
Comparing Point and Block Representation in
Computer Vision and Image Processing Tasks

B. Gatos1, N. Papamarkos2 and S. J. Perantonis1

1 Computational Intelligence Laboratory,
Institute of Informatics and Telecommunications,

National Research Center "Demokritos",
153 10 Athens, Greece

{bgat, sper}@iit.demokritos.gr}
http://www.iit.demokritos.gr/cil

2 Department of Electrical and Computer Engineering,
Democritus University of Thrace,

67 100 Xanthi, Greece
papamark@ee.duth.gr

http://ipml.ee.duth.gr/~papamark/

Abstract. The description of a digital image in terms of simple geometrical
shapes, such as polygonal shapes, is a well established methodology that often
proves useful for several image processing tasks, mainly to speed up image
processing operations. The representation of binary images using rectangular
blocks as primitives has been applied with great success to several computer vi-
sion and image processing tasks, such as fast implementation of morphological
operations, fast implementation of the Hough transform, fast run length
smoothing algorithm (RLSA) evaluation and fast projection profiles evaluation.
Such decomposition can also contribute towards effective and fast shape analy-
sis, image compression, image segmentation and feature identification. In this
paper, we present an overview of the implementations of the most important
image processing and vision tasks using binary image block representation. We
focus on the acceleration achieved in comparison with the classical pixel based
approaches.

1 Introduction

Digital image representation in terms of simple geometrical shapes has proved useful
for effective and fast implementation of several computer vision and image process-
ing tasks [1]. The main motivation for suggesting image representations other than
the classical pixel based representation is that processing all the pixels of the image is
a difficult and time consuming task. Existing approaches for image representation
include image description in terms of:

Morphological operations [2]: A structuring element is used as a geometrical
primitive to evaluate the shape of an object. The morphological operation translates a
structuring element and sequentially finds the points where the translated structuring

element is included in the objects under consideration, but without overlapping the
previously included structuring elements. The result of the operation is thus a subset
of erosion. The representation results in a set of loci of the translated structuring ele-
ments that are included in the object but do not overlap. It is an information preserv-
ing, shift and scale invariant and non-redundant representation. Many image process-
ing and analysis tasks can be easily performed by using image representation based
on morphological operations.

Quadtrees [3]: A class of hierarchical data structures whose common property is
that they are based on the principle of recursive decomposition of space. The most
studied quadtree approach to region representation, termed a region quadtree, is based
on the successive subdivision of the image array into four equal-sized quadrants. The
region quadtree representation is especially useful for performing set operations such
as the union and intersection of several images, for basic transformations, for area and
moments calculation, for connected component labeling etc.

Skeletons [4]: Image representation by shape skeletons has been a constant topic of
research for decades. The skeleton is the set of mid-lines that preserve much of the
topological shape information of the image. It can be calculated entirely by the basic
operations of mathematical morphology. Generally, the skeleton must be well cen-
tered, well connected, must accurately reflect the shape and allow the precise recon-
struction of the original image. Skeleton representation can be used for efficient im-
age compression, feature extraction, image transformations etc.

Chain codes [5]: The line structures that result from image contour tracing are
characterized by the property that each data node in sequence coincides with one of
the eight grid nodes that surround the previous data node. If we label these eight
neighboring grid nodes from 0 to 7 in counterclockwise sense starting from the posi-
tive x axis, we can represent the line structures simply by sequences of octal digits
(chain code). Chain code encoding is convenient for processing highly irregular line
drawings and is especially useful for moment calculation, area calculation, image
smoothing, object rotation, object correlation etc.

Rectangular blocks [6]: The representation of binary images using rectangular
blocks as primitives has been applied with great success to several image processing
tasks, such as image compression, fast implementation of morphological operations,
fast implementation of the Hough transform.

In this paper, we present an overview of the implementations of the most important

image processing and vision tasks based on image representation by a set of rectangu-
lar blocks. We start with the rectangular block decomposition algorithm according to
which an image can be transformed to a set of non-overlapping rectangles. Then, we
present an abstract description of all approaches that perform computer vision and
image processing tasks starting from a block represented binary image. These include
image segmentation, image compression, morphological operations, Hough trans-
form, run length smoothing algorithm (RLSA), projection profiles and two-
dimensional moments. Finally, we present a comparative chart that demonstrates the
reported accelerations for several Computer Vision and Image Processing tasks when
using binary image block representation.

