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Abstract— The estimation and correction of handwritten 
word skew is a difficult and challenging task since it has to be 
independent of the variations due to handwriting style and 
writing conditions.  In this paper, a coarse-to-fine technique that 
integrates core-region information is presented. At first, a rough 
estimation and correction of the skew is accomplished by cutting 
vertically the word in two overlapping parts, detecting the center 
of mass in each part and calculating the inclination of the line 
that connects the two centers of mass. Afterwards, the core-
region of the word is detected, the word is cut again in two 
overlapping parts and the centers of mass are calculated 
disregarding all the information outside the core-region 
(ascenders and descenders). The inclination of the line that 
connects the updated centers of mass corresponds to a finer 
estimation of the word skew. After correcting the detected skew 
the last step of core-region detection and skew correction is 
repeated iteratively in order to reach a finer word skew 
estimation that will contribute to a successful handwritten word 
recognition system. Extensive testing based on various test-sets 
has demonstrated that the proposed method outperforms the 
state-of-the-art algorithms concerning word skew estimation 
while it is more robust in variations of the writing style. 

Keywords — Handwritten Words; Skew Estimation; 
Normalization 

I.  INTRODUCTION 
One of the most important steps required for handwritten 

word recognition is that of detecting and correcting the word 
skew. Word skew is defined as the deviation of the baseline of 
the word from the horizontal direction. Some degree of word 
skew is unavoidable and it is introduced by handwriting styles 
of different writers or different writing conditions. The task of 
skew correction relates to the normalization of the handwritten 
word in terms of skew in order to reduce the word shape 
variability. By normalizing each handwritten word, the 
subsequent tasks of feature extraction and recognition are 
significantly facilitated. Previous research has indicated that 
the effect of word skew highly impact on the success of a 
handwriting recognition system [1]. 

In the literature, several methods have been proposed for 
handwritten word skew. Madhvanath et al. [2] have used the 
image contour to detect the word's minima and determine the 
baseline as the regression line through those minima. The 
inclination of the regression line is regarded to be the word 
skew. Morita et al. [3] have proposed a method based on 
mathematical morphology to obtain a pseudo-convex hull 
image. At a next step, the minima are detected on the pseudo-
convex image, a reference line is fit through those points and 
the inclination of this line is considered to be the word skew. 

The primary challenge in these two methods is the rejection of 
spurious minima. Furthermore, the regression-based methods 
do not work well on words of short length because of the lack 
of a sufficient number of minima points. Other approaches for 
handwritten word skew detection are based on density 
distribution. In [4], several histograms are computed for 
different vertical projections. Then, the entropy is calculated 
for each one of them. The histogram with the lowest entropy 
determines the word skew angle. In [5], Kavallieratou et al. 
calculate the Wigner-Ville distribution for several horizontal 
projection histograms. The word skew angle is selected by the 
Wigner-Ville distribution having the maximal intensity. The 
main problem for these projection based methods is the high 
computational cost since an image has to be rotated for each 
angle. Jian-xiong Dong et al. [1] have proposed to maximize a 
global measure which is defined by the Radon transform and 
calculate its gradient in order to estimate the word skew. 
Furthermore, Blumenstein et al. [6] identify the skew by 
detecting the center of mass in each half (right and left) of a 
word image. The skew angle is estimated by hypothesizing a 
line between the two centers and by measuring its angle with 
the x-axis. 

In this paper we present a novel coarse-to-fine handwritten 
word skew estimation method that is fast, has low 
computational cost, is accurate and doesn’t depend on the 
minima of the word. In that way, the proposed technique 
provides an accurate estimation of the word skew, even for 
words with spurious minima and small length. It is based on 
the detection of the core-region and the calculation of the 
centers of mass of the right and left part of the word image.  At 
first, a rough estimation and correction of the skew is made by 
cutting vertically the word in two equal overlapping parts, 
detecting the corresponding center of mass in each part and 
calculating the inclination of the line that connects them. This 
step is essential in order to have accurate core-region detection. 
Afterwards, we take advantage of the information inside the 
core-region in order to iteratively make a finer estimation of 
the skew.  

II. PROPOSED METHODOLOGY 
The proposed coarse-to-fine method is based on two steps 

as it is demonstrated in the flowchart of Fig.1. At first, (a) the 
word image is divided vertically into two equal overlapping 
parts, (b) the corresponding center of mass of the foreground 
pixels is detected in each part and (c) the inclination of the line 
that connects the two centers of mass is calculated. This leads 
to a first rough estimation of the skew angle and the 
corresponding correction is applied in the handwritten word 
image. Afterwards, at the next step, the core-region of the word 
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Skew angle: -5° 

  
Coarse estimation: -2.45° 1st iteration: -3.72°

  
2nd  iteration: -4.33° 3rd iteration: -4.95°

Fig. 7. Representative example of the iterative results of the proposed 
method for a word image 

IV. CONCLUSION 

In this paper, a novel skew estimation method for 
handwritten word images is presented. It’s a coarse-to-fine 
technique based on two steps in which the word image is 
divided vertically into two equal overlapping parts, the 
corresponding center of mass of the foreground pixels is 
detected in each part and the inclination of the line that 
connects them is calculated. After this first rough estimation