 27 27
Precision 100% 100% 100%

Recall 100% 100% 100%

level-3 G = 10 G = 50 G = 100

Training Time (min) 5.78 6.14 6.78
Revisions 6 5 5

Hypothesis size 13 10 10
Precision 100% 100% 100%

Recall 100% 100% 100%

TABLE 4.3: ILED with hierarchical bias.

level-n+ 1 event. To simplify the learning task further, we also used expert knowledge

about the relation between specific low-level and high-level events, in order to exclude

from the language bias mode declarations which were irrelevant to the high-level event

that was being learnt at each time.

The experimental setting was therefore as follows: Starting from the level-1 target events,

we processed the whole CTM dataset in windows of 10, 50 and 100 examples with ILED.

Each high-level event was learnt independently of the others. Once complete definitions

for all level-1 high-level events were constructed, they were added to the background

knowledge. Then we proceeded with learning the definition of the single level-2 event

(see Figure 4.2). Finally, after successfully constructing the level-2 definition, we per-

formed learning in the top-level of the hierarchy, using the previously constructed level-1

and level-2 event definitions as background knowledge. We did not attempt a comparison

with XHAIL because it could not handle the entire dataset.

Table 4.3 presents the results. For level-1 events, scores are presented as minimum-

maximum pairs. For instance, the training times for level-1 events with windows of 10

examples, range from 4.46 to 4.88 minutes. Levels 2 and 3 have just one definition

each, therefore Table 4.3 presents the respective scores from each run. Training times,

hypotheses sizes and overall numbers of revisions are comparable for all levels of the

event hierarchy. Level-1 event definitions were the easiest to acquire, with training times

ranging approximately between 4.50 to 7 minutes. This was expected since clauses in

level-1 definitions are significantly simpler than level-2 and level-3 ones. The level-2

event definition was the hardest to construct with training times ranging between 8

and 10 minutes, while a significant number of revisions was required for all window

Experimental Evaluation for ILED 81

granularities. The definition of this high-level event (drivingStyle) is more complex than

the simpler level-3 definition, for which training times are comparable to the ones of

level-1 events.

Interestingly, we observed that most of the training time was devoted to checking an

already correct definition against the part of the dataset that had not been processed yet.

That is, for all target events, ILED converged to a complete definition in about 1.5 to 3

minutes after the initiation of the learning process. From that point on, the extra time

was spent on testing the hypothesis against the new incoming data.

Window granularity affected somewhat the produced hypothesis for all target high-level

events. Indeed, the definitions constructed with windows of 10 examples were slightly

larger than the ones constructed with larger window sizes of 50 and 100 examples.

Notably, the definitions constructed with windows of granularity 50 and 100, were found

concise, meaningful and very close to the actual hand-crafted rules that were utilized in

PRONTO.

4.3 Summary

In this chapter we presented an experimental evaluation for ILED, using real and syn-

thetic data from two challenging real-life applications: Human activity recognition and

transport management. The obtained results indicate that ILED scales adequately to large

data volumes of sequential data with a time-like structure that is typical of event-based

applications. It is significantly more efficient than XHAIL, without compromising the

quality of the generated hypothesis in terms of predictive accuracy and hypothesis size.

Moreover, we explored ILED’s performance in more challenging event recognition appli-

cations (like the city transport management use case), that involve event hierarchies, and

pointed-out some of ILED’s limitations in such domains. Despite these limitations, our

results indicate that by exploiting hierarchical bias, i.e. knowledge about the hierarchy,

provided by domain experts, ILED is able to efficiently learn useful hypotheses even in

these harder domains. In contrast, XHAIL could not handle the data volume in the city

transport management experiment.

5 | OLED: Online Learning of Event Defi-

nitions

In the previous chapter we presented a scalable, incremental strategy for learning event

definitions in the form of Event Calculus theories from data that arrive over time. This

strategy is designed to induce sound hypotheses and it minimizes the number of passes

over the training set, that are required in order to learn a hypothesis. However, this

learning strategy is inappropriate for many applications. First, real-life data comprise

noise, therefore most of the times it is desirable to learn a less-than-perfect model with a

good fit in the data, rather than learning nothing at all, since learning sound hypotheses

from noisy data is not possible. Second, event recognition applications typically deal

with continuous data flows, i.e. data that arrive at a high velocity, in potentially infinite

streams. Methods that extract insights from such streams need to operate within tight

memory and time constraints, building a decision model by a single pass over the training

data [Gama, 2010; Gama and Gaber, 2007].

In this chapter we present OLED (Online Learning of Event Definitions), an ILP system

that learns Event Calculus theories in a single pass over a data stream. OLED uses the

Hoeffding bound [Hoeffding, 1963], a statistical tool that allows to build decision models

using only a small subset of the data, by relating the size of this subset to a user-defined

confidence level on the error margin of not making a (globally) optimal decision at a

certain point during model construction [Dhurandhar and Dobra, 2012; Domingos and

Hulten, 2000; Gama et al., 2011]. OLED learns a clause in a top-down fashion, by

gradually adding literals to its body. Instead of evaluating each candidate specialization

on the entire input, it accumulates training data from the stream, until the Hoeffding

bound allows to select the best specialization. The instances used to make this decision

are not stored or reprocessed, but discarded as soon as OLED extracts from them the

necessary statistics for clause evaluation.

In the remainder of this chapter we discuss OLED in detail, starting with some necessary

background and related work on learning from streams.

84 OLED: Online Learning of Event Definitions

5.1 Learning from Data Streams

In this section we present some basic background on online learning for the purposes

of this thesis. We begin with the differences between offline/online learning settings

and the need for approximation algorithms for the latter. We then present a general-

purpose strategy for online learning in propositional domains, which OLED “upgrades”

to the relational case, based on approximating an “ideal”, offline model by an online

counterpart.

5.1.1 Learning From Data Streams

There are some fundamental differences between learning from static data and learning

from data streams [Aggarwal, 2007, 2015; Chaudhry et al., 2006; Gaber et al., 2014;

Gama, 2010; Leskovec et al., 2014; Muthukrishnan, 2005; Saitta, 2010]. While a learner

may in principle spend unlimited time and memory processing data from a static dataset,

it must operate within fixed time and memory resources when learning from a stream.

And while in the offline scenario it can see the training examples as many times as

needed, while learning online it must construct a model with a single pass over the data,

as the data cannot be stored.

The limitations in the available resources make algorithms that extract insights from

streams to resort to a trade-off between predictive accuracy and efficiency. Typically,

online learners relax the requirement for exact/optimal models and isntead opt for good

approximations of such models, utilizing techniques that allow for fast incorporation of

new knowledge, using only a limited amount of resources [Gaber et al., 2014; Gama,

2010]. Such techniques typically combine approximation [Vazirani, 2013] with random-
ization [Motwani and Raghavan, 2010]. Approximate algorithms do not guarantee the

best solution to a problem, but instead allow one to get as close as possible to such a

solution (i.e. within an error margin ε) in a reasonable amount of time. In turn, ran-

domized algorithms allow a probability δ of failure (not finding a solution). Techniques

that combine approximation with randomization, often called (ε, δ)-approximations, pro-

vide solutions with probability 1 − δ, within an error margin of ε. Some examples of

using (ε, δ)-approximation frameworks to learn from streams include frequent itemset

mining with association rules [Manku and Motwani, 2002] and k-means clustering in

data streams [Cormode et al., 2007].

One of the most successful (ε, δ)-approximation algorithms for learning from data streams

is the HoeffdingTree algorithm used in the VDFT system for online learning of decision

trees [Domingos and Hulten, 2000; Hulten et al., 2005]. The HoeffdingTree algorithm

relies on the Hoeffding bound [Hoeffding, 1963] (Definition 5.1).

OLED: Online Learning of Event Definitions 85

Definition 5.1 (The Hoeffding Bound). Let X be a random variable with range in [0, 1]

and an observed mean X of its values after n independent observations. Then with

probability 1 − δ, the true mean X̂ of the X variable lies in an interval (X − ε,X + ε),

where

ε =

√
ln(1/δ)

2n

By associating the random variable X in Definition 5.1 with the outcome of an evaluation

function that assesses a learner’s performance in a machine learning context, the Hoeffd-

ing bound correlates the learner’s loss ε with the size n of the training set. The larger

the training set size, the smaller the error. Therefore, the Hoeffding bound provides a

framework for devising scalable search heuristics, since it allows to map, with probability

1 − δ, an arbitralily large input space to a small fraction of size n = O(1
ε2
ln1

δ) [Gama,

2010], given an acceptable error margin ε.

Using a Hoeffding bound-based heuristic, a model may be constructed by using a limited

(n-many) number of examples at each step of the training process, to make a decision that

is an (ε, δ)-approximation of the optimal decision for that particular step. For instance, the

HoeffdingTree algorithm learns decision trees in an online fashion, by using a Hoeffding

bound-based heuristic to decide when (i.e. after how many examples) it should split a

node on a particular attribute, thus generating new leaves in the tree. Moreover, thanks

to the Hoeffding bound, the algorithm is able to guarantee that the learnt model is good

approximation of its optimal counterpart, i.e. the online decision tree is not “too far away”

(it does not significantly differ) from one that would be induced from infinite training

examples. In addition to its usage for online learning of decision trees [Domingos and

Hulten, 2000; Hulten et al., 2005, 2001], the Hoeffding bound has also been used for

online clustering [Domingos and Hulten, 2001; Rodrigues et al., 2008], online learning

of regression trees [Ikonomovska et al., 2011] and online decision rule learning [Gama

et al., 2011; Kosina and Gama, 2012].

An additional attractive property of the Hoeffding bound is that it is distribution-free [Dhu-

randhar and Dobra, 2012], i.e. its validity is independent of the underlying probability

distribution of the observations. This makes it a powerful tool for devising any-purpose,

scalable search heuristics, although it comes with the price of the Hoeffding bound being

more conservative than distribution-dependent bounds (i.e. it needs a larger number n

of observations to reach the same (ε, δ)-approximation).

Numerous other distribution-free bounds have been proposed in machine learning, see

[Langford, 2005] for a review. Such bounds have been used as estimators of classifiers’

performance, providing (ε, δ)-approximations of the generalization error, i.e. the true,

expected error of a classifier on the entire (possibly infinite) input, given its empirical
error, i.e. the observable classifier’s error on a data sample. In addition to the Hoeffding

86 OLED: Online Learning of Event Definitions

bound, prominent examples of distribution-free bounds include the Vapnik-Chervonenkis

bounds (VC bounds) [Vapnik and Vapnik, 1998], Probably Approximately Correct Bayes

bounds (PAC Bayes bounds) [McAllester, 1999], Occam Razor bounds [Blumer et al.,

1990], Sample Compression bounds [Floyd and Warmuth, 1995] and Rademacher Com-

plexity bounds [Bennett, 1962]. All these bounds have been studied theoretically and

experimentally [Langford, 2005] and the results indicate that the Hoeffding bound (and

the closely related Chernoff bound [Chernoff, 1952]) is much tighter than the aforemen-

tioned rival bound and provides a superior tool in approximating the true error given

the empirical one in machine learning [Japkowicz and Shah, 2011; Langford, 2005;

Shalev-Shwartz and Ben-David, 2014; Vovk et al., 2005].

5.2 Online Inductive Logic Programming

In this section we propose a general-purpose, online ILP approach, that uses a Hoeffding

bound-based search heuristic to learn individual clauses in an online fashion. The goal,

the details of which are presented in Section 5.3, is to properly adjust this general ILP

framework to address the particular difficulties of learning Event Calculus programs, as

discussed in the previous chapters of this thesis, towards an online ILP learner for event

definitions.

As discussed in Section 2.3.2, ILP learners typically employ a separate-and-conquer strat-

egy: clauses that cover subsets of the examples are constructed one by one recursively,

until all examples are covered. Each clause is constructed in a top-down fashion, start-

ing from an overly general clause and gradually specializing it by adding literals to its

body. The process is guided by a heuristic function G that assesses the quality of each

specialization on the entire training set. At each step, the literal (or set of literals) with

the optimal G-score is selected and the process continues until certain criteria are met.

To adapt this core strategy to an online setting, we use the Hoeffding bound to evaluate

candidate specializations on a subset of the training interpretations, instead of evaluating

them on the entire input. To do so, we use an argument adapted from [Domingos and

Hulten, 2000]. Let r be a clause and G a clause evaluation function with range in [0, 1].