2 Rectangular Block Decomposition

The rectangular block decomposition algorithm involves one raster scanning of the
image. The image is scanned in a top-down direction until the first foreground pixel
(x0,y0) is found. Then, a procedure that searches and constructs the “best fitting
block” at (x0,y0), which is the block with the largest area that has the (x0,y0) pixel as
its upper left corner is applied. All pixels of the “best fitting block” are transformed to
background pixels and the procedure is repeated until the whole image is scanned.

Consider a binary image I(x,y), x = 1,2, …,xmax, y = 1,2, …,ymax, defined as fol-
lows:





=
pixel. backgroundfor 0,

 pixel, foregroundfor 1,
),(yxΙ (1)

A function B(x1,y1,x2,y2) is defined to specify if the pixels with coordinates (x1,y1)
and (x2,y2) are the opposite vertices of a rectangular block consisting of foreground
pixels:



 ∈∧∈∀=

=
 otherwise, 0,

][][: 1),(if 1,
),,,(2121 ,yyy,xxxx,yyxI

yxyxB 2211 (2)

where x1,x2 ∈ [1,2, …, xmax] and y1,y2 ∈ [1,2, …, ymax].
The algorithm for the constrained block decomposition is as follows:

Step 1: Set iter = 1.
Step 2: Perform a raster scanning of the image to find a foreground pixel (x0,y0). That

is I(x0,x0)=1.
Step 3: Find the opposite vertex (xop,yop) of the “best fitting block” at (x0,y0), as fol-

lows:
(a) Find x1 ≥ x0 : B(x0,y0,x1,y0) = 1 ∧ x1 - x0 is maximized.
(b) Find y1 ≥ y0 : B(x0,y0,x1,y1) = 1 ∧ y1 - y0 is maximized.
(c) Find y2 ≥ y0 : B(x0,y0,x0,y2) = 1 ∧ y2 - y0 is maximized.
(d) Find x2 ≥ x0 : B(x0,y0,x2,y2) = 1 ∧ x2 - x0 is maximized.
(e) Find q ∈ {1,2}: (xq - x0) (yq - y0) = max. Set xop = xq and yop = yq.

Step 4: Set XF[iter] = x0, XL[iter] = xop, YF[iter] = y0, YL[iter] = yop.
Step 5: Set I(x0,x0)=0 ∀ x ∈ [XL[iter] … XF[iter]] ∧ y ∈ [YF[iter] … YL[iter]].
Step 6: Set iter = iter +1
Step 7: Until there remains no unscanned foreground pixel, continue with the raster

scanning of step 2.

After following the above steps, the image is represented with a number of rectan-
gular blocks, bmax, whose opposite vertices have coordinates (XF[b], YF[b]) (upper
left vertex) and (XL[b], YL[b]) (lower right vertex), where b ∈ [1, …,bmax]. The de-
composition of an image into rectangular blocks is demonstrated in Fig. 1. By using a
top-down raster scanning a foreground pixel (x0,y0) is obtained (Fig. 1(a)). Then two
candidate blocks T1 (Fig. 1(a)) and T2 (Fig. 1(b)) are obtained, of which T1 has the
larger area. Block T1 is considered as the first block of the image. To proceed with

the extraction of the next rectangular block, all pixels of T1 are transformed to back-
ground pixels. Then using the raster scanning process we arrive at pixel (x0,y0) of
Fig. 1(c). Similarly block T3 is considered as the second block of the image. In this
way the original image is decomposed into the two rectangular blocks T1 and T3 (Fig.
1(d)). In the general case, this procedure is repeated until the whole image is decom-
posed into blocks . An example of binary image block decomposition of an image
that contains text is demonstrated in Fig. 2.

 (a) (b) (c) (d)

Fig. 1. Decomposition of a simple binary

 (a) (b

Fig. 2. Block decomposition of a binary image that contains text

3 Block Representation Applications

In this section, we present an abstract description of all approaches that perform com-
puter vision and image processing tasks starting from a block represented binary
image. These include image segmentation, image compression, morphological opera-
tions, Hough transform, run length smoothing algorithm (RLSA), projection profiles
and two-dimensional moments.

