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Abstract

The decomposition of binary images using rectangular blocks of foreground pixels as primitives is considered. Based
on this type of decomposition, a fast method for evaluating the Hough transform is introduced. A complexity analysis of
the proposed block Hough transform algorithm sets constraints on the complexity of algorithms used for block
decomposition, so that the total decomposition and Hough transform application time is much less than the time
consumed by the usual point Hough transform. Using this analysis, we propose two algorithms for the decomposition
and segmentation of binary images into rectangular blocks. A combination of these methods leads to significant
acceleration in the identification of linear features, which is demonstrated in various image processing experiments.
( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The description of a digital image in terms of simple
geometrical shapes is a well established methodology
that often proves useful for effective image segmentation
[1]. Moreover, such a description can also contribute
towards effective and fast implementation of image pro-
cessing algorithms. Well-known examples are the de-
scription of images in terms of polygonal shapes [2], and
shape description using morphological operations [3].
Both methods can be used to speed up image processing
operations, like moment calculations [2].

*Corresponding author.

If the description of an image in terms of primitive
geometrical shapes is a priori known, then the total
processing time will be taken by the image processing
algorithm. However, if this description is not a priori
available, suitable algorithms must be proposed in order
to decompose the image into the required shapes. In
this case, the total processing time will be the sum of
the processing times taken by the decomposition and
image processing algorithms. Clearly, the design of
the decomposition algorithm must take into account
the computational complexity of the image processing
algorithm, so that the speedup of the latter is not cancel-
led by long processing times spent in the decomposition
stage.

The Hough transform (HT) [4] has emerged in recent
decades as a powerful method for many image processing

0031-3203/99/$— See front matter ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
PII: S 0 0 3 1 - 3 2 0 3 ( 9 8 ) 0 0 1 2 5 - 3



E(r
0
)"G

0, if r
0
(q

1
,

(r
0
!q

1
)2

2Dcosh sin hD
, if q

1
)r

0
(q

2
,

(q
2
!q

1
)2

2Dcosh sin hD
#(r

0
!q

2
)¸, if q

2
)r

0
(q

3
,

(k
2
!k

1
#1) (l

2
!l

1
#1)!

(q
4
!r

0
)2

2Dcos h sin hD
if q

3
)r

0
(q

4
,

(k
2
!k

1
#1) (l

2
!l

1
#1) if r

0
*q

4

(2)

and pattern recognition applications. However, a major
drawback of its implementation in large images is its
relatively low speed. To overcome this drawback, the
development of fast variants of the original HT has
attracted much attention in the literature. To this end,
different techniques have been proposed, including the
exploitation of gradient information from edge images
[5—7], parallel implementation [8—12], hierarchical
schemes [13—16], and application-dependent fast algo-
rithms [17].

In this paper, we propose that the description of binary
images using rectangular blocks can be useful for speed-
ing up the implementation of the HT algorithm. More
specifically, we propose a block Hough transform (BHT)
method that takes advantage of the rectangular block
decomposition of a binary image and achieves fast evalu-
ation of the HT field by analytically calculating the
contribution to cells in the Hough accumulator array of
a whole rectangular block rather than of each individual
pixel.

We derive formulas for the computational complexity
of the proposed modified HT implementation and thus
find the minimum size of the rectangular blocks, for
which BHT is faster than the usual point Hough
transform (PHT). Moreover, using our computational
complexity analysis, we set bounds on the computa-
tional complexity of the algorithms that can be used
to decompose images into rectangular blocks, so that
the total process (decomposition and BHT) is faster
than PHT. Two such algorithms are introduced, respec-
tively for the description of a binary image using rectan-
gular blocks of foreground pixels, and for its segmenta-
tion. In the first algorithm, the image is represented as the
union of rectangular blocks of foreground pixels, while in
the second algorithm the image is segmented using
shapes consisting of assemblies of adjacent rectangular
blocks.

In the experimental section, we study four different
image processing applications, where identification of
prevalent linear directions is needed. We compute the
total time required for decomposition and BHT imple-
mentation and compare it to the time consumed by PHT.
Significant acceleration is observed, especially in applica-

tions where prevalent linear features cannot be captured
correctly using edge detection, so that the whole image
should preferably be used.

2. Block Hough transform algorithm

Consider a binary image I (x, y), x"1, 2,2, x
max

,
y"1, 2,2, y

max
, defined as follows:

I(x, y)"G
1 for foreground pixel,
0 for background pixel.

(1)

We are interested in the detection of straight lines
parametrized by r"x cos h#y sin h (0(h)n) (see
Fig. 1). Let *h and *r be the angular and radial resolu-
tion, respectively.