The evaluation function that we use in this work will be discussed shortly. Assume also

that after n training instances, r1 is r’s specialization with the highest observed mean

G-score G and r2 is the second best one, i.e. ∆G = G(r1) − G(r2) > 0. Then by the

Hoeffding bound we have that for the true mean of the scores’ difference ∆Ĝ it holds

∆Ĝ > ∆G − ε, with probability 1 − δ, where ε =

√
ln(1/δ)

2n . Hence, if ∆G > ε then

∆Ĝ > 0, implying that r1 is indeed the best specialization to select at this point, with

probability 1 − δ. In order to decide which specialization to select, it thus suffices to

accumulate observations from the input stream until ∆G > ε. Since ε decreases with

the number of observations, given a desired δ, the number of observations n needed to

OLED: Online Learning of Event Definitions 87

reach a decision may be traded for a tolerable generalization error ε of not selecting the

optimal specialization at a certain choice point. The observations need not be stored

or reprocessed. We process each observation once to extract the necessary statistics for

the computation of the G-score of each candidate specialization. This gives rise to a

single-pass clause construction strategy.

Recall from Section 2.3.1 that throughout this thesis the Learning from Interpretations
ILP setting is assumed, where each interpretation is independent form others [Blockeel

et al., 1999]. This guarantees the independence of observations that is necessary for

using the Hoeffding bound.

5.3 Online Learning of Event Calculus Theories

In this section we adapt the generic online ILP framework described in Section 5.2

towards online learning of event definitions in the form of Event Calculus programs.

We begin by relaxing the requirement for a hypothesis H to cover every training inter-

pretation, in order to account for noise, and thus seek a theory with a good fit in the

training data. To this end, we define true positive, false positive and false negative atoms

as follows:

Definition 5.2 (TP, FP, FN atoms). Let B consist of the domain-independent EC axioms,

r be a clause and I an interpretation. We denote by narrative(I) and annotation(I) the

narrative and the annotation part of I respectively (see also Table 2.2(a)). We denote

by M r
I an answer set of B ∪ narrative(I) ∪ r . Given an annotation atom α we say that:

• α is a true positive (TP) atom w.r.t. clause r iff α ∈ annotation(I) ∩M r
I .

• α is a false positive (FP) atom w.r.t. clause r iff α ∈M r
I but α /∈ annotation(I).

• α is a false negative (FN) atom w.r.t. clause r , iff α ∈ annotation(I) but α /∈M r
I .

�

5.3.1 Evaluating Clauses

We seek a theory H that maximizes the TP atoms, while minimizing the FP and FN atoms,

collectively for all its clauses. To do so, we maintain a count per clause for each such atom.

For an initiatedAt clause, its TP (resp. FP) count is increased each time it correctly (resp.

incorrectly) initiates a complex event (according to the annotation). For a terminatedAt
clause, its TP count is increased each time it correctly allows a complex event to persist,

by not terminating it. Its FN count is increased when it incorrectly terminates a complex

event.

88 OLED: Online Learning of Event Definitions

As discussed in previous chapters, when learning structure in Horn logic with ILP, a

theory H is augmented with new clauses to increase its total TP count, while existing

clauses in H are specialized to decrease the FP count. This strategy is in principle not

applicable to the problem at hand, as demonstrated by Example 2.4 of Section 2.4.2.

When learning domain-specific axioms in the Event Calculus, the addition of new clauses

may be necessary to eliminate FPs, while clause specialization may be necessary to

increase TPs, as detailed below. Given a theory H and an interpretation I, assume that

B ∪H does not cover I. Then one of the following holds:

1. The FN case. There is at least one FN atom α. This may be due to one of the

following:

(a) No initiatedAt clause in H “fires”, failing to initiate the complex event that

corresponds to α, when it should. In this case, generating a new initiatedAt
clause, eliminates the FN atom, turning it into a TP.

(b) One or more terminatedAt clauses in H are over-general, terminating the

complex event that corresponds to α when they should not. Specializing the

over-general clauses, eliminates the FN atom, turning it into a TP.

2. The FP case. There is at least one FP atom α. This may be due to one of the

following:

(a) No terminatedAt clause in H “fires”, failing to terminate the complex event

that corresponds to α when it should, so α erroneously persists by inertia.

Generating a new terminatedAt clause eliminates the FP.

(b) One or more initiatedAt clauses are over-general, re-initiating a corresponding

complex event when they should not. Specializing the over-general clauses

eliminates the FP.

Combining the above observations we derive an overall strategy for heuristically driving

the generation of a good hypothesis H. We try to maximize both precision and recall

for H as a whole. To improve precision, we either specialize existing initiatedAt clauses,

which are already in H, or we generate (add to H) new terminatedAt clauses, since

both these actions reduce the total FP count for H. Dually, to improve recall we either

specialize existing terminatedAt clauses, or we generates new initiatedAt clauses, since

both these actions reduce the total FN count, while increasing the total TP count. Since in

this strategy existing clauses (clauses already in H) are specialized to improve precision

and recall in the case of initiatedAt and terminatedAt clauses respectively, we derive the

following scoring function for such clauses:

Definition 5.3 (Clause evaluation function). Let us denote by TPr ,FPr and FNr respec-

tively, the accumulated TP, FP and FN counts of clause r over the input stream. The

OLED: Online Learning of Event Definitions 89

Algorithm 5 OnlineLearning(I, B,G, δ, d,Nmin ,Smin)
Input: I: A stream of training interpretations; B: Background knowledge; G: Clause evaluation
function; δ : Confidence for the Hoeffding test; d : Specialization depth; Smin : Clause G-score
quality threshold.

1: H := ∅
2: for all I ∈ I do
3: Update TPr ,FPr ,FNr and Nr counts from I, for each r ∈ H and each r′ ∈ ρd(r),

where Nr denotes the number of examples on which r has been evaluated so far.
4: if ExpandTheory(B,H, I) then
5: H ← H ∪ StartNewClause(B, I)
6: else
7: for all clause r ∈ H do
8: r ← ExpandClause(r,G, δ)

9: H ← Prune(H,Smin)

10: return H
11: function StartNewClause(B, I):
12: Generate a bottom clause ⊥ from I and B
13: r := head(⊥)←
14: ⊥r := ⊥
15: Nr = FPr = TPr = FNr := 0
16: return r
17: function ExpandClause(r,G, δ):

18: Compute ε =
√

ln(1/δ)
2Nr

and let G denote the mean value of a clause’s G-score

19: Let r1 be the best specialization of r, r2 the second best and ∆G = G(r1)−G(r2)
20: Let τ equal the mean value of ε observed so far
21: if G(r1) > G(r) and [∆G > ε or τ < ε]:
22: ⊥r1 := ⊥r
23: return r1
24: else return r
25: function prune(H,Smin):
26: let k be the average number of examples Nr, for all r ∈ H, that have been used so far by

ExpandClause, in order to expand clauses to their best-scoring specialization
27: for all r ∈ H do
28: if r has not “changed” for k′ ≥ k examples then
29: if Smin −G(r) > ε, where ε is the current Hoeffding bound then
30: H ← H r r
31: return H

clause evaluation function G for a clause r is a function with range in [0, 1] defined as

follows:

G(r) =

precision︷ ︸︸ ︷
TPr

TPr + FPr
if r is an initiatedAt clause

TPr
TPr + FNr︸ ︷︷ ︸

recall

if r is a terminatedAt clause

�

90 OLED: Online Learning of Event Definitions

Process Cause of Failure Action Justification

Linit FP Clause expansion Case 2(b)
Linit FN Theory expansion Case 1(a)
Lterm FP Theory expansion Case 2(a)
Lterm FN Clause expansion Case 1(b)

TABLE 5.1: Action dispatching scheme for OLED’s initiatedAt (Linit) and terminatedAt
(Lterm) parallel processes.

5.3.2 The OLED system

In this section we discuss the main functionality of OLED, presented in Algorithm 5, in

detail. Learning begins with an empty hypothesis H. On the arrival of new interpreta-

tions, OLED either expands H, by generating a new clause, or tries to expand (specialize)

an existing clause. Clauses of low quality are pruned, after they have been evaluated

on a sufficient number of examples. Each incoming interpretation is processed once, to

extract the necessary statistics for clause evaluation in the form of TP, FP and FN counts,

and is subsequently discarded.

To distinguish between the different cases presented in Section 5.3.1, initiation and

termination clauses are learnt separately in parallel, by two processes Linit and Lterm

respectively (each of these processes runs separately Algorithm 5). The input stream is

forwarded to both of these processes at the same time. Thanks to this decoupling, when

either process fails to account for a training interpretation, it is able to infer the causes

of failure in terms of FP and FN atoms. In particular Linit detects FP/FN-failures based on

cases 2(b)/1(a) respectively and Lterm detects FP/FN-failures based on cases 2(a)/1(b).

Depending on the cause of failure, the process dispatches control either to the theory

expansion, or the clause expansion subroutines. The choice among these actions is made

by the boolean function ExpandTheory in line 4 of Algorithm 5. Action selection is based

on the analysis of Section 5.3.1 and summarised in Table 5.1. Below we present an

example for illustration purposes.

Example 5.1. Initially, processes Linit and Lterm start with two empty hypotheses, Hinit and
Hterm. Assume that the annotation in one of the incoming interpretations dictates that the
moving complex event holds at time 10, while it does not hold at time 9. Since no clause in
Hinit yet exists to initiate moving at time 9, Linit detects the moving instance at time 10 as
an FN and proceeds to theory expansion (second case in Table 5.1), generating an initiation
clause for moving. Lterm is not concerned with initiation conditions, so it will take no actions
in this case. Then, a new interpretation arrives, where the annotation dictates that moving

holds at time 20, but does not hold at time 21. In this case, since no clause yet exists in
Hterm to terminate moving at time 20, Lterm will detect an FP instance at time 21. It will
then proceed to theory expansion (third case in Table 5.1), generating a new termination
condition for moving. At the same time, assume that the initiation clause in Hinit is over-
general and erroneously re-initiates moving at time 20, generating an FP instance for the

OLED: Online Learning of Event Definitions 91

OLED

Theory
Expan-
sion

Clause
Eval-
uation

Clause
Exa-

pansion

Clause
Pruning

EC Axioms

holdsAt(F ,T + 1) ←
initiatedAt(F ,T).

holdsAt(F ,T + 1) ←
holdsAt(F ,T),
not terminatedAt(F ,T).

Learnt Hypothesis Ht:

initiatedAt(moving(X ,Y),T) ←
holdsAt(close(X ,Y , 34),T).

terminatedAt(moving(X ,Y),T) ←
not holdsAt(close(X ,Y , 34),T).

Training example It

holdsAt(moving(id1 , id2), 10)
happensAt(walking(id1), 9),
happensAt(walking(id2), 9),
holdsAt(close(id1 , id2 , 34), 9),
holdsAt(orientation(id1 , id2 , 45), 9)

Data Stream/Training Examples

. . .

. . .
Training example It′

not holdsAt(moving(id1 , id2), 20)
happensAt(active(id1), 19),
happensAt(running(id2), 19),
not holdsAt(close(id1 , id2 , 34), 19),
holdsAt(orientation(id1 , id2 , 120), 19)

. . .

FIGURE 5.1: Illustration of OLED’s learning process.

Linit process at time 21. In response to that, Linit will proceed to clause expansion (first case
in Table 5.1), penalizing the over-general initiation clause by increasing its FP count, thus
contributing towards its potential replacement by one of its specializations.

In the remainder of this section, we go into the details of theory and clause expansion,

as well as other interesting aspects of OLED’s functionality, which is illustrated in Figure

5.1.

Theory Expansion. The theory expansion process is handled by the StartNewClause

function in Algorithm 5. A new clause is generated in a data-driven fashion, by con-

structing a bottom clause ⊥ [Muggleton, 1995b] from a training interpretation. Theory

expansion consists of the addition of the empty-bodied clause r = head(⊥)← to theory

H. From that point on, r is gradually specialized by the addition of literals from ⊥ to its

body. We denote by ⊥r the bottom clause associated to clause r. Figure 5.2 illustrates

the generation of a new clause from a bottom clause.