T3

T1

3.1 Image Segmentation

Using an extension of the algorithm in section 2, it is possible to group together all
blocks that belong to the same connected component [7]. The proposed algorithm is
as follows:

 The “best fitting block” at the first foreground pixel is found using a top-down
scan. Then, a search is conducted for all “best fitting blocks” at all foreground pixels
which are adjacent to the perimeter of already detected blocks and lie outside these
blocks. This process is repeated iteratively, transforming the pixels of all detected
blocks to background pixels, until no foreground pixel remains immediately outside
the perimeter of all blocks of the current connected image component. Once the proc-
ess has been completed, the coordinates of the extracted blocks for the first connected
component are stored in matrices XF[i], XL[i], YF[i], YL[i], for i = 1 …Blocks. The
above process is repeated until all image objects have been segmented. A complete
description of the segmentation algorithm based on block decomposition can be
found in [7].

3.2 Image Compression

A lossless binary image coding technique has been proposed based on image repre-
sentation using rectangular blocks [8,9]. These rectangular blocks are either non-
overlapping [8] or overlapping [9]. The two opposite vertices of each rectangle are
compressed using a simple encoding technique.

According to [9], the opposite vertices of the rectangles are represented in a matrix
R having the same size as the image. The upper-left vertex of any rectangle (larger
than the size of one pixel) is given the symbol “1”, the lower-right vertex of the rec-
tangle is given the symbol “2”, whereas for isolated pixels the symbol “3” is used. An
example is shown in Fig. 3. The coordinate encoding procedure of all nonzero values
of the R matrix is based on row by row matrix scan and described in [9]. Image com-
pression based on block representation outperforms the modified READ, REC,
CCITT run-length coding and Rectangular coding by 14.54%, 21.68%, 42.49% and
25.04% respectively.

 (a) (b (c)

Fig. 3. (a) Original image. (b) Overlapping block partitioning. (c) Image compression using R matrix.

3.3 Morphological Operations

Mathematical morphology [10] is an active and growing area of image processing and
analysis that has provided solutions to many tasks, such as remote sensing, optical
character recognition, image restoration, medical imaging etc. Erosion and dilation
are the fundamental operations of mathematical morphology. Other significant mor-
phological operations are based on erosion and dilation. The two most important are
the opening and closing operations. Various techniques have been described in the
literature which deal with fast implementation of morphological operations. Several
of these techniques are only applicable to gray scale images and are not suitable for
pure B/W images [11]. Fast techniques for performing morphological operations in
binary images have been proposed based on binary image block representation
[12],[13].

The binary image is first decomposed into a set of non-overlapping rectangular
blocks of foreground pixels. Also, suitable look up array tables that contain the re-
sults of applying erosion or dilation to all related rectangular blocks, are constructed
off-line. By using these look up tables and superposition, the application of the struc-
turing element to all image blocks are directly obtained and all blocks are replaced by
their look-up array tables. Then, the morphological operations are applied only to the
limited number of the remaining pixels. The final image obtained is exactly the same
as the image produced by the classical morphological procedures. It must be noticed
that the look up array tables must be initially obtained and then can be applied to any
binary morphological operation. The proposed technique was extensively tested with
a variety of images and structuring elements. Experimental results reveal that starting
from a block represented binary image we can execute morphological operations
using different types of structuring elements with significant reduction in the CPU
time.

3.4 Hough Transform

The Hough transform [14] has emerged in recent decades as a powerful method for
many image processing and pattern recognition applications. A major drawback of its
implementation in large images is its low speed. The development of fast Hough
transform algorithms has attracted much attention in the literature [15]. There is pro-
posed that the description of binary images using rectangular blocks can be useful for
speeding up the implementation of the Hough transform algorithm [6].

The block representation of binary images achieves fast evaluation of the Hough
transform field by analytically calculating the contribution to cells in the Hough ac-
cumulator array of a whole rectangular block rather than of each individual pixel.
Consider a block R whose opposite vertices are located at at (k1, l1) and (k2, l2), where
k2≥k1 and l2≥l1. Clearly, (k2-k1+1) (l2-l1+1) pixels lie in the interior or on the perimeter
of R (see Fig. 4). Consider a cell in the accumulator array A(r1, θ) that corresponds to
all straight lines determined by the parameters θ and r1-1/2<r< r1+1/2, with r1 integer.
Clearly, the number of points P in R contributing to this cell can be approximated by
the area occupied by the intersection of the rectangle R and of the strip in the xy plane
restricted between the straight lines (r1-1/2, θ) and (r1+1/2, θ) (small discrepancies are

due to the discrete image grid). The analytical calculation of P can found in [6]. Us-
ing block representation for the evaluation of Hough transform field, significant ac-
celeration is observed, especially in applications where prevalent linear features can-
not be captured correctly using edge detection, so that the whole image should pref-
erably be used.