We first form a decomposition of the image into rec-
tangular blocks of foreground pixels. Next, we examine
each of the rectangular blocks of pixels and evaluate the
contribution of its pixels to each cell in the accumulator
array of the HT space. Consider a block R whose oppo-
site vertices are located at at (k
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, l
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pixels lie in the interior or on the perimeter of R.
Consider a cell in the accumulator array A(r

1
, h) that cor-

responds to all straight lines determined by the para-
meters h and !1/2#r

1
(r(1/2#r

1
, with r

1
integer.

Clearly, the number of points P in R contributing to this
cell can be approximated by the area occupied by the
intersection of the rectangle R and of the strip in the xy
plane restricted between the straight lines (r

1
!1/2, h)

and (r
1
#1/2, h) (small discrepancies are due to the dis-

crete image grid). The calculation of P can be done
analytically as follows: For a given h, we first consider
the area E (r

0
) of the region defined by the intersection of

R and the semi-plane r(r
0

whose boundary is the line
(r
0
, h). Let X

i
, ½

i
, i"1,2, 4, be the coordinates of the

four corners Q
i
, i"1,2, 4, of R in the order in which

they are encountered as the family of parallel straight
lines (r

0
, h) sweeps the plane moving towards increasing

r
0
. Moreover, let q

i
"X

i
cos h#½

i
sin h. As illustrated in

the appendix, straightforward geometrical calculations
lead to the following formulas:
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Fig. 1. Evaluation of rectangular block contribution to Hough
transform space.
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Finally, P can be readily computed as

P"E(r
1
#1/2)!E (r

1
!1/2). (5)

As a result of the above considerations, our BHT algo-
rithm proceeds as follows:

Given the rectangular block decomposition of a binary
image I (x, y), initialize all accumulator array cells A(r, h).
For all blocks in the image and every angle h:

Step 1: Compute and sort the quantities q
i
"X

i
cos h#

½
i
sin h.

Step 2: Compute E (1/2#r
1
) from Eqs. (2)—(4) for all

integers r
1

between [q
1
] and [q

4
]#1, where [q]

denotes the integer part of q.
Step 3: Compute P for all integers r

1
between [q

1
] and

[q
4
] using Eq. (5) and, respectively, add their

contributions to the accumulator array cells
A(r

1
, h).

3. Complexity analysis

Let R be a rectangular block of foreground pixels with
dimensions X and ½. The purpose of this section is to
derive a formula for the ratio of ¹

BHT
(CPU time needed

to compute the contribution to the HT accumulator
array of R using the BHT) over ¹

PHT
(the CPU time

needed to compute the same contribution using the
PHT). It will turn out that this ratio depends on the
dimensions of the rectangle. We will thus be able to
isolate those rectangles, for which it is beneficial to use
the BHT instead of the PHT.

Starting with the PHT, let A
p
be the CPU time needed

to compute the contribution of one foreground pixel.
This is equal to the CPU time needed to complete the
two multiplications and one addition of x cos h#y sin h.
For the whole rectangle and for each bin in the h space,
the time needed is equal to X½A

p
. Therefore, the total

CPU time for all angles can be approximated by

¹
PHT

"

X½nA
p

*h
(6)

Next, we consider the BHT. For every angle h, the
quantities of Eqs. (2) or (3) have to be computed for every
relevant r

0
. Computations independent of r

0
have to take

place before the r
0

loop is entered. These include evalu-
ation and sorting of the q

i
as well as calculation of the

r
0

independent parts of Eqs. (2) and (3). Therefore,
¹

BHT
can be obtained as the sum of the ‘‘overhead’’ time

¹
0

needed to compute quantities independent of r
0

and
of the time ¹

r
needed for computations within the

r
0

loop.
Let A

v
denote the total ‘‘overhead’’ time needed for

a particular value of h. Clearly, A
v

does not depend on
the dimensions of the particular rectangular block R and
¹

0
is equal to A

v
n/*h.

For a particular angle h and position r
0
, let A

b
be the

average CPU time needed to complete the evaluation of
E(r

0
) according to Eqs. (2) or (3). Then, the number of

values of r
0

for which these computations have to take
place is (q

4
!q

1
)/*r and the corresponding CPU time is

(q
4
!q

1
)A

b
/*r.

Next, we wish to add up the CPU times for all values of
h (0(h)n). It is straightforward to see that contribu-
tions for angles h greater than n/2 are equal to the
contributions corresponding to angles n!h.

Therefore, the total time ¹
r
for all angles h is given by

¹
r
"

2A
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Fig. 2. The ratio of the CPU time required by PHT over the CPU time required by BHT for rectangular blocks of different sizes. The
curve represents the theoretical result for ratio equal to one.