As discussed in Section 2.3.2, in a typical ILP setting, a bottom clause is constructed

by selecting a target predicate instance e as a “seed”, placing it in the head of a newly

generated clause ⊥ with an empty body. A set of atoms that follow deductively from e

and the background knowledge are placed in the body of ⊥. Constants in ⊥ are replaced

by variables, where appropriate, as indicated by a particular language bias, which is

92 OLED: Online Learning of Event Definitions

Training example

holdsAt(moving(id1 , id2), 10)
happensAt(walking(id1), 9),
happensAt(walking(id2), 9),
holdsAt(close(id1 , id2 , 25), 9),
holdsAt(close(id2 , id1 , 25), 9),
holdsAt(orientation(id1 , id2 , 45), 9)
holdsAt(orientation(id2 , id1 , 45), 9)

Bottom Clause:

initiatedAt(moving(X,Y), T)←
happensAt(walking(X), T),
happensAt(walking(Y), T),
holdsAt(close(X,Y, 25), T),
holdsAt(close(Y,X, 25), T),
holdsAt(orientation(X,Y, 45), T),
holdsAt(orientation(Y,X, 45), T).

New clause r:

initiatedAt(moving(X,Y), T)←

Specializations in ρ1(r):

initiatedAt(moving(X,Y), T)←
happensAt(walking(X), T).

initiatedAt(moving(X,Y), T)←
happensAt(walking(Y), T).

initiatedAt(moving(X,Y), T)←
holdsAt(close(X,Y, 25), T).

initiatedAt(moving(X,Y), T)←
holdsAt(close(Y,X, 25), T).

initiatedAt(moving(X,Y), T)←
holdsAt(orientation(X,Y, 45), T).

initiatedAt(moving(X,Y), T)←
holdsAt(orientation(Y,X, 45), T).

FIGURE 5.2: Generation of a new clause r and its specializations in ρ1(r).

typically mode declarations (see also Section 2.3.2). To find a clause with a good fit in

the data, a refinement operator ρ is used to generate candidate clauses that θ-subsume

⊥.

Due to the fact that learning domain-specific axioms in the Event Calculus falls in the

non-Observational Predicate Learning class of problems (see Section 2.4.1), the afore-

mentioned approach cannot be used directly. As in the case of XHAIL and ILED, OLED
uses abduction as a workaround in order to obtain the missing target predicate instances

and then construct bottom clauses from them. The process has been detailed in previous

sections in this thesis, e.g. see Sections 2.4.1 and 2.4.3, as well as Example 2.2.

OLED is an any-time algorithm, i.e. it may output the hypothesis constructed so far at

any time during the learning process. We allow a “warm-up” period, in the form of

a minimum number of training instances Nmin on which a clause r must be evaluated

before it can be included in an output hypothesis.

Clause Expansion. We use the Hoeffding bound to select among competing specializa-

tions of a clause r. These specializations are generated by adding one or more literals

from ⊥r to the body of r. An input parameter d for specialization depth serves as an upper

bound to the number of literals that may be added each time. We use ρd(r) to denote

the set of specializations for clause r. Formally:

OLED: Online Learning of Event Definitions 93

ρd(r) =

{head(r)←} if d = 0

{head(r)← body(r) ∧D | D ⊂ body(⊥r) and |D | ≤ d} else

For instance, ρ1(r) consists of all “one-step” specializations of r (i.e. those that result

by the addition of a single literal from ⊥r), while ρ2(r) consists of ρ1(r) plus all “two-

step” specializations, and so on. Figure 5.2 illustrates the specializations in ρ1(r) for an

empty-bodied clause r.

While specializing a clause r, it may be wasteful to evaluate specializations that result

by the addition of certain literals to the body of r, since such specializations are of worst

quality than the parent clause r. However, such literals may be necessary in the special-

ization process for the introduction of fresh variables in the clause, and while adding

them alone to r does not yield any gain, adding them in conjunction with other literals

may yield a specialization of high quality. As an example, consider the clause that results

by adding the literal before(T2 ,T1) to the empty-bodied clause initiatedAt(fluent ,T1)←.

Although the clause

initiatedAt(fluent ,T1)←
before(T2 ,T1).

does not make much sense, using before/2 in the specialization process might be neces-

sary for introducing the fresh variable T2, and using before(T2 ,T1) in conjunction with

another literal, may yield a good clause, e.g.

initiatedAt(fluent ,T1)←
before(T2 ,T1),

happensAt(event ,T2).

Therefore, it is helpful to be able to perform multiple specialization steps at once in

order to obtain a clause of better quality than the current one. To allow for that, OLED
supports “look-ahead specifications” [Blockeel and De Raedt, 1998], i.e. user-defined

directives that instruct the system to try particular literals in conjunction, thus searching

“deeper” in the specialization lattice. For this to happen, the corresponding literals need

to be found together in the bottom clause that is used as a search space.

A clause r is expanded, i.e. replaced by its best-scoring specialization from ρd(r), when

a sufficient number of interpretations have been seen, for which ∆G > ε, as described

94 OLED: Online Learning of Event Definitions

in Section 5.2, where ∆G is the observed difference between the mean G-scores of r’s

best and second best specializations and ε is given from Definition 5.1. To ensure that

no clause r is replaced by a specialization of lower quality, r itself is also considered

as a potential candidate along with its specializations from ρd(r). This ensures that

expanding a clause to its best-scoring specialization is better, with probability 1− δ, than

not expanding it at all.

An important difference between learning from static and streaming data is that, while

in the former case a learner may have random access to the training data, in the latter

case it is obliged to process the data sequentially, in the order in which they arrive [Gaber

et al., 2014]. As a result, online learners are typically subject to order effects, i.e. they

are sensitive to the order in which the examples are presented. Using the Hoeffding

bound allows OLED to mitigate such effects, since clause expansion is postponed until

sufficient evidence for the quality of the candidate specializations is provided by the data.

Clause evaluation. To allow for clause evaluation, OLED maintains statistics for each

clause r ∈ H and each of its specializations in ρd(r), over the training sequence, as de-

scribed above. The sufficient statistics are the cumulative TPr, FPr and FNr counts per

clause, in order to compute the G-score (Definition 5.3) for each clause r. Additionally,

a count Nr of the training instances on which clause r has been evaluated so far is main-

tained, in order to calculate the Hoeffding bound (Definition 5.1). The TPr, FPr, FNr

and Nr counts are updated for each clause r, whenever a new training interpretation

arrives.

Tie-breaking. When the scores of two or more specializations are very similar, a large

number of training instances may be required to decide between them. This could

be wasteful, since any one of the specializations may be chosen. In such cases, as in

[Domingos and Hulten, 2000], we break ties as follows: Instead of waiting until ∆G > ε,

as required by the Hoeffding bound-based heuristic, we expand r to its best-scoring

specialization if ∆G < ε < τ , where τ is a tie-breaking threshold. Recall that ε decreases

with the number n of training examples, thus it may fall below τ . We follow [Yang and

Fong, 2011] and use an adaptive tie-breaking threshold, set to the mean value of ε that

has been observed so far in the training process (see line 20, Algorithm 5). In the case

of a tie between r itself and its best-scoring specialization, we follow a conservative

approach and do not expand r, i.e. such ties are broken in favor of the parent clause. To

avoid breaking ties between two equally good specializations r1 and r2 too early, we allow

a “grace period” in tie-breaking, in the form of a minimum number of examples Nmin on

which r1 and r2 must have been evaluated before we select one of them. The problem

of breaking ties too early may occur for instance in the case where G(r1) = G(r2), after

evaluating r1 and r2 on only a very small number of examples. Then ∆G = 0 < τ , so

based on the heuristic mentioned above, there is a tie between r1 and r2. However, this

is misleading because if r1 and r2 are evaluated on a larger number of examples, the

situation between them may change.

OLED: Online Learning of Event Definitions 95

Clause pruning. Often, bad clauses may be constructed, whose quality cannot be im-

proved. This could happen when e.g. a clause has been learnt from a noisy example.

Maintaining these clauses and constantly evaluating them on new examples is pointless

and wasteful. To address this issue, OLED supports the removal of low-quality clauses

during the learning process. This happens when a low-quality clause r does not “change”

for a long period of time. This means either that r cannot be specialized any further (it

has exhausted all antecedent literals from its bottom clause), or that none of its available

specializations yields any significant gain, therefore the specialization process is “stuck”.

More formally, online clause pruning is implemented as follows: Let n be the number of

examples that suffice to decide when to expand a clause to its best-scoring specialization,

according to the Hoeffding bound-based heuristic, and let k be the average value of such

n’s, observed so far in the training process. If a clause r does not “change” (does not get

specialized) after k′ ≥ k examples, and its quality is low, then it is removed. To decide

if a clause is of low quality, we also use the Hoeffding bound: Given a quality threshold

Smin, at the point when Smin−G(r) > ε, where ε is given by Definition 5.1, we have that

with probability 1 − δ, the true mean of r’s G-score is lower than the quality threshold

Smin. Therefore r should be removed.

5.4 Discussion and Related Work

The need for deriving Hoeffding-like bounds for relational data has been identified in

the field of Statistical Relational Learning [Dhurandhar and Dobra, 2012; Getoor, 2007],

since such bounds can be used as the basis for sampling algorithms. Given the above dis-

cussion, an additional application of such bounds is the development of scalable learning

algorithms in relational domains. However, deriving such bounds for relational data is

not straightforward. The reason is that distribution-free bounds require an independently
and identically distributed (idd) assumption on the data, which is omnipresent in propo-

sitional domains, but does not hold in principle in structured data, due to relational

dependencies between the variables. This issue has been addressed in the literature

[Dhurandhar and Dobra, 2010, 2012; Jensen, 1999; Jensen and Neville, 2002], deriving

necessary and sufficient conditions on the underlying structure in order to support the iid
assumption for some relational domains. In the general case, however, using Hoeffding-

like bounds to derive (ε, δ)-approximations in relational learning is under-explored.

An early approach to use a Hoeffding bound-based heuristic for scalable relational learn-

ing is presented in [Hulten et al., 2003], where the VFREL system is presented. VFREL
scales to large data volumes by identifying the relations that are important to the learn-

ing task and focusing on these important relations, hence saving time by ignoring ones

that are not important. This is achieved by incorporating a sampling mechanism based

on the Hoeffding bound that identifies the important relational attributes with a single

96 OLED: Online Learning of Event Definitions

scan of the data. Therefore, the Hoeffding bound in [Hulten et al., 2003] is actually used

for propositional feature selection and it does not actually deal with relational data.

An ILP approach that uses the Hoeffding bound for relational learning is HTILDE [Lopes

and Zaverucha, 2009], an extension of the TILDE system for learning first-order decision

trees [Blockeel and De Raedt, 1998]. These are decision trees where each internal node

consists of a conjunction of literals and each leaf is a propositional predicate representing

a class. TILDE constructs trees by testing conjunctions of literals at each node, using an

ILP refinement operator to generate the conjunctions and information gain as the guiding

heuristic. HTILDE extends TILDE by using the Hoeffding bound to perform these internal

tests on a subset of the training data. To ensure independence of observations, HTILDE
learns from interpretations [Blockeel et al., 1999], a setting, used also by OLED, where

each training instance is assumed a disconnected part of the dataset.

Like TILDE, HTILDE learns clauses with a propositional predicate in the head (representing

a class). However, the head of a complex event definition is typically a first-order pred-

icate, containing variables that appear in the body of the clause and express relations

between entities. Therefore, HTILDE is not general enough for the problem that we

address in this work. Additionally, HTILDE requires a fully annotated dataset, while in

the setting we assume here, annotation for target predicates is missing.

6 | Experimental Evaluation for OLED

In this chapter we evaluate OLED on CAVIAR, the benchmark dataset for activity recog-

nition and compare it to a number of batch learning techniques. We obtain results of

comparable predicative accuracy with significant speed-ups in training time. We also

show that OLED outperforms hand-crafted rules for the particular domain and matches

the performance of ILED, which is a sound incremental learner that can only operate on

noise-free datasets. All experiments were conducted on a Linux machine with a 3.6GHz

processor (4 cores and 8 threads) and 16GiB of RAM. The code and data are available

online1.