Fig. 4. Evaluation of rectangular block contribution to Hough transform space.

3.5 Run Length Smoothing Algorithm (RLSA)

RLSA is based on examining the white runs existing in the horizontal and vertical
directions. For each direction, white runs whose lengths are smaller than a threshold
smoothing value are eliminated. RLSA is usually used for image segmentation and
object recognition [16].

Block representation can be useful for speeding up the implementation of RLSA
[17]. In the case that the image is represented by a set of non-overlapping rectangular
blocks, we do not need to scan the entire image and pass from all possible white and
black runs. We just examine the white runs that start from the right side of all possi-
ble image blocks in the case of horizontal smoothing (see Fig. 5), or from the bottom
side of the blocks for vertical smoothing. From all white runs, we select those with
short length and turn them to black runs. In this way, a significant acceleration of
RLSA evaluation is achieved.

 (a) (b) (c)

 (d) (e)

Fig. 5. Horizontal RLSA. (a) Original image. (b) Block decomposition. (c) Runs examined for point
representation. (d) Runs examined for block representation. (e) Final smoothed image

3.6 Projection profiles

Projection profiles are based on image profiling in various directions. By calculating
the local minima of horizontal and vertical projections we can define several seg-
ments into which the image can be divided. Projection profiles are also used for docu-
ment skew detection [18].

The implementation of horizontal and vertical projection profiles can be acceler-
ated when using binary image block representation [17]. In the case of a block repre-
sented image, the lengths of all black runs of all blocks are known in advance. Taking
advantage of this information, the projection profiles are evaluated by adding all
black runs of all image blocks at the horizontal and vertical directions. Starting from a
block represented binary image, a significant acceleration of projection profiles
evaluation is achieved.

3.7 Two dimensional moments

2-D statistical moments are widely used for several computer vision and image proc-
essing tasks [19]. Various types of moments have been used to recognize image pat-
terns in a number of applications (geometrical moments, central moments, normalized
moments, moment invariants, Zernike moments, Legendre moments and complex
moments). Since moments implementation involves high computational time, several
techniques for fast moment calculation have been reported [20]. Binary image block
representation has also been reported suitable for fast 2-D moments implementation
[21].

The 2-D geometrical moments of order (p,q) of the image I are given by the fol-
lowing formula:

∑∑ =∀=
x y

qp
pq I(x,y)yxyxm 1 :,

(3)

If the image I is represented with bmax rectangular blocks B(x1,y1,x2,y2), then the 2-D
geometrical moments of order (p,q) of the image are given by the following formula:

∑ ∑∑
= ==

==
2

11

2

1

2211
max

2211 where
x

xx

y

yy

qpyxyx
pq

b

i

yxyx
pqpq yxbmbmm (4)

Analytical formulas are provided for bm fast calculation which corresponds to the
geometric moments of any rectangular block B(x1,y1,x2,y2) [21]. The 2-D geometrical
moments of the whole image are computed as the summation of the 2-D geometrical
moments of all individual blocks of the binary image. The same approach is used for
the acceleration of the central moments, the normalized central moments and the
moment invariants. The reported reduction of the computation time for the geometri-
cal moments up to the order (4,4), is by a factor between 10 and 50 for images with a
high entropy value and by a factor of ~ 200 for images with large areas of object
level.

4 Accelerations for all tasks

The reported acceleration for the tasks of section 3 when using binary image block
representation are the following:

Morphological operations: A reduction in computational time by a factor up to 20
(20 for dilation with 10 iterations, 16 for dilation, 7 for closing, 4 for opening). No
acceleration is reported for erosion operation.

Hough transform: A reduction in computational time by a factor up to 18 (up to 18
when using RLSA pre-processing, otherwise up to 4).

RLSA: A reduction in computational time by a factor up to 6.
Projection profiles: A reduction in computational time by a factor up to 23.
2-D moments: A reduction in computational time by a factor between 10 to 50.

 A comparative chart that demonstrates the reported accelerations for several com-
puter vision and image processing tasks when using binary image block representa-
tion can be found in Fig.6.