We can now obtain the final formula for the ratio of CPU
times as follows:

¹
BHT

¹
PHT

"

2A
b
(X#½)#A

v
n*r

X½nA
p
*r

. (8)

The values of the coefficients A
p
, A

b
and A

v
depend on

the specific platform used for the computations. It can
easily be seen, however, that A

p
and A

b
are of the same

order (Eq. (2) shows that usually one to two additions
and one to two multiplications contribute to A

b
and this

has to be compared with the two multiplications and one
addition needed to compute A

p
). On a Pentium platform

at 150 MHz we have obtained A
b
/A

p
"0.71 and

A
v
/A

p
"3.29.

BHT is faster than PHT for ¹
BHT

/¹
PHT

(1, i.e. for

X½nA
p
*r!2A

b
(X#½)!A

v
n*r'0. (9)

In a X—½ plot, this corresponds to points above the
curve defined by X½nA

p
*r!2A

b
(X#½)!A

v
n*r"0.

In Fig. 2, experimental values of ¹
PHT

/¹
BHT

are shown
for different values of X and ½ and *r"5. These are in
good agreement with the theoretical curve. In our experi-
ments, described in Section 5, we shall use relation (9) as
our criterion for incrementing the accumulator array
cells by applying the BHT formulas. Blocks that do not
pass this criterion will be decomposed into individual
points and the usual PHT formula will be applied for
each of these points. In this way the maximum processing
time economy will be achieved.

4. Image decomposition

For the BHT algorithm to be applied, the image I(x, y)
must first be decomposed into rectangular blocks of
foreground pixels. To this end, image decomposi-
tion algorithms must be applied. These algorithms must
be fast enough, so that the processing time advantage
of the BHT over the PHT is not forfeited in the
image decomposition stage. The complexity analysis of
Section 3 can be taken into account, in order to indicate
which types of decomposition algorithms fulfill this
criterion.

We propose two different algorithms for image de-
composition into rectangular blocks. The first just ex-
tracts the coordinates of all primitive rectangular blocks
that form an image, while the second can also segment
the image by identifying clusters of connected rectangu-
lar block components.

4.1. Rectangular blocks of the image

Our objective is to decompose a binary image into
rectangular blocks, in such a way as to accelerate the
evaluation of the HT accumulator array. From the dis-
cussion of Section 3, it follows that if the image has been
decomposed into N rectangles of dimensions X

i
, ½

i
,

i"1, 2 , N, the total time needed to complete the BHT
is given by

¹
BHT

"

2A
b

*h*r

N
+
i/1

(X
i
#½

i
)#

A
v
n

*h
N. (10)
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Fig. 3. Role of the parameter o (see text) in image decomposition into rectangular blocks: (a) original image; (b) decomposition obtained
with o"1; (c) decomposition obtained after two passes, one with o"5 and one with o"R.

Clearly, fastest BHT processing can be obtained when
the expression in Eq. (10) takes its minimum value. The
corresponding optimization problem is an NP complete
problem. To find the optimal or suboptimal solutions to
this problem would be time-consuming and would anni-
hilate the advantage gained by the acceleration in the HT
analysis stage. Indeed, note that the total time taken by
the PHT to compute the accumulator is proportional to
N

p
n/*h, where N

p
is the number of foreground pixels in

the image and n/*h is the number of angular bins in the
accumulator array space. Clearly, if BHT processing is to
be faster, this order of magnitude must not be exceeded
by the time taken to form the rectangles and, therefore,
any algorithm that would scan the image more than n/*h
times must be excluded.

The following algorithm involves two top-down
scans of the image and was found to work very well in
practice.

A top-down scan of the image is performed until
a foreground pixel (x

0
, y

0
) is found. Then a search is

conducted for the ‘‘best fitting block’’ at (x
0
, y

0
), that is

formed as follows: First, we identify the rectangle ¹1
which is formed if we move point (x

0
, y

0
) to the right until

a background pixel is found and then we move the
resulting horizontal segment parallel to itself and down-
wards, until it contains at least one background pixel.
Similarly, we identify the rectangle ¹2 which is formed if
we move point (x

0
, y

0
) downwards until a background

pixel is found and then we move the resulting vertical
segment parallel to itself and to the right, until it contains
at least one background pixel. Between ¹1 and ¹2, the
block with the larger area is the best fitting block at
(x

0
, y

0
). If the height/width ratio of the best fitting block

is smaller than a predetermined value o'1, the block is
accepted as part of the image decomposition and the
coordinates of its upper left and lower right vertices are
stored in arrays XF,½F, X¸,½¸ for further processing by
the BHT. All pixels of the accepted block are transformed
to background pixels and the procedure is repeated until
all the image pixels are scanned.