6.1 Comparison with Manually Constructed Rules and Batch

Learning

The purpose of this experiment was to assess whether OLED is able to efficiently learn

theories of comparable quality to hand-crafted rules and state-of-the-art batch learning

approaches. We compare OLED to the following: (i) ECcrisp, a hand-crafted set of clauses

for the CAVIAR dataset, described in [Artikis et al., 2010c]; (ii) ECMM [Skarlatidis et al.,

2015], a probabilistic version of ECcrisp with weights learnt by the Max-Margin weight

learning method for Markov Logic Networks (MLNs) of [Huynh and Mooney, 2009]; (iii)

XHAIL [Ray, 2009b], a hybrid abductive-inductive learner capable of learning programs

in the EC, discussed in detail in Section 2.4.3. ECMM was selected because it was shown

to achieve good results on CAVIAR [Skarlatidis et al., 2015]. XHAIL was selected as one

of the few ILP systems that is able to learn theories in the EC. OLED and XHAIL were

implemented using the Clingo2 answer set solver as the core reasoning component, while

the ECMM approach used in this experiment was implemented in the LoMRF framework3

for MLNs.

To evaluate ECMM, [Skarlatidis et al., 2015] used a fragment of the CAVIAR dataset,

which is also the one we use in this experiment. The target complex events in this
1https://github.com/nkatzz/OLED
2http://potassco.sourceforge.net/
3https://github.com/anskarl/LoMRF

https://github.com/nkatzz/OLED
http://potassco.sourceforge.net/
https://github.com/anskarl/LoMRF

98 Experimental Evaluation for OLED

Method Precision Recall F1-score Theory size Time (sec)

(a) Move ECcrisp 0.909 0.634 0.751 28 –
ECMM 0.844 0.941 0.890 28 1692
XHAIL 0.779 0.914 0.841 14 7836
OLED 0.709 0.948 0.812 34 12

Meet ECcrisp 0.687 0.855 0.762 23 –
ECMM 0.919 0.813 0.863 23 1133
XHAIL 0.804 0.927 0.861 15 7248
OLED 0.943 0.750 0.836 29 23

(b) Move ECcrisp 0.721 0.639 0.677 28 –
OLED 0.653 0.834 0.732 42 124

ECcrisp 0.644 0.855 0.735 23 –
Meet OLED 0.678 0.953 0.792 30 107

(c) Move ILED 0.947 0.981 0.963 55 34
OLED 0.963 0.934 0.948 31 35

Meet ILED 0.930 0.976 0.952 65 30
OLED 0.975 0.933 0.953 53 42

TABLE 6.1: Experimental results for OLED from the CAVIAR dataset

dataset are related to two persons meeting each other or moving together and the training

data consists of the parts of CAVIAR that involve these complex events. The fragment

dataset contains a total of 25738 training interpretations. There are 6272 interpretations

in which moving occurs and 3722 in which meeting occurs. OLED’s results were achieved

using significance δ = 10−5, a clause pruning threshold Smin of 0.7 for meeting and 0.5 for

moving and specialization depth parameter d = 2 for meeting and d = 1 for moving. The

results reported with these parameter configurations are the best among several other

parameter settings that we tried for Smin and d. The reported training time for each run

of OLED was the maximum training time of the two processes that learn initiation and

termination clauses in parallel.

Results were obtained using 10-fold cross validation and are presented in Table 6.1(a)

in the form of precision, recall and f1-score. These statistics were micro-averaged over

the instances of recognized complex events from each fold of the 10-fold cross validation

process. That is, the TP, FP and FN counts from each fold were summed, and precision,

recall and f1-score were calculated using these sums. Table 6.1(a) also presents average

training time per fold for all approaches except ECcrisp (where no training is involved),

average theory sizes (total number of literals) for OLED and XHAIL, as well as the fixed

theory size of ECcrisp and ECMM. Results for ECMM were obtained using MAP inference.

ECMM achieves the best f1-score for both complex events, followed closely by XHAIL.

OLED achieves a comparable predictive accuracy (particularly for meeting), while it

outscores the hand-crafted rules. Moreover, OLED achieves speed-ups of several orders

of magnitude as compared to ECMM and XHAIL, due to its single-pass strategy. The su-

perior performance of ECMM and XHAIL is due to them being batch learners, optimizing

their respective outcomes over the entire training set. This also explains their increased

Experimental Evaluation for OLED 99

training times. Regarding theory size, XHAIL learns significantly more compressed hy-

potheses than OLED. The reason is that XHAIL learns whole theories, while OLED learns

each clause separately to gain in efficiency.

6.2 Activity Recognition on the Entire CAVIAR Dataset

We also present experimental results from running OLED on the entire CAVIAR dataset,

which contains a total of 282067 training interpretations. The target complex events are

meeting and moving as above. The number of positive interpretations for both complex

events is also the same as above, since the data fragment used in the previous experiment

contains the parts of CAVIAR where these complex events occur. In contrast, the number

of negative training instances is much larger in this experiment.

Due to high training times for XHAIL and ECMM, we do not present results with these

approaches and we compare OLED only to the set of manually developed clauses ECcrisp.

The experimental setting was as follows: We used 10-fold cross validation over the

fragment used in the previous experiment, but in each fold, the respective training and

testing sets were augmented by a number of negative training sequences. In particular,

in each fold, 90% of the negative training sequences from the remaining part of CAVIAR

(i.e. the part not contained in the data fragment of the previous experiment) was added

to the training set of the fold, while the remaining 10% was added to the test set. The

parameter configuration for OLED was the same as in the previous experiment, with the

exception of the specialization depth for meeting, which was set to d = 1, since the value

of d = 2 used for meeting in the previous experiment increased training time without any

significant gain in the quality of the outcome.

Table 6.1(b) shows the results. As previously, statistics were micro-averaged over the

recognized complex event instances from each fold. Both approaches’ performance is

decreased, as compared to the previous experiment, due to the increased number of

false positives, caused by the large number of additional negative instances. OLED still

outscores the hand-crafted knowledge base.

6.3 Comparison with an Incremental Learner

We also compared OLED to ILED, the incremental learner that is based on the methodol-

ogy of the XHAIL system and is able to learn theories in the EC [Katzouris et al., 2015].

Recall form Chapter 3 that ILED works by revising past hypotheses to account for new

examples that arrive over time. In contrast to OLED, a revised hypothesis must account

for all past training instances. ILED has a scalable revision strategy that requires at most

one pass over past examples to revise a hypothesis. However, this strategy is based on the

100 Experimental Evaluation for OLED

assumption that the data is noise-free, and therefore ILED cannot be used with CAVIAR,

which exhibits various types of noise – see [Artikis et al., 2010c] for details.

In order to compare the two systems we thus generated a noise-free version of CAVIAR

with artificial annotation for the moving and meeting complex events. To produce the

annotation, we used the hand-crafted knowledge base ECcrisp for inference over the

CAVIAR narrative. The dataset contains a total of 282067 training interpretations. From

these, 6172 are positive interpretations for meeting and 5204 are positive interpretations

for moving. We used 10-fold cross validation to assess the performance of the the com-

pared systems. For each fold, the training (resp. test) set consisted of 90% (resp. 10%)

of positive and negative interpretations for each complex event. The input parameter

configuration for OLED was as reported in the experiment of Section 6.2.

The results are presented in Table 6.1(c). As previously, results were micro-averaged

over each fold, while training times and hypotheses sizes are averages from the separate

runs. The predictive accuracy for both systems, in terms of their respective f1-scores, is

comparable, with ILED’s being slightly better. This was expected, since ILED re-scans the

historical memory of past data to revise its theories. Training times are also comparable,

with OLED’s being slightly higher, as compared to ILED’s. ILED is able to avoid certain

computations by inferring that they are redundant, based on the assumption that the

data is noise-free. Regarding theory size, OLED learns significantly shorter hypotheses

that ILED. OLED prunes a number of its learnt clauses, in an effort to avoid fitting

potential noise in the data and also follows a conservative clause expansion strategy.

In contrast, ILED tries to account for every positive example in the training data (and

exclude every negative one), since it is designed for learning sound hypotheses.

6.4 Scalability

In this experiment we assess OLED’s scalability. When learning from the entire CAVIAR

dataset (Section 6.2) the average processing time per training interpretation was 6.7

milliseconds (ms), while the frame rate in CAVIAR, i.e. the rate in which video frames

containing new data arrive is 40 ms. As a “stress-test”, we evaluated OLED’s performance

in more demanding learning tasks. We generated 4 different datasets, each of which

consisted of a number of copies of CAVIAR. The new datasets differ from the original

one in the constants referring to the tracked entities in simple and complex events. We

generated datasets consisting of 2, 5, 8 and 10 copies, each of which contained 20,

50, 80 and 100 different entities respectively. Like in the previous experiments, each

interpretation includes narrative and annotation atoms from two time points. In this

experiment however, the number of atoms in each interpretation grows proportionally

to the number of copies of the dataset.

Experimental Evaluation for OLED 101

M
ea

n
Pr

oc
es

si
ng

 T
im

e
(s

ec
)

0

0.5

1

1.5

2

2.5

M
ea

n
G

ro
un

d
Pr

og
ra

m
 S

iz
e

(a
to

m
s)

0

20k

40k

60k

80k

100k

Mean Interpretation Size (atoms)
0 50 100 150 200 250

Mean Processing Time
Mean Ground Program Size

Mean Processing Time
Mean Ground Program Size

FIGURE 6.1: OLED’s mean processing time and mean ground program size per training
interpretation, for varying interpretation sizes.

We performed learning with OLED on the original and the enlarged datasets and mea-

sured the average processing time per training interpretation. Figure 6.1 presents the

results. For instance, interpretations in the 10 copies of CAVIAR are handled in approxi-

mately 2.5 sec in a standard desktop computer. The growth in average processing time

is due to the increased number of annotation atoms in the datasets, as well as the addi-

tional domain constants, that result in an exponential increase in the size of the ground

program produced during the clause evaluation process (see the dashed line in Figure

6.1). OLED’s performance may be improved by some optimizations, such as taking ad-

vantage of domain knowledge about relational dependencies in the data. For instance,

in CAVIAR complex events involve two different entities, therefore learning may be split

across different processing cores that learn from independent parts of the data. Such

optimizations are part future work.

6.5 Summary

In this chapter we presented an experimental evaluation for OLED, using the CAVIAR

dataset for activity recognition. We compared OLED to (a) a hand-crafted theory devel-

oped by domain experts; (b) a probabilistic version of this hand-crafted theory in the

form of an MLN; (c) the XHAIL system and (d) the ILED system, presented in the previ-

ous chapter (Chapter 3). Our results indicate that OLED speeds-up the learning process

by several orders of magnitude, as compared to XHAIL and the MLN-based approach

of (b), while learning theories of comparable quality. Additionally, OLED outscores the

hand-crafted theory of event definitions and is comparable to ILED on noise-free data

fragments. We also assessed OLED’s performance on a more demanding learning setting,

102 Experimental Evaluation for OLED

containing (synthetic) training examples of larger sizes. We identified potential bottle-

necks for in OLED’s performance in such a learning setting and indicated directions for

future work for resolving such bottlenecks and improving OLED’s performance.

7 | Conclusions and Future Work

In this thesis we focused on scalable relational learning for complex event recognition ap-

plications and presented two methods for learning complex event definitions in the form

of domain-specific axioms in the Event Calculus. In Chapter 1 we discussed the basics

of event recognition and we argued that symbolic event recognition systems based on

first-order logic have significant advantages over non logic-based ones. These advantages

include, among others, the ability for robust temporal reasoning via the incorporation

of temporal action formalisms, such as the Event Calculus, and direct connections to

machine learning tools for the automated extraction of event definitions from data with

Inductive Logic Programming (ILP). In Chapter 2 we discussed the Event Calculus dialect

that we used throughout this thesis and presented an overview of existing ILP methods

for learning event definitions in the form of Event Calculus theories. We argued that

the poor scalability of these methods is one of their main deficiencies, preventing them

from being widely used in real-life applications. In subsequent chapters we developed

two scalable approaches for learning Event Calculus theories with ILP and showed by

means of experiments that both these approaches are efficient enough to be used in ap-

plications comprising large volumes of temporal data. In what follows we conclude this

thesis by summarising the basic features of our proposed approaches and the respective

experimental results, while we also discuss some directions for future work.