Fig. 6. Reported accelerations for several computer vision and image processing tasks when using binary

image block representation.

5 Conclusions

In this paper, we present an overview of the implementations of the most important
image processing and vision tasks based on image representation by a set of rectangu-
lar blocks. The reported accelerations in comparison with the classical pixel based
approaches show that starting from a block represented image we can have an aver-
age reduction in computational time by a factor of ~10 which can be even higher for
evaluating project profiles or two-dimensional moments.

References

1. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Chap-
man & Hall, London (1993)

2. Wang, D., Haese-Coat, V., Ronsin, J.: Shape decomposition and representation using a
recursive morphological operation. Pattern Recognition 28 (1995) 1783-1792

3. Samet, H.: The quadtree and related hierarchical data structures. Comput. Surv. 16 (1984)
187-260

4. Kresch, R., Malah, D.: Skeleton-Based Morphological Coding of Binary Images. IEEE
Trans. Image Process. Vol. 7, No. 10 (1998) 1387-1399

5. Freeman, H.: Computer processing of line drawings. ACM Comput. Surv. 6 (1974) 57-97
6. Perantonis, S. J., Gatos, B., Papamarkos, N.: Block decomposition and segmentation for fast

Hough transform evaluation. Pattern Recognition 32 (1999) 811-824
7. Perantonis, S. J., Gatos, B., Papamarkos, N.: Image segmentation and linear feature identifi-

cation using rectangular block decomposition. Third IEEE Int. Conf. On Electronics, Cir-
cuits and Systems (ICECS 1996) 183-186

8. Mohamed, S. A., Fahmy, M. M.: Binary image compression using efficient partitioning into
rectangular regions. IEEE Trans. Commun. 43 (1995) 1888-1892

9. Quddus, A., Fahmy, M. M.: Binary text image compression using overlapping rectangular
partitioning. Pattern Recognition Letters 20 (1999) 81-88

10. Serra, J.: Image Analysis and Mathematical Morphology , Vol. I. Academic Press, London
(1982)

11. Ko, S. J., Morales A., Lee, K. H.: Fast recursive algorithms for morphological operators
based on the basis matrix representation. IEEE Trans. IP 5, No. 6 (1996) 1073-1077

12. Gatos, B., Papamarkos N., Andreadis, I., Perantonis, S. J.: Fast Implementation of Morpho-
logical Operations Using Image Block Decomposition. To appear at the International Jour-
nal of Image and Graphics (2003)

13. Gatos, B., Papamarkos N., Andreadis, I., Perantonis, S. J.: Applying Morphological Trans-
formations on a Block Represented binary Image. Fourth International Workshop on Docu-
ment Analysis Systems (DAS 2000) 487-495

14. Duda, R. D., Hart, P. E.: Use of the Hough transform to detect lines and curves in pictures.
Commun. ACM 15 (1972) 11-15

15. Guil, N., Villalba, J., Zapata, E. L.: A fast Hough transform for segment detection. IEEE
Trans. Image Process. 4 (1995) 1541-1548

16. Kasturi, R., Bow, S., El-Masri, W., Shah, J., Gattiker, J., Mokate, U.: A System for Inter-
pretation of Line Drawings. IEEE Trans. Patt. Anal. Mach. Intell. 12 (1990) 978-991

17. Gatos, B., Papamarkos, N.: Applying Fast Segmentation Techniques at a Binary Image
Represented by a Set of Non-Overlapping Blocks. Sixth International Conference on Docu-
ment Analysis and Recognition (ICDAR 2001) 1147-1151

18. Ciardiello, G., Scafur, G., Degrandi, M. T., Spanda, M. R., Roccoteli, M. P.: An experi-
mental system for office document handling and text recognition. 9th Int. Conf. On Patt.
Recogn. (1998) 739-743

19. Teague, M. R., Image analysis via the general theory of moments. J. Opt. Soc. Amer. 70
(1980) 920-930

20. Jiang, X. Y., Bunke, H.: Simple and fast computation of moments. Pattern Recognition 24
(1991) 801-806

21. Spiliotis, I. M., Mertzios, B. G.: Real-Time Computation of Two-Dimensional Moments on
Binary Images Using Image Block Representation. IEEE Trans. Image Process. Vol. 7, No.
11 (1998) 1609-1615