The condition involving the height/width ratio is in-
cluded in the algorithm for the following reason: Since

the top-down scan locates points where the tangent to
the image perimeter is parallel to the x-axis, best fitting
blocks tend to be line segments perpendicular to the
x-axis. It is better to reject these segments in favor of less
elongated blocks of larger area, in order to reduce the
number of blocks in the final image decomposition.
A typical situation is illustrated in Fig. 3. Fig 3b shows
the decomposition of the image in Fig. 3a that is obtained
if the height/width ratio condition is relaxed (effectively
oPR). The more efficient decomposition of Fig. 3c is
obtained after two passes, one with o"5 and one with
oPR.

Since the top-down scan procedure may not extract all
rectangular blocks, and there may still exist remaining
foreground pixels, we apply a second pass of the algo-
rithm with oPR, so that all remaining image pixels are
eventually grouped in rectangular blocks.

To give a more formal description of the algorithm, let
us define a function B(x

1
, y

1
, x

2
, y

2
) that informs us if the

pixels with coordinates (x
1
, y

1
) and (x

2
, y

2
) are opposite

vertices of a rectangular block consisting of foreground
pixels:

B(x
1
, y

1
, x

2
, y

2
)

"G
1 if I(x, y)"1 ∀ x, y :x3[x1, x2]'y3[y1, y2]
0 otherwise

(11)

where x
1
, x

2
3[1, 2,2, x

max
] and y

1
, y

2
3[1, 2,2, y

max
].

Each pass of the algorithm corresponding to a value of
o is as follows:

Step 1: Set iter"1.
Step 2: Perform a top-down scan of the image to find

a pixel of coordinates (x
0
, y

0
): I(x

0
, y

0
)"1.

Step 3: Find the opposite vertex (x
op

, y
op

) of the ‘‘best
fitting block’’ at (x

0
, y

0
), as follows:

(a) Find x
1
*x

0
: B (x

0
, y

0
, x

1
, y

0
)"1' x

1
!x

0
"max.

(b) Find y
1
*y

0
: B (x

0
, y

0
, x

1
, y

1
)"1' y

1
!y

0
"max.

(c) Find y
2
*y

0
: B (x

0
, y

0
, x

0
, y

2
)"1' y

2
!y

0
"max.
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Fig. 4. Steps followed for block decomposition of a simple binary image.

(d) Find x
2
*x

0
: B(x

0
, y

0
, x

2
, y

2
)"1'x

2
!x

0
"max.

(e) Find q3M1, 2N: (x
q
!x

0
) (y

q
!y

0
)"max. Set

x
op
"x

q
and y

op
"y

q
.

Step 4: If (y
op
!y

0
) /(x

op
!x

0
) (o, then:

(a) Set XF[iter]"x
0
, X¸[iter]"x

op
, ½F[iter]

"y
0
, ½¸[iter]"y

op
.

(b) Set I (x, y)"0 ∀ x3[XF[iter]2X¸[iter]]
' y3[½F[iter]2½¸[iter]].

(c) Set iter"iter#1.
(d) Until there remains no unscanned pixel, con-

tinue with the top-down scan of step 2.

The decomposition of an image into rectangular
blocks is demonstrated in a simple case in Fig. 4. Assume
that during the first pass of the algorithm we set o"5.
Starting from the original image we find pixel (x

0
, y

0
)

with a top-down scan (Fig. 4a). The best fitting block is
a vertical line, denoted by ¹ (dashed line in Fig. 4a). In
this case, the height/width ratio is greater than o and ¹ is
not accepted as part of the image decomposition. Moving
on to the pixel (x

0
, y

0
) of Fig. 4b, we form the two

candidate blocks ¹1 (Fig. 4b) and ¹2 (Fig. 4c), of which
¹1 has the larger area. Since its height/width ratio is less
than o, ¹1 is accepted as part of the image decomposi-
tion and all pixels of ¹1 are removed from the image.
Moving on with the top-down scan to pixel (x

0
, y

0
) of

Fig. 4d, we similarly accept block ¹ as part of the image
decomposition (Fig. 4d and e) and remove its pixels from
the image. The remaining pixel is incorporated in the
image decomposition during the second pass of the algo-
rithm, with oPR. In this way we have decomposed the
original image into three rectangular blocks (Fig. 4f).

Fig. 5. The surrounding line of a rectangular block.