7.1 Conclusions

In Chapter 3 we presented the ILED system for Incremental Learning of Event Definitions.

ILED is based on the XHAIL system, a state-of-art ILP learner that is capable of learning

Event Calculus theories via a combination of abductive and inductive logic programming.

ILED scales up the core XHAIL methodology, by adapting it so that it works with training

examples arriving over time. Training examples are presented in the form of data chunks,

each chunk consisting of examples found in a temporal window, whose size may be

defined by the user. ILED works by progressively revising an initial hypothesis in the

face of new examples, while adopting a full-memory approach, in which revisions must

account for the entirety of the accumulated experience. By means of the support set,

104 Conclusions and Future Work

a compressive memory structure that encodes the coverage of clauses in the running

hypothesis w.r.t. all past examples, ILED learns a sound hypothesis with no more than 2n

revisions, where n is the number of data chunks. Moreover, thanks to the controlled size

of training example chunks, the unit cost of each such revision is kept low, depending

only on the size of each chunk, in terms of the number of domain constants in it. In

Chapter 3 we presented ILED in detail and proved its soundness and the upper bound

in the number of revisions required to compute a hypothesis. We also discussed related

work in theory revision and identified the limitations of existing theory revision systems

w.r.t. the problem that ILED addresses.

In Chapter 4 we presented an experimental evaluation for ILED, using real and synthetic

data from a human activity recognition and a transport management application. Our

results show that ILED scales adequately and is significantly more efficient than XHAIL,

without compromising the quality of the learning outcome.

In Chapter 5 we presented OLED, an ILP system for learning event definitions in the

form of Event Calculus theories in an online fashion. OLED differs from ILED in two

key respects: First, it is able to handle noise in the training data, by learning imperfect

hypotheses that cover large numbers of positive examples, while also potentially allowing

to cover some negative examples. In contrast, ILED is designed for learning sound

hypotheses. Second, OLED can learn from streams, i.e. continuous data flows that arrive

at a high velocity. This learning setting is often desirable in event recognition applications,

where the volume of the data makes their storage impractical and requires methods that

build models with a single pass over the training stream. OLED incorporates a heuristic

search, based on the Hoeffding bound, to learn clauses in an online fashion, using small

subsets of the training stream to evaluate candidate clauses. This is done by relating the

size of the subsets to a user-defined confidence level on the error margin of not selecting

a (globally) optimal clause at each point during learning. OLED adapts a standard hill-

climbing ILP search to make it work in an online fashion. The resulting search strategy

requires learning each clause in isolation. This is hard to achieve when learning Event

Calculus theories, where candidate clauses depend on each other via the core domain-

independent axioms of the formalism. To overcome this issue OLED splits the learning

process into two sub-processes, each of which is responsible for learning respectively the

initiation and the termination part of the theory. This decoupling of the two types of

clause allows to evaluate each clause independently, based on a scoring function that

takes into account the potential utility of each individual clause in a theory.

In Chapter 6 we presented an experimental evaluation for OLED, using the CAVIAR

dataset for activity recognition. We compared OLED to a hand-crafted theory, a proba-

bilistic version of the latter in the form of a Markov Logic Network (MLN), the XHAIL sys-

tem and the ILED system. The results show that OLED speeds up the learning process by

several orders of magnitude, as compared to XHAIL and the MLN-based approach, while

Conclusions and Future Work 105

learning theories of comparable quality. Additionally, OLED outscores the hand-crafted

theory of event definitions and is comparable to ILED on noise-free data fragments.

7.2 Future Work

There are several directions in which we intend to extend the work presented in this

thesis. The main ones are outlined below:

Distributed Learning for Event Recognition. The main goal of this research direction

is to further improve scalability of the learning systems presented in this work, via paral-

lelizing parts of the learning task and distributing the workload over multiple processing

cores. Some degree of parallelization exists already in the methods that we presented

in this thesis (e.g. OLED learns initiation and termination clauses separately and in

parallel). Moreover, we have already identified in the thesis some promising directions

for further improving the performance of our proposed methods, by e.g. parallelizing the

clause evaluation task in OLED, or utilizing expert knowledge about a particular domain,

in order to partition the training set into independent data fragments and learn from

each such fragment separately in a data-parallel fashion. As future work we intent to

explore a variety of generic approaches for parallelizing relational learning tasks with

ILP, including parallel exploration of independent hypotheses [Ohwada and Mizoguchi,

1999], parallelizing coverage tests for candidate clauses [Graham et al., 2003; Wang and

Skillicorn, 2000], parallel execution of the core learning process over partitions of the

training data [Dehaspe and De Raedt, 1995; Matsui et al., 1998] and so on. We intend to

adjust such generic approaches to the particular tasks of incremental and online learning

of event definitions proposed in this work.

Handling Noise and Uncertainty with Statistical Relational Learning. The OLED
system, presented in Chapter 5, is capable of handling noise in the training data by

learning imperfect hypotheses with a good fit in the data. Alternative approaches from

the growing field of Statistical Relational Learning (SRL) [Getoor, 2007] seem to achieve

robust performance w.r.t. to noise and uncertainty handling, via a combination of first-

order logic and probability. SRL techniques have been combined with the Event Calculus

in event recognition applications [Skarlatidis et al., 2015] and they have been used for

learning both the structure and the parameters in such applications [Michelioudakis

et al., 2016]. We are currently performing preliminary experiments that combine OLED
with SRL techniques. In these experiments we use the MaxMargin parameter learning

algorithm for learning the weights of a Markov Logic Network, whose structure is a direct

translation, in Markov Logic syntax, of a set of clauses learnt by OLED. In future work

we intent to extent the core ILED and OLED methodology in order to device algorithms

for learning structure and parameters in an incremental and online fashion respectively.

Bibliography

Adé, H., De Raedt, L., and Bruynooghe, M. (1993). Theory revision. In Proceedings of
the 3rd International Workshop on Inductive Logic Programming, pages 179–192.

Ade, H. and Denecker, M. (1995). AILP: Abductive inductive logic programming. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).

Ade, H., Malfait, B., and De Raedt, L. (1994). Ruth: an ILP theory revision system.

In International Symposium on Methodologies for Intelligent Systems (ISMIS), pages

336–345.

Adi, A. and Etzion, O. (2004). Amit-the situation manager. The VLDB Journal-The
International Journal on Very Large Data Bases, 13(2):177–203.

Aggarwal, C. C. (2007). Data streams: models and algorithms, volume 31. Springer

Science & Business Media.

Aggarwal, C. C. (2015). Data mining: the textbook. Springer.

Akman, V., Erdoğan, S. T., Lee, J., Lifschitz, V., and Turner, H. (2004). Representing

the zoo world and the traffic world in the language of the causal calculator. Artificial
Intelligence, 153(1):105–140.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P. (2008).

Verifiable agent interaction in abductive logic programming: the sciff framework. ACM
Transactions on Computational Logic (TOCL), 9(4):29.

Alrajeh, D., Kramer, J., Russo, A., and Uchitel, S. (2011). An inductive approach for

modal transition system refinement. In Technical Communications of the International
Conference of Logic Programming ICLP, pages 106–116. Citeseer.

Alrajeh, D., Ray, O., Russo, A., and Uchitel, S. (2006). Extracting requirements from

scenarios with ILP. In Inductive Logic Programming.

Alrajeh, D., Ray, O., Russo, A., and Uchitel, S. (2009). Using abduction and induction

for operational requirements elaboration. Journal of Applied Logic, 7(3):275–288.

108 Bibliography

Anicic, D., Rudolph, S., Fodor, P., and Stojanovic, N. (2012). Stream reasoning and

complex event processing in etalis. Semantic Web, 3(4):397–407.

Artikis, A., Paliouras, G., Portet, F., and Skarlatidis, A. (2010a). Logic-based repre-

sentation, reasoning and machine learning for event recognition. In Proceedings of
the Fourth ACM International Conference on Distributed Event-Based Systems, pages

282–293. ACM.

Artikis, A., Sergot, M., and Paliouras, G. (2015a). An event calculus for event recognition.

IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4):895–908.

Artikis, A., Sergot, M. J., and Paliouras, G. (2015b). An event calculus for event

recognition. IEEE Trans. Knowl. Data Eng., 27(4):895–908.

Artikis, A., Skarlatidis, A., and Paliouras, G. (2010b). Behaviour recognition from video

content: A logic programming approach. International Journal on Artificial Intelligence
Tools, 19(2):193–209.

Artikis, A., Skarlatidis, A., and Paliouras, G. (2010c). Behaviour recognition from video

content: a logic programming approach. International Journal on Artificial Intelligence
Tools, 19(02):193–209.

Artikis, A., Skarlatidis, A., Portet, F., and Paliouras, G. (2012). Logic-based event

recognition. Knowledge Eng. Review, 27(4):469–506.

Artikis, A., Weidlich, M., Schnitzler, F., Boutsis, I., Liebig, T., Piatkowski, N., Bockermann,

C., Morik, K., Kalogeraki, V., Marecek, J., et al. (2014). Heterogeneous stream

processing and crowdsourcing for urban traffic management. In EDBT, pages 712–

723.

Athakravi, D., Corapi, D., Broda, K., and Russo, A. (2013). Learning through hypothesis

refinement using answer set programming. In Proc. of the 23rd Int. Conference of
Inductive Logic Programming (ILP).

Badea, L. (2000). Learning trading rules with inductive logic programming. In European
Conference on Machine Learning, pages 39–46. Springer.

Badea, L. (2001). A refinement operator for theories. In Proc. of the Int. Conf. on
Inductive Logic Programming (ILP).

Bain, M. and Muggleton, S. (1990). Non-monotonic learning. Citeseer.

Baral, C. (2003). Knowledge representation, reasoning and declarative problem solving.

Cambridge university press.

Bennett, G. (1962). Probability inequalities for the sum of independent random vari-

ables. Journal of the American Statistical Association, 57(297):33–45.

Bibliography 109

Bergadano, F., Gunetti, D., Nicosia, M., Ruffo, G., et al. (1996). Learning logic programs

with negation as failure. Advances in inductive logic programming, pages 107–123.

Biba, M., Basile, T. M. A., Ferilli, S., and Esposito, F. (2006a). Improving scalability in ILP

incremental systems. In Proceedings of CILC 2006-Italian Conference on Computational
Logic, Bari, Italy, June, pages 26–27.

Biba, M., Basile, T. M. A., Ferilli, S., and Esposito, F. (2006b). Improving scalability in

ILP incremental systems. In Proc. of CILC 2006-Italian Conf. on Computational Logic.

Blockeel, H. and De Raedt, L. (1998). Top-down induction of first-order logical decision

trees. Artificial intelligence, 101(1):285–297.

Blockeel, H., De Raedt, L., Jacobs, N., and Demoen, B. (1999). Scaling up inductive

logic programming by learning from interpretations. Data Mining and Knowledge
Discovery, 3(1):59–93.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1990). Occam’s razor.

Readings in machine learning, pages 201–204.

Bragaglia, S. and Ray, O. (2014). Nonmonotonic learning in large biological networks.

In Proc. of the Int. Conf. on Inductive Logic Programming (ILP).

Bragaglia, S. and Ray, O. (2015). Nonmonotonic learning in large biological networks.

In Inductive Logic Programming, pages 33–48. Springer.

Bratko, I. (1999). Refining complete hypotheses in ilp. In International Conference on
Inductive Logic Programming, pages 44–55. Springer.

Bratko, I. (2001). Prolog programming for artificial intelligence. Pearson education.

Brendel, W., Fern, A., and Todorovic, S. (2011). Probabilistic event logic for interval-

based event recognition. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 3329–3336. IEEE.

Broda, K., Clark, K., Miller, R., and Russo, A. (2009). Sage: a logical agent-based

environment monitoring and control system. In European Conference on Ambient
Intelligence, pages 112–117. Springer.

Callens, L., Carrault, G., Cordier, M. O., Fromont, E., Portet, F., and Quiniou, R. (2008a).

Intelligent adaptive monitoring for cardiac surveillance. European Conference on
Artificial Intelligence (ECAI), pages 653–657.

Callens, L., Carrault, G., Cordier, M.-O., Fromont, E., Portet, F., and Quiniou, R. (2008b).