4.2. Rectangular blocks of connected image components

The previous algorithm is used to detect rectangular
blocks in a digital image following a top-down image
analysis. Using an extension of this algorithm, it is
possible to group together all blocks that belong to the
same connected component of the image. To start with,
the ‘‘best fitting block’’ at the first foreground pixel
is found using a top-down scan. Then, a search is
conducted for all ‘‘best fitting blocks’’ at all foreground
pixels which belong to the ‘‘surrounding lines’’ of already
detected blocks, i.e. are immediately adjacent to the per-
imeter of such blocks and belong to their exterior (see
Fig. 5). This process is repeated iteratively, transforming
the pixels of all detected blocks to background pixels,
until no foreground pixel remains on the surrounding
lines of all blocks of the current connected image
component. There follows a complete description of the
algorithm:
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Step 1: Perform a top-down scan of the image to find
a pixel at coordinates (x

0
, y

0
): I(x

0
, y

0
)"1.

Step 2:
(a) Find the opposite vertex (x

op
, y

op
) of the ‘‘best

fitting block’’ at (x
0
, y

0
), following steps

3(a)—(e) of the algorithm in the previous section.
(b) Set BlockNum"1.
(c) Set XF[1]"x

0
, X¸[1]"x

op
, ½F[1]"y

0
,

½¸[1]"y
op

.
(d) Set I(x, y)"0 ∀ x3[XF[1]2X¸[1]]'

y3[½F[1]...½¸[1]].
Step 3: Set iter"1.
Step 4: For every (x, y) belonging to the surrounding line

of the block with opposite vertices at (XF(iter),
½F (iter)) and (X¸(iter), ½¸ (iter)) and obeying
I (x, y)"1:
(a) Find the opposite vertex (x

op
, y

op
) of the ‘‘best

fitting block’’ at (x, y), following steps 3(a)— (e)
of the algorithm in the previous section.

(b) Set BlockNum"BlockNum#1.
(c) Set XF[BlockNum]"x, X¸[BlockNum]"x

op
,

½F[BlockNum]"y, ½¸[BlockNum]"y
op

.
(d) Set I (x, y)"0 ∀ x3[XF[BlockNum]2X¸

[BlockNum]]' y3[½F[BlockNum]2½¸

[BlockNum]].
Step 5: If iter(BlockNum then iter"iter#1 and go to

Step 4.

Once the process has been completed, the coordinates
of all blocks that form the first object of the image are
stored in the matrices XF[i], X¸[i], ½F[i], ½¸[i], for
i"12BlockNum. The above process is repeated until
all image objects have been segmented.

5. Experimental results

In order to demonstrate the efficiency of our methods,
we apply them to various image processing problems. All
experiments have been performed using a Pentium proces-
sor at 150 MHz. For both PHT and BHT, we use look-up
tables for all function calculations involving cos h and sin h
in order to speed up all processes. In all cases, the Hough
field produced by using BHT is very similar to that
produced by using PHT. This is clearly shown in Fig. 6,
where the original image, the Hough transform field for
PHT, the Hough transform field for BHT and the relative
difference between the two fields (difference between
BHT and PHT field values divided by PHT field value) in
the vicinity of the maximum are presented. The presence
of a non-zero relative difference is due to the discrete
image grid and amounts to less that 1.5% per cell value
in the vicinity of local maxima in the HT field.

It has become obvious in Section 3 that the BHT
method offers more economy in terms of CPU time when
large rectangular blocks are present in the processed

image. It is therefore natural that more economy can be
achieved for image processing applications whereby edge
detection is not appropriate as a preprocessing tool, since
it is more likely that large blocks can be found in such
applications. Our first two examples fall into this general
category of applications. The third example is a docu-
ment skew detection application which can be dealt with
using either the original or the edge image. In our final
two examples it is beneficiary to use the edge image. In all
examples we compare the CPU time taken by block
decomposition (or segmentation) followed by BHT to the
time taken by PHT.

Example 1 (Axis determination). In the first application,
HT is used for estimating the central axis of a digitized
skeleton image, shown in Fig. 7a. This is a 395]719 pixels
image scanned at 300 dpi. In this case, there is no point in
preprocessing the image using edge detection, since the
desired axis lies in the interior of the object. Instead, it is
beneficial to employ RLSA preprocessing [18—20], which
is a one-pass algorithm facilitating large block extraction
without slowing down the preprocessing stage. Fig. 7b
shows the same image after thresholding, while Fig. 7c
shows the result of RLSA smoothing and the direction
obtained using the PHT or BHT algorithm. For the
application of BHT, rectangular blocks are extracted
using the algorithm of Section 4.1. Table 1 shows results
concerning processing times using PHT and BHT (the
latter being applied for rectangular blocks that pass the
criterion of relation (9). Preprocessing time (i.e. time
spent for RLSA plus time spent for block identification),
time consumed by each HT variant and total processing
time are shown. The fastest time (0.6 s) is obtained using
BHT in conjunction with RLSA preprocessing, and is
less than 1/5 of the best time obtained using PHT (3.5 s).

Example 2 (Segmentation and axis determination). In the
second application, HT is used for identifying the axes of
elongated objects in the field of view of a camera. We
process a 512]512 pixel field of view of a CCD camera
depicting a number of discrete objects (keys), shown in
Fig. 8a. Again, only RLSA preprocessing is used, whose
result is shown in Fig. 8b. There is no point in using edge
detection, since the desired axes lie in the interior of
the objects (keys). In this case, it is useful to segment the
image into its individual connected components before
applying the BHT to each object. To this end, we use
the block segmentation algorithm of Section 4.2. The
result of axis identification using BHT is shown in Fig. 8c.
In order to apply the PHT on the image for reasons of
comparison, we have first segmented it using connected
component analysis (this counts as part of the prepro-
cessing time). In Table 2, performances of BHT and PHT
in terms of processing time are shown. Clearly, the best
time obtained by BHT (0.9 s) is equal to 1/7 of the fastest
time obtained by PHT (6.3 s) in this application.
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Fig. 6. Comparison of PHT and BHT accumulator arrays. (a) original image; (b) PHT accumulator array; (c) BHT accumulator array;
(d) relative difference between BHT and PHT accumulator arrays in the vicinity of the maximum.

Example 3 (Skew detection). There are a number of line
finding problems that can be solved with some efficiency by
application of HT either on the original binary image or an
image resulting from the original image after an edge detec-
tion method has been applied. A characteristic example is
estimation of the skew of a digital image document.

HT has been applied successfully to this kind of prob-
lem, achieving high detection accuracies, but it is rather

slow because of its high computational complexity
[21—25]. Fig. 9 shows a digitized document with a skew
angle of 3° and its skew corrected form using HT. This is
a 2200]1545 pixel image scanned at 200 dpi. It corres-
ponds to a mixed document containing text with fonts of
different sizes and an image. In order to apply the HT, we
have used various preprocessing methods which can be
useful for accelerating the skew detection process. More
specifically, before applying the PHT to the image, we
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Fig. 8. Image segmentation and linear direction evaluation using rectangular block decomposition: (a) original image; (b) smoothed
image using RLSA; (c) final segmented image and prevalent linear directions.

Fig. 7. Linear direction evaluation using rectangular block de-
composition; (a) original image; (b) thresholded image; (c) final
smoothed image and prevalent linear direction.

Table 1
Processing times for PHT and BHT applied on the image of
Fig. 7a. Preprocessing time, actual HT evaluation time and total
processing time are shown

PHT time (s) BHT time (s)

RLSA Pre-Proc. HT Total Pre-Proc. HT Total

No 0 3.5 3.5 0.2 1.7 1.9
Yes 0.3 8.5 8.8 0.5 0.1 0.6

employ edge detection and RLSA preprocessing, as well
as their combination (RLSA followed by edge detection).
The resulting images are shown in Fig. 10. For BHT
application, blocks are extracted using the block de-
composition algorithm of Section 4.1.

To find the prevalent orientation using the HT vari-
ants, we first compute the HT accumulator array (400

values of r were used and h varied from !5 to 5° in
increments of 0.1°). Then, in order to eliminate cells with
small contributions, we apply a lower threshold ¹

0
which is taken equal to the average value of the contribu-
tion of all cells in the accumulator array. Finally, we add
the contributions of all remaining cells that correspond
to a certain value of h [21]. The result is a one-dimen-
sional array (integrated accumulator array) of values,
with each value corresponding to a certain h. The skew
angle can be estimated by finding the maximum value in
this array.

In this case it is useful to assess the performance of
BHT both in terms of accuracy in the determination of
the desired linear direction and in terms of economy in
CPU time. To this end, we show in Table 3 detailed
results concerning processing time and determined skew
angle for four different orientations of the initial docu-
ment in increments of 1°. Preprocessing time (i.e. time
spent for RLSA and/or edge detection plus time spent for
block identification), time consumed by the HT variant
and total processing time are shown.

It is evident from Table 3 that PHT and BHT applica-
tion leads to very similar determinations of the skew
angle. For three of the preprocessing tool combinations
(no preprocessing, edge detection only, RLSA only) both
HT variants (PHT and BHT) have always corrected the
skew with maximum error of 0.1°. By contrast, the fourth
preprocessing method (RLSA followed by edge detec-
tion) leaves too little information in the resulting image
(see Fig. 10c), so that the obtained angles are often
unacceptable (errors of up to 0.5° occur).