Intelligent adaptive monitoring for cardiac surveillance. In European Conference on
Artificial Intelligence, pages 653–657.

110 Bibliography

Calzone, L., Chabrier-Rivier, N., Fages, F., and Soliman, S. (2006). Machine learning bio-

chemical networks from temporal logic properties. In Transactions on Computational
Systems Biology VI, pages 68–94. Springer.

Carrault, G., Cordier, M.-O., Quiniou, R., and Wang, F. (2003). Temporal abstraction

and inductive logic programming for arrhythmia recognition from electrocardiograms.

Artificial intelligence in medicine, 28(3):231–263.

Cattafi, M., Lamma, E., Riguzzi, F., and Storari, S. (2010). Incremental declarative

process mining. Smart Information and Knowledge Management, pages 103–127.

Cervesato, I. and Montanari, A. (2000). A calculus of macro-events: Progress report. In

Proc. of the Int. Workshop on Temporal Representation and Reasoning (TIME). IEEE.

Chaudet, H. (2006). Extending the event calculus for tracking epidemic spread. Artificial
Intelligence in Medicine, 38(2):137–156.

Chaudhry, N., Shaw, K., and Abdelguerfi, M. (2006). Stream data management, vol-

ume 30. Springer Science & Business Media.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based

on the sum of observations. The Annals of Mathematical Statistics, pages 493–507.

Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., and Storari, S. (2009).

Exploiting inductive logic programming techniques for declarative process mining. In

Transactions on Petri Nets and Other Models of Concurrency II, pages 278–295. Springer.

Chittaro, L. and Dojat, M. (1997). Using a general theory of time and change in

patient monitoring: experiment and evaluation. Computers in Biology and Medicine,

27(5):435–452.

Choppy, C., Bertrand, O., and Carle, P. (2009). Coloured petri nets for chronicle

recognition. In International Conference on Reliable Software Technologies, pages 266–

281. Springer.

Clark, K. L. (1977). Negation as failure. In Logic and Data Bases, pages 293–322.

Clark, K. L. (1978). Negation as failure. In Logic and data bases, pages 293–322.

Springer.

Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model checking. MIT press.

Corapi, D. (2012). Nonmonotonic inductive logic programming as abductive search. PhD

thesis, Imperial College London.

Corapi, D., De Vos, M., Padget, J., Russo, A., and Satoh, K. (2011a). Norm refinement

and design through inductive learning. In Coordination, Organizations, Institutions,
and Norms in Agent Systems VI, pages 77–94. Springer.

Bibliography 111

Corapi, D., Ray, O., Russo, A., Bandara, A., and Lupu, E. (2008). Learning rules from

user behaviour. In Second International Workshop on the Induction of Process Models.

Corapi, D., Russo, A., De Vos, M., Padget, J., and Satoh, K. (2011b). Normative design

using inductive learning. Theory and Practice of Logic Programming, 11(4-5):783–799.

Corapi, D., Russo, A., and Lupu, E. (2010). Inductive logic programming as abductive

search. In Technical Communications of the Int. Conf. on Logic Programming (ICLP).

Corapi, D., Russo, A., and Lupu, E. (2012). Inductive logic programming in answer set

programming. In Proc. of Int. Conf. on Inductive Logic Programming (ILP). Springer.

Cormode, G., Muthukrishnan, S., and Zhuang, W. (2007). Conquering the divide:

Continuous clustering of distributed data streams. In 2007 IEEE 23rd International
Conference on Data Engineering, pages 1036–1045. IEEE.

Cugola, G. and Margara, A. (2010). Tesla: a formally defined event specification

language. In Proceedings of the Fourth ACM International Conference on Distributed
Event-Based Systems, pages 50–61. ACM.

Cugola, G. and Margara, A. (2012). Processing flows of information: From data stream

to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62.

D. Raedt, L. (1992). Interactive theory revision: an inductive logic programming approach.

Academic Press Ltd.

Dardenne, A., Van Lamsweerde, A., and Fickas, S. (1993). Goal-directed requirements

acquisition. Science of computer programming, 20(1):3–50.

De Raedt, L. (1997). Logical settings for concept-learning. Artificial Intelligence,

95(1):187–201.

De Raedt, L. (2008). Logical and relational learning. Springer Science & Business Media.

De Raedt, L. and Bruynooghe, M. (1994). Interactive theory revision. In Machine
Learning: a Multistrategy Approach, pages 239–263.

De Raedt, L. and Džeroski, S. (1994). First-order jk-clausal theories are pac-learnable.

Artificial Intelligence, 70(1):375–392.

De Raedt, L. and Van Laer, W. (1995). Inductive constraint logic. In International
Workshop on Algorithmic Learning Theory, pages 80–94. Springer.

Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal constraint networks. Artificial
intelligence, 49(1-3):61–95.

Dehaspe, L. and De Raedt, L. (1995). Parallel inductive logic programming. In

Proceedings of the MLnet familiarization workshop on statistics, machine learning and
knowledge discovery in databases, volume 1, page 5. Citeseer.

112 Bibliography

Demolombe, R., del Cerro, L. F., and Obeid, N. (2013). A logical model for metabolic

networks with inhibition. In Proceedings of the International Conference on Bioinfor-
matics & Computational Biology (BIOCOMP), page 1. The Steering Committee of The

World Congress in Computer Science, Computer Engineering and Applied Computing

(WorldComp).

Denecker, M. and Kakas, A. (2002). Abduction in logic programming. In Computational
Logic: Logic Programming and Beyond, pages 402–436.

Dhurandhar, A. and Dobra, A. (2010). Test set bounds for relational data that vary with

strength of dependence. submitted to ACM Transactions on Computational Logic.

Dhurandhar, A. and Dobra, A. (2012). Distribution-free bounds for relational classifica-

tion. Knowl. Inf. Syst., 31(1):55–78.

Di Mauro, N., Esposito, F., Ferilli, S., and Basile, T. M. (2005). Avoiding order effects in

incremental learning. In AIIA 2005: Advances in Artificial Intelligence, pages 110–121.

Di Mauro, N., Esposito, F., Ferilli, S., and Basile, T. M. A. (2004). A backtracking

strategy for order-independent incremental learning. In Proc. of the European Conf. on
Artificial Intelligence (ECAI).

Dimopoulos, Y. and Kakas, A. (1995). Learning non-monotonic logic programs:

Learning exceptions. In European Conference on Machine Learning, pages 122–137.

Springer.

Doherty, P., Gustafsson, J., Karlsson, L., and Kvarnström, J. (1998). Tal: Temporal action

logics language specification and tutorial.

Domingos, P. and Hulten, G. (2001). A general method for scaling up machine learning

algorithms and its application to clustering. In ICML, volume 1, pages 106–113.

Domingos, P. M. and Hulten, G. (2000). Mining high-speed data streams. In Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery and data
mining, Boston, MA, USA, August 20-23, 2000, pages 71–80.

Doncescu, A., Inoue, K., and Yamamoto, Y. (2007). Knowledge based discovery in sys-

tems biology using cf-induction. In International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems, pages 395–404. Springer.

Dousson, C. and Le Maigat, P. (2007). Chronicle recognition improvement using

temporal focusing and hierarchization. In IJCAI, volume 7, pages 324–329.

Dubba, K., Bhatt, M., Dylla, F., Hogg, D. C., and Cohn, A. G. (2011). Interleaved

inductive-abductive reasoning for learning complex event models. In International
Conference on Inductive Logic Programming, pages 113–129. Springer.

Bibliography 113

Dubba, K. S. R., Cohn, A. G., and Hogg, D. C. (2010). Event model learning from

complex videos using ilp. In ECAI, volume 215, pages 93–98.

Dubba, K. S. R., Cohn, A. G., Hogg, D. C., Bhatt, M., and Dylla, F. (2015). Learning

relational event models from video. Journal of Artificial Intelligence Research, 53:41–

90.

Duboc, A. L., Paes, A., and Zaverucha, G. (2009). Using the bottom clause and mode

declarations in FOL theory revision from examples. Machine Learning, 76(1):73–107.

Eckert, M. and Bry, F. (2010). Rule-based composite event queries: the language

xchangeeq and its semantics. Knowledge and information systems, 25(3):551–573.

Eshghi, K. and Kowalski, R. (1989). Abduction compared with negation by failure. In

Proceedings of the 6th International Conference on Logic Programming.

Esposito, F., Ferilli, S., Fanizzi, N., Basile, T. M. A., and Di Mauro, N. (2004). Incremental

learning and concept drift in inthelex. Intelligent Data Analysis, 8(3):213–237.

Esposito, F., Laterza, A., Malerba, D., and Semeraro, G. (1996). Refinement of datalog

programs. In Proceedings of the MLnet Familiarization Workshop on Data Mining with
Inductive Logic Programming.

Esposito, F., Semeraro, G., Fanizzi, N., and Ferilli, S. (2000). Multistrategy theory

revision: Induction and abduction in inthelex. Machine Learning, 28(1-2):133–156.

Etzion, O. and Niblett, P. (2010). Event processing in action. Manning Publications Co.

Fages, F. and Soliman, S. (2008). Model revision from temporal logic properties in

computational systems biology. In Probabilistic inductive logic programming, pages

287–304. Springer.

Flach, P. A. (1998). The logic of learning: a brief introduction to inductive logic

programming. In Proceedings of the CompulogNet Area Meeting on Computational Logic
and Machine Learning, pages 1–17.

Floyd, S. and Warmuth, M. (1995). Sample compression, learnability, and the vapnik-

chervonenkis dimension. Machine learning, 21(3):269–304.

Fogel, L. and Zaverucha, G. (1998). Normal programs and multiple predicate learning.

In Inductive Logic Programming, pages 175–184. Springer.

Gaber, M. M., Gama, J., Krishnaswamy, S., Gomes, J. B., and Stahl, F. (2014). Data

stream mining in ubiquitous environments: state-of-the-art and current directions.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(2):116–138.

Gama, J. (2010). Knowledge discovery from data streams. CRC Press.

Gama, J. and Gaber, M. M. (2007). Learning from data streams. Springer.

114 Bibliography

Gama, J., Kosina, P., et al. (2011). Learning decision rules from data streams. In IJCAI
Proceedings-International Joint Conference on Artificial Intelligence, volume 22, page

1255. Citeseer.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2012). Answer set solving in

practice. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(3):1–238.

Gelfond, M. (2008). Answer sets. In van Harmelen, Frank; Lifschitz, V. P. B., editor,

Handbook of Knowledge Representation. Elsevier.

Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic programming.

In International Conference on Logic Programming, pages 1070–1080.

Gelfond, M. and Lifschitz, V. (1993). Representing action and change by logic programs.

The Journal of Logic Programming, 17(2):301–321.

Gelfond, M. and Lifschitz, V. (1998). Action languages.

Getoor, L. (2007). Introduction to statistical relational learning. MIT press.

Ghallab, M. (1996). On chronicles: Representation, on-line recognition and learning.

In KR, pages 597–606.

Giraud-Carrier, C. (2000). A note on the utility of incremental learning. AI Communica-
tions, 13(4).

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. (2004). Nonmonotonic

causal theories. Artificial Intelligence, 153(1):49–104.

G.Plotkin (1970). A note on inductive generalization. Machine Intelligence, 5:153–163.

Graham, J., Page, C. D., and Kamal, A. (2003). Accelerating the drug design process

through parallel inductive logic programming data mining. In Proceedings of the IEEE
Computer Society Conference on Bioinformatics, page 400. IEEE Computer Society.

Hirata, K. (1999). Flattening and implication. In International Conference on Algorithmic
Learning Theory, pages 157–168. Springer.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.

Journal of the American statistical association, 58(301):13–30.

Hulten, G., Domingos, P., and Abe, Y. (2003). Mining massive relational databases. In

Proceedings of the IJCAI-2003 workshop on learning statistical models from relational
data, pages 53–60.

Hulten, G., Domingos, P., and Spencer, L. (2005). Mining massive data streams. The
Journal of Machine Learning Research.

Bibliography 115

Hulten, G., Spencer, L., and Domingos, P. (2001). Mining time-changing data streams. In

Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 97–106. ACM.

Huynh, T. N. and Mooney, R. J. (2009). Max-margin weight learning for markov logic

networks. In Machine Learning and Knowledge Discovery in Databases, pages 564–579.