For all preprocessing method combinations, BHT is
faster than PHT. The ratio of CPU time taken by BHT to
CPU time taken by PHT is approximately 1 : 3 (for the
original image), 1 : 16 (for RLSA preprocessing), 1 : 1.2
(for edge detection) and 1 : 2 (for combined RLSA and
edge detection). Of the three preprocessing methods that
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Table 2
Processing times for PHT and BHT applied on the image of
Fig. 8a

PHT time (s) BHT time (s)

RLSA Pre-Proc. HT Total Pre-Proc. HT Total

No 0.2 6.1 6.3 0.2 1.3 1.5
Yes 0.5 8.4 8.9 0.6 0.3 0.9

Fig. 9. Skew detection using HT; (a) original document. (b) skew
detected and corrected version.

give acceptable results in terms of skew detection accu-
racy, the best method for BHT (RLSA preprocessing)
takes 6—7 s, while the best method for PHT (edge detec-
tion) takes 21 s, and therefore the BHT method offers
a threefold CPU time economy when compared with
PHT.

Example 4 (Application of H¹ variants on edge image).
Next, we consider processing of images whereby strong
edge gradients are present and therefore edge detection is
essential [7]. In this case BHT is still applicable, and, as
explained in the beginning of this section, gives the same

Fig. 10. Results of preprossesing for the document image of
Fig. 9a: (a) image after application of RLSA; (b) image after edge
detection; (c) image after application of RLSA and edge
detection.
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Table 3
Skew detection results obtained after processing the document of Fig. 9a positioned at four different orientations (true skew angle of
0—3° at increments of 1°). Different preprocessing tools (RLSA and edge detection — ED) and HT versions (PHT and BHT) are applied
on the images. Results concerning point-block statistics, processing time and estimation of skew angle are shown

PHT BHT

Time (s) Time (s)

Skew RLSA ED Points Pre- HT Total Skew Blocks Points Pre- HT Total Skew
(True) Proc. (estimate) Proc (estimate)

0° No No 324894 0 37 37 0° 18 191 12 948 2 8 10 0°
0° Yes No 997657 3 110 113 !0.1° 1653 184 5 1 6 !0.1°
0° No Yes 178564 2 19 21 !0.1° 15 004 65 274 4 12 16 0°
0° Yes Yes 94 147 5 11 16 !0.5° 1952 1982 7 1 8 !0.4°

1° No No 323502 0 37 37 1° 19 086 14 642 2 8 10 1.1°
1° Yes No 999768 3 110 113 0.9° 2367 285 5 2 7 1°
1° No Yes 177839 2 19 21 1° 15 217 67 406 4 13 17 1.1°
1° Yes Yes 93 175 5 11 16 0.6° 2599 2065 7 1 8 0.5°

2° No No 317046 0 36 36 2° 19 758 16 439 2 9 11 2.1°
2° Yes No 979851 3 109 112 1.9° 2944 417 5 2 7 2°
2° No Yes 175021 2 19 21 2° 15 133 69 239 4 13 17 2.1°
2° Yes Yes 91411 5 11 16 1.6° 3168 2339 7 1 8 1.7°

3° No No 310860 0 35 35 3° 20 510 18 131 2 10 12 3.1°
3° Yes No 963757 3 107 110 2.9° 3496 559 5 2 7 3°
3° No Yes 172608 2 19 21 3° 15 118 70 990 4 14 18 3.1°
3° Yes Yes 89 571 5 11 16 2.6° 3698 2684 7 2 9 2.6°

prevalent lines as PHT (since their accumulator fields are
almost identical). An interesting question is whether
BHT is competitive to PHT in terms of processing time.
Given a rectangular block, the BHT algorithm checks
whether condition (9) is satisfied. If it is satisfied, the
contribution of the whole block to the accumulator array
is calculated, with CPU time advantage over the corres-
ponding application of PHT. If, on the other hand, the
condition is not satisfied, the contribution of each block
point is calculated separately and the consumed CPU
time is equal to the CPU time taken by PHT. In the most
adverse case that no acceptable blocks are found, BHT
can in principle be somewhat slower than PHT because
of the overhead CPU time needed to find the blocks and
check if condition (9) is satisfied for each block. However,
even though no blocks of very large area can be found in
edge detected images, enough line segments of adequate
length usually pass the criterion of relation (9) and there-
fore some acceleration is observed. The skew detection
example confirms this statement. Indeed, as can be seen
in Table 3, when only edge detection is applied, a large
number (about 15 000) of blocks that pass the criterion of
relation (9) is still formed and BHT is still a little faster
than PHT (CPU times for BHT vary between 16 and
18 s, while CPU time for PHT is 21 s).

A more typical example of this case is the edge image of
Fig. 11. Results of the application of HT variants on this
edge image are shown in the first row of Table 4. We

Fig. 11. An edge image with strong edge gradient information.

found that about 2/3 of the total number of foreground
pixels in the image (20 360 out of 29 833) are grouped into
elongated blocks that pass the criterion of relation (9)
and BHT is still faster than PHT (3.5 s are needed for
BHT, while 4.3 s are needed for PHT). Our experiments
support the conclusion that BHT is usually faster than
PHT even when edge detection is used and can therefore
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Table 4
Results of the application of PHT and BHT on the edge image of
Fig. 11. PHT and BHT are applied before and after the angle h is
restricted using edge gradient information and processing times
are displayed

PHT time (s) BHT time (s)

Pre-Proc. HT Total Pre-Proc. HT Total

Angle not
restricted

0 4.3 4.3 1.7 1.8 3.5

Angle
restricted

0.8 1.2 2.0 2.0 0.4 2.4

be used safely in most applications where identification
of linear formations is required.

Finally, we note that in the case of edge detected images,
gradient information can be used to restrict the span of the
angle h that must be examined for filling in the PHT
accumulator array cells [5,6]. With the application of 3]3
edge detector operators (e.g. Sobel, Prewitt) to the edge
image, this span is reduced to a total of n/4 [1]. As a result,
the processing time taken by PHT is also reduced. The
decomposition of the edge image into rectangular blocks
can also be used to impose constraints on the angular
directions of the accumulator array cells that must be
actually incremented. Clearly, for a rectangular block with
X'½, the larger the ratios of X/½, the more horizontal
the corresponding edge. It is reasonable to increment
only accumulator array cells corresponding to h with

n
2
!tan~1

½

X
)h)

n
2
#tan~1

½

X
. (12)

Similarly, X(½ corresponds to a more or less vertical
edge and therefore only accumulator array cells
corresponding to h with

0(h)tan~1
½

X
or n!tan~1

½

X
)h)n (13)

need be incremented. The corresponding span of h can be
less than the value of n/4 imposed on the angle h by
gradient information obtained using the common 3]3
edge filters (Sobel, Prewitt). This restriction of the angle
h can lead to a further significant reduction of the pro-
cessing time taken by the BHT.

Consider, for example, the edge image of Fig. 11. Apart
from the application of PHT and BHT as before, the
image is processed using two further methods. The first
method (angle restricted PHT) involves application of
the Prewitt edge detector operators to the neighborhood
of each foreground pixel in order to restrict the angle h,
and subsequent application of PHT. The second method
(angle restricted PHT) involves application of the block
decomposition algorithm of Section 4.1 to the edge
image. For blocks passing the criterion of relation (9), the

angle h is constrained using relations (12) or (13). As
usual, blocks not passing the criterion are decomposed
into points and PHT is applied to them with the angle
h restricted using the Prewitt operators. Results of the
application of different HT variants on the image of Fig.
11 are also shown in Table 4, in the row labelled ‘‘angle
restricted’’. Note that further restriction of the angle
using the block decomposition has led to a very signifi-
cant reduction in the CPU time taken by the HT applica-
tion itself (from 1.2 s for PHT to 0.4 s for BHT). When the
overhead preprocessing time needed to decompose the
image into blocks and restrict the angle is also taken into
account, the total CPU time is still comparable to the
total time for the PHT application (2.4 s for BHT versus
2.0 s for PHT).

6. Conclusion and further research

In this paper, algorithms for binary image decomposi-
tion into rectangular blocks of foreground pixels and for
image segmentation based on this decomposition were
introduced. A novel fast method was presented for ap-
plying the HT to binary images, based on rectangular
block decomposition. The efficiency of the combination
of these approaches in determining prevalent linear fea-
tures in binary images was demonstrated in various
image processing applications, where significant ac-
celeration was achieved compared to the classical PHT
implementation.

As it becomes evident from the results in the experi-
mental section, the algorithms described in this paper
offer most economy in terms of CPU time in cases where
edge detection is unacceptable as a preprocessing tool.
Such a case, which we are currently investigating, is the
application of the BHT algorithm to the problem of
determining linear formations of geological interest using
thresholded images of geophysical maps and satellite
images in the framework of a GIS system. In this applica-
tion, the desired linear formations coincide with the axes
of elongated foreground objects or clusters of objects.
Also of interest is the extention of the method to the
location of other geometrical objects besides straight
lines. As the parametric description of the desired geo-
metrical shape becomes more complicated, the computa-
tional benefit from the block decomposition becomes less
significant. However, preliminary calculations show that
there is considerable benefit in applying the rectangular
block decomposition method for locating conical sec-
tions (second degree curves), a problem with many prac-
tical applications. Finally, it would be interesting to
extend the rectangular block decomposition method for
the calculation of shape descriptors (various types of
moments, Fourier descriptors, etc.) and to systematically
study the benefits in computational complexity gained by
this application.
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Appendix

A sketch of the derivation of the BHT algorithm is given forthwith.
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