Springer.

Ikonomovska, E., Gama, J., and Džeroski, S. (2011). Learning model trees from evolving

data streams. Data mining and knowledge discovery, 23(1):128–168.

Inoue, K. (2004). Induction as consequence finding. Machine Learning, 55(2):109–135.

Inoue, K., Bando, H., and Nabeshima, H. (2005). Inducing causal laws by regular

inference. In International Conference on Inductive Logic Programming, pages 154–

171. Springer.

Inoue, K., Doncescu, A., and Nabeshima, H. (2013). Completing causal networks by

meta-level abduction. Machine learning, 91(2):239–277.

Inoue, K., Ribeiro, T., and Sakama, C. (2014). Learning from interpretation transition.

Machine Learning, 94(1):51–79.

Janiesch, C., Matzner, M., and Müller, O. (2011). A blueprint for event-driven business

activity management. In International Conference on Business Process Management,
pages 17–28. Springer.

Japkowicz, N. and Shah, M. (2011). Evaluating learning algorithms: a classification
perspective. Cambridge University Press.

Jensen, D. (1999). Statistical challenges to inductive inference in linked data. In

AISTATS.

Jensen, D. and Neville, J. (2002). Autocorrelation and linkage cause bias in evaluation

of relational learners. In Inductive Logic Programming, pages 101–116. Springer.

Kakas, A., Kowalski, R., and Toni, F. (1993). Abductive logic programming. Journal of
Logic and Computation, 2:719–770.

Kakas, A. and Mancarella, P. (1990). Generalised stable models: A semantics for

abduction. In ninth European Conference on Artificial Intelligence (ECAI-90), pages

385–391.

Katzouris, N., Artikis, A., and Paliouras, G. (2014). Event recognition for unobtru-

sive assisted living. In Hellenic Conference on Artificial Intelligence, pages 475–488.

Springer.

Katzouris, N., Artikis, A., and Paliouras, G. (2015). Incremental learning of event

definitions with inductive logic programming. Machine Learning, 100(2-3):555–585.

116 Bibliography

Katzouris, N., Artikis, A., and Paliouras, G. (2016). Online learning of event definitions.

TPLP, 16(5-6):817–833.

Kimber, T. (2012). Learning definite and normal logic programs by induction on failure.

PhD thesis, Imperial College London.

Kimber, T., Broda, K., and Russo, A. (2009). Induction on failure: Learning connected

horn theories. In Logic Programming and Nonmonotonic Reasoning, pages 169–181.

Könik, T. and Laird, J. E. (2006). Learning goal hierarchies from structured observations

and expert annotations. Machine Learning, 64(1-3):263–287.

Kosina, P. and Gama, J. (2012). Handling time changing data with adaptive very

fast decision rules. In Machine Learning and Knowledge Discovery in Databases, pages

827–842. Springer.

Kowalski, R. and Sergot, M. (1986a). A logic-based calculus of events. New Generation
Computing, 4(1):67–96.

Kowalski, R. A. and Sergot, M. J. (1986b). A logic-based calculus of events. New
Generation Comput., 4(1):67–95.

Kuzelka, O. and Zelezny, F. (2008). A restarted strategy for efficient subsumption testing.

Fundamenta Informaticae, 89(1).

Laguna, J. O. (2014). Building Planning Action Models Using Activity Recognition. PhD

thesis, Universoidad Carlos III De Madrid.

Lamma, E., Mello, P., Riguzzi, F., and Storari, S. (2007). Applying inductive logic

programming to process mining. In International Conference on Inductive Logic Pro-
gramming, pages 132–146. Springer.

Langford, J. (2005). Tutorial on practical prediction theory for classification. Journal of
machine learning research, 6(Mar):273–306.

Langley, P. (1995). Learning in Humans and Machines: Towards an Interdisciplinary
Science, chapter Order Effects in Incremental Learning. Elsevier.

Lavrač, N. and Džeroski, S. (1993). Inductive Logic Programming: Techniques and
Applications. Routledge.

Law, M., Russo, A., and Broda, K. (2014). Inductive learning of answer set programs. In

European Workshop on Logics in Artificial Intelligence, pages 311–325. Springer.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mining of massive datasets.
Cambridge University Press.

Li, H.-F. and Lee, S.-Y. (2009). Mining frequent itemsets over data streams using efficient

window sliding techniques. Expert Systems with Applications, 36(2):1466–1477.

Bibliography 117

Li, H.-F., Lee, S.-Y., and Shan, M.-K. (2004). An efficient algorithm for mining frequent

itemsets over the entire history of data streams. In Proc. of First International Workshop
on Knowledge Discovery in Data Streams.

List, T., Bins, J., Vazquez, J., and Fisher, R. B. (2005). Performance evaluating the

evaluator. In 2nd Joint IEEE Int. Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance, pages 129–136. IEEE.

Lloyd, J. (1987). Foundations of Logic Programming. Springer.

Lopes, C. and Zaverucha, G. (2009). Htilde: scaling up relational decision trees for very

large databases. In Proceedings of the 2009 ACM symposium on Applied Computing,

pages 1475–1479. ACM.

Lorenzo, D. (2002). Learning non-monotonic causal theories from narratives of actions.

In NMR, pages 349–355.

Lorenzo, D. and Otero, R. P. (2000). Learning to reason about actions. In ECAI, pages

316–320.

Luckham, D. (2001). The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.

Maggi, F. M., Corapi, D., Russo, A., Lupu, E., and Visaggio, G. (2011). Revising process

models through inductive learning. In Business Process Management Workshops, pages

182–193. Springer.

Maloberti, J. and Sebag, M. (2004). Fast theta-subsumption with constraint satisfaction

algorithms. Machine Learning, 55(2):137–174.

Maloof, M. A. and Michalski, R. S. (2004). Incremental learning with partial instance

memory. Artificial intelligence, 154(1):95–126.

Manku, G. S. and Motwani, R. (2002). Approximate frequency counts over data

streams. In Proceedings of the 28th international conference on Very Large Data Bases,
pages 346–357. VLDB Endowment.

Margara, A., Cugola, G., and Tamburrelli, G. (2014). Learning from the past: auto-

mated rule generation for complex event processing. In Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems, pages 47–58. ACM.

Margara, A., Cugola, G., Tamburrelli, G., and Lugano, I. (2013). Towards automated

rule learning for complex event processing. Technical report, Technical Report.

Martin, L. and Vrain, C. (1996). A three-valued framework for the induction of general

logic programs. Advances in Inductive Logic Programming, pages 219–235.

118 Bibliography

Matsui, T., Inuzuka, N., Seki, H., and Itoh, H. (1998). Comparison of three parallel

implementations of an induction algorithm. In 8th Int. Parallel Computing Workshop,

pages 181–188. Citeseer.

McAllester, D. A. (1999). Pac-bayesian model averaging. In Proceedings of the twelfth
annual conference on Computational learning theory, pages 164–170. ACM.

McCarthy, J. (1986). Applications of circumscription to formalizing common-sense

knowledge. Artificial Intelligence, 28(1):89–116.

McCarthy, J. (2002). Actions and other events in situation calculus. In KR, pages

615–628.

Michelioudakis, E., Skarlatidis, A., Paliouras, G., and Artikis, A. (2016). Osla: Online

structure learning using background knowledge axiomatization.

Miller, R. and Shanahan, M. (2002). Some alternative formulations of the event calculus.

In Computational logic: logic programming and beyond, pages 452–490. Springer.

Mitchell, T. (1979). Version Spaces: An Approach to Concept Learning. PhD thesis.

AAI7917262.

Mooney, R. J. (1992). Batch versus incremental theory refinement. Artificial Intelligence

Laboratory, University of Texas at Austin.

Motwani, R. and Raghavan, P. (2010). Randomized algorithms. Chapman & Hall/CRC.

Moyle, S. (2002). Using theory completion to learn a robot navigation control program.

In International Conference on Inductive Logic Programming, pages 182–197. Springer.

Moyle, S. and Muggleton, S. (1997). Learning programs in the event calculus. 7th
International Workshop on Inductive Logic Programming, 1297:205–212.

Moyle, S. A. (2003). An investigation into theory completion techniques in inductive logic
programming. PhD thesis, University of Oxford.

Mueller, E. T. (2008). The event calculus. In van Harmelen, Frank; Lifschitz, V. P. B.,

editor, Handbook of Knowledge Representation. Elsevier.

Mueller, E. T. (2014). Commonsense reasoning: An event calculus based approach.

Morgan Kaufmann.

Muggleton, S. (1995a). Inverse entailment and progol. New Generation Comput.,
13(3&4):245–286.

Muggleton, S. (1995b). Inverse entailment and progol. New generation computing,

13(3-4):245–286.

Bibliography 119

Muggleton, S. and Bryant, C. (2000a). Theory completion using inverse entailment. In

International Conference on Inductive Logic Programming, pages 130–146.

Muggleton, S. and De Raedt, L. (1994). Inductive logic programming: Theory and

methods. The Journal of Logic Programming, 19:629–679.

Muggleton, S., Feng, C., et al. (1990). Efficient induction of logic programs. Citeseer.

Muggleton, S., Paes, A., Costa, V. S., and Zaverucha, G. (2012). Chess revision: acquiring

the rules of chess variants through fol theory revision from examples. In Inductive
Logic Programming.

Muggleton, S. H. and Bryant, C. H. (2000b). Theory completion using inverse entail-

ment. In International conference on inductive logic programming, pages 130–146.

Springer.

Muggleton, S. H., Lin, D., Pahlavi, N., and Tamaddoni-Nezhad, A. (2014). Meta-

interpretive learning: application to grammatical inference. Machine Learning,

94(1):25–49.

Muggleton, S. H., Santos, J. C. A., and Tamaddoni-Nezhad, A. (2008). Toplog: Ilp using

a logic program declarative bias. In International Conference on Logic Programming,

pages 687–692. Springer.

Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Now Publishers

Inc.

Nabeshima, H., Iwanuma, K., and Inoue, K. (2003). Solar: a consequence finding

system for advanced reasoning. In International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods, pages 257–263. Springer.

Needham, C. J., Santos, P. E., Magee, D. R., Devin, V., Hogg, D. C., and Cohn, A. G.

(2005). Protocols from perceptual observations. Artificial Intelligence, 167(1):103–

136.

Nicolas, P. and Duval, B. (2001). Representation of incomplete knowledge by in-

duction of default theories. In International Conference on Logic Programming and
Nonmonotonic Reasoning, pages 160–172. Springer.

Nienhuys-Cheng, S.-H. and De Wolf, R. (1997). Foundations of inductive logic program-
ming, volume 1228. Springer Science & Business Media.

Ohwada, H. and Mizoguchi, F. (1999). Parallel execution for speeding up inductive

logic programming systems. In International Conference on Discovery Science, pages

277–286. Springer.

Otero, R. P. (2001). Induction of stable models. In Inductive Logic Programming, pages

193–205. Springer.

120 Bibliography

Otero, R. P. (2003). Induction of the effects of actions by monotonic methods. In

Inductive Logic Programming, pages 299–310. Springer.

Otero, R. P. (2004). Embracing causality in inducing the effects of actions. In Current
Topics in Artificial Intelligence, pages 291–301. Springer.

Paes, A., Zaverucha, G., and Costa, V. S. (2007). Revising first-order logic theories from

examples through stochastic local search. In International Conference on Inductive
Logic Programming, pages 200–210. Springer.

Paschke, A. (2005). ECA-RuleML: An approach combining ECA rules with temporal

interval-based KR event logics and transactional update logics. Technical report,

Technische Universitat Munchen.

Paschke, A. (2006). Eca-ruleml: An approach combining eca rules with temporal

interval-based kr event/action logics and transactional update logics. arXiv preprint
cs/0610167.

Paschke, A. and Bichler, M. (2008). Knowledge representation concepts for automated

sla management. Decision Support Systems, 46(1):187–205.

Paschke, A. and Kozlenkov, A. (2009). Rule-based event processing and reaction rules.

In International Workshop on Rules and Rule Markup Languages for the Semantic Web,

pages 53–66. Springer.

Paschke, A., Kozlenkov, A., and Boley, H. (2010). A homogeneous reaction rule language

for complex event processing. arXiv preprint arXiv:1008.0823.

Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., and Theodoridis, Y.

(2016). Online event recognition from moving vessel trajectories. arXiv preprint
arXiv:1601.06041.

Patroumpas, K., Artikis, A., Katzouris, N., Vodas, M., Theodoridis, Y., and Pelekis, N.

(2015). Event recognition for maritime surveillance. In EDBT, pages 629–640.

Plotkin, G. D. (1970). A note on inductive generalization. Machine intelligence,

5(1):153–163.

Pnueli, A. and Manna, Z. (1992). The temporal logic of reactive and concurrent systems.

Quinlan, J. R. (1990a). Learning logical definitions from relations. Machine Learning,

5:239–266.

Quinlan, J. R. (1990b). Learning logical definitions from relations. Machine learning,

5(3):239–266.

Randell, D. A., Cui, Z., and Cohn, A. G. (1992). A spatial logic based on regions and

connection. KR, 92:165–176.

Bibliography 121

Ray, O. (2005). Hybrid abductive inductive learning. PhD thesis, Department of

Computing, Imperial College London, UK.

Ray, O. (2006). Using abduction for induction of normal logic programs. In ECAI’06
Workshop on Abduction and Induction in Artificial Intelligence and Scientific Modelling.

Ray, O. (2009a). Nonmonotonic abductive inductive learning. Journal of Applied Logic,
7(3):329–340.

Ray, O. (2009b). Nonmonotonic abductive inductive learning. Journal of Applied Logic,
7(3):329–340.

Ray, O., Broda, K., and Russo, A. (2003). Hybrid abductive inductive learning: A

generalisation of progol. In Proc. of the Int. Conf. in Inductive Logic Programming
(ILP).

Ray, O., Broda, K., and Russo, A. (2004). Generalised kernel sets for inverse entailment.

In International Conference in Logic Programming (ICPL), pages 165–179.

Ray, O. and Bryant, C. H. (2008). Inferring the function of genes from synthetic lethal

mutations. In Complex, Intelligent and Software Intensive Systems, 2008. CISIS 2008.
International Conference on, pages 667–671. IEEE.

Ray, O. and Inoue, K. (2007). Mode-directed inverse entailment for full clausal theories.

In International Conference on Inductive Logic Programming, pages 225–238. Springer.

Ray, O., Whelan, K., and King, R. (2010). Logic-based steady-state analysis and revision

of metabolic networks with inhibition. In Complex, Intelligent and Software Intensive
Systems (CISIS), 2010 International Conference on, pages 661–666. IEEE.

Richards, B. and Mooney, R. (1995). Automated refinement of first-order horn clause

domain theories. Machine Learning, 19(2):95–131.

Richards, B. L. and Mooney, R. J. (1991). First order theory revision. In 8th International
Workshop on Machine Learning, pages 447–451.

Rodrigues, C., Gérard, P., and Rouveirol, C. (2010a). Incremental learning of relational

action models in noisy environments. In International Conference on Inductive Logic
Programming, pages 206–213. Springer.

Rodrigues, C., Gérard, P., Rouveirol, C., and Soldano, H. (2010b). Incremental learning

of relational action rules. In Machine Learning and Applications (ICMLA), 2010 Ninth
International Conference on, pages 451–458. IEEE.

Rodrigues, C., Gérard, P., Rouveirol, C., and Soldano, H. (2011). Active learning of

relational action models. In International Conference on Inductive Logic Programming,

pages 302–316. Springer.

122 Bibliography

Rodrigues, P. P., Gama, J., and Pedroso, J. (2008). Hierarchical clustering of time-series

data streams. IEEE transactions on knowledge and data engineering, 20(5):615–627.

Rouveirol, C. (1994). Flattening and saturation: Two representation changes for

generalization. Machine Learning, 14(2):219–232.

Saitta, L. (2010). Ubiquitous Knowledge Discovery. Springer.

Sakama, C. (1999). Some properties of inverse resolution in normal logic programs. In

International Conference on Inductive Logic Programming, pages 279–290. Springer.

Sakama, C. (2000). Inverse entailment in nonmonotonic logic programs. In Proc. of the
Int. Conf. on Inductive Logic Programming (ILP).

Sakama, C. (2001). Nonmonotomic inductive logic programming. In Logic Programming
and Nonmotonic Reasoning, pages 62–80. Springer.

Sakama, C. (2005). Induction from answer sets in nonmonotonic logic programs. ACM
Transactions on Computational Logic, 6 (2):203–231.

Sakama, C. and Inoue, K. (2009). Brave induction: a logical framework for learning

from incomplete information. Machine Learning, 76(1):3–35.

Sandewall, E. (1992). Features and fluents: A systematic approach to the representation
of knowledge about dynamical systems. Linköping University.

Santos, J. and Muggleton, S. (2010). Subsumer: A prolog theta-subsumption engine.

In Technical Communications of the 26th Int. Conf. on Logic Programming.

Schultz-Møller, N. P., Migliavacca, M., and Pietzuch, P. (2009). Distributed complex

event processing with query rewriting. In Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, page 4. ACM.

Seitzer, J. (1997). Stable ilp: exploring the added expressivity of negation in the

background knowledge. In Proceedings of IJCAI-95 Workshop on Frontiers of ILP,

volume 76, page 77. Citeseer.

Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., and Ferilli, S. (1997). A logic

framework for the incremental inductive synthesis of datalog theories. In Interna-
tional Workshop on Logic Programming Synthesis and Transformation, pages 300–321.

Springer.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From
theory to algorithms. Cambridge University Press.

Skarlatidis, A., Paliouras, G., Artikis, A., and Vouros, G. A. (2015). Probabilistic event

calculus for event recognition. ACM Transactions on Computational Logic (TOCL),

16(2):11.

Bibliography 123

Srinivasan, A. (2000). The aleph manual.

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.

Storf, H., Kleinberger, T., Becker, M., Schmitt, M., Bomarius, F., and Prueckner, S. (2009).

An event-driven approach to activity recognition in ambient assisted living. In Euro-
pean Conference on Ambient Intelligence, pages 123–132. Springer.

Synnaeve, G., Inoue, K., Doncescu, A., Nabeshima, H., Kameya, Y., Ishihata, M., and

Sato, T. (2011). Kinetic models and qualitative abstraction for relational learning in

systems biology. In BIOSTEC Bioinformatics 2011.

Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., and Muggleton, S. (2006). Application of

abductive ilp to learning metabolic network inhibition from temporal data. Machine
Learning, 64(1-3):209–230.

Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A. C., Sternberg, M., Nicholson, J., and

Muggleton, S. (2007). Modeling the effects of toxins in metabolic networks. IEEE
Engineering in Medicine and Biology Magazine, 26(2):37.

Tamaddoni-Nezhad, A., Kakas, A., Muggleton, S., and Pazos, F. (2004). Modelling

inhibition in metabolic pathways through abduction and induction. In International
Conference on Inductive Logic Programming, pages 305–322. Springer.

Thielscher, M. (1999). From situation calculus to fluent calculus: State update axioms

as a solution to the inferential frame problem. Artificial intelligence, 111(1):277–299.

Utgoff, P. E. (2011). Incremental learning. In Sammut, C. and Webb, G. I., editors,

Encyclopedia of machine learning. Springer Science & Business Media.

Van der Aalst, W. M., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., and Weijters,

A. J. (2003). Workflow mining: a survey of issues and approaches. Data & knowledge
engineering, 47(2):237–267.

Van Dongen, B. F., De Medeiros, A. A., and Wen, L. (2009). Process mining: Overview

and outlook of petri net discovery algorithms. In Transactions on Petri Nets and Other
Models of Concurrency II, pages 225–242. Springer.

Van Dongen, B. F. and Van der Aalst, W. M. (2004). Multi-phase process mining:

Building instance graphs. In International Conference on Conceptual Modeling, pages

362–376. Springer.

Vapnik, V. N. and Vapnik, V. (1998). Statistical learning theory, volume 1. Wiley New

York.

Vazirani, V. V. (2013). Approximation algorithms. Springer Science & Business Media.

Vovk, V., Gammerman, A., and Shafer, G. (2005). Algorithmic learning in a random
world. Springer Science & Business Media.

124 Bibliography

Wang, Y., Cao, K., and Zhang, X. (2013). Complex event processing over distributed

probabilistic event streams. Computers & Mathematics with Applications, 66(10):1808–

1821.

Wang, Y. and Skillicorn, D. (2000). Parallel inductive logic for data mining. In Workshop
on Distributed and Parallel Knowledge Discovery, KDD2000, Boston. Citeseer.

Westendorp, J. (2002). Noise-resistant incremental relational learning using possible

worlds. In International Conference on Inductive Logic Programming, pages 317–332.

Springer.

Wogulis, J. and Pazzani, M. (1993). A methodology for evaluating theory revision

systems: Results with audrey ii. In 13th Interantional Joint Conference in Artificial
Intelligence IJCAI, pages 1128–1134.

Wrobel, S. (1994). Concept formation during interactive theory revision. Machine
Learning, 14(2):169–191.

Wrobel, S. (1996). First order theory refinement. In De Raedt, L., editor, Advances in
Inductive Logic Programming, pages 14 – 33.

Yamamoto, A. (1997). Which hypotheses can be found with inverse entailment? In

International Conference in Inductive Logic Programming (ILP), pages 296–308.

Yamamoto, A. (2000). Using abduction for induction based on bottom generalization.

In Abduction and Induction, pages 267–280. Springer.

Yamamoto, A. (2003). Hypothesis finding based on upward refinement of residue

hypotheses. Theoretical Computer Science, 298(1):5–19.

Yamamoto, Y., Inoue, K., and Doncescu, A. (2008). Estimation of possible reaction

states in metabolic pathways using inductive logic programming. In Advanced Informa-
tion Networking and Applications-Workshops, 2008. AINAW 2008. 22nd International
Conference on, pages 808–813. IEEE.

Yamamoto, Y., Inoue, K., and Doncescu, A. (2010). Integrating abduction and induction

in biological inference using cf-induction. Elements of computational systems biology,

pages 213–234.

Yang, H. and Fong, S. (2011). Moderated vfdt in stream mining using adaptive tie

threshold and incremental pruning. In Data Warehousing and Knowledge Discovery,

pages 471–483. Springer.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Complex Event Recognition
	1.2 Motivation of this Thesis
	1.3 Thesis Contribution
	1.3.1 Incremental Learning of Event Definitions
	1.3.2 Online Learning of Event Definitions
	1.3.3 Publications

	1.4 Thesis Outline

	2 Background
	2.1 Logic Programming Basics
	2.2 The Event Calculus
	2.2.1 Domain-independent Axioms
	2.2.2 Domain-specific Axioms: An activity recognition use-case
	2.2.3 Other Action Formalisms

	2.3 Inductive Logic Programming
	2.3.1 The Learning Setting
	2.3.2 The Hypothesis Space

	2.4 Learning Programs in the Event Calculus
	2.4.1 Non-Observational Predicate Learning
	2.4.2 Problems with Negation as Failure
	2.4.3 The XHAIL system

	2.5 Related Work
	2.5.1 Related ILP Systems
	2.5.2 Logical Learning in Temporal Domains

	2.6 Summary

	3 ILED: Incremental Learning of Event Definitions
	3.1 Theory Revision and Incremental Learning
	3.2 The ILED System
	3.2.1 Support Set
	3.2.2 Implementing Revisions

	3.3 Discussion and Related Work

	4 Experimental Evaluation for ILED
	4.1 Activity Recognition
	4.1.1 ILED vs XHAIL
	4.1.2 ILED Scalability

	4.2 City Transport Management
	4.2.1 ILED vs XHAIL
	4.2.2 Learning With Hierarchical Bias

	4.3 Summary

	5 OLED: Online Learning of Event Definitions
	5.1 Learning from Data Streams
	5.1.1 Learning From Data Streams

	5.2 Online Inductive Logic Programming
	5.3 Online Learning of Event Calculus Theories
	5.3.1 Evaluating Clauses
	5.3.2 The OLED system

	5.4 Discussion and Related Work

	6 Experimental Evaluation for OLED
	6.1 Comparison with Manually Constructed Rules and Batch Learning
	6.2 Activity Recognition on the Entire CAVIAR Dataset
	6.3 Comparison with an Incremental Learner
	6.4 Scalability
	6.5 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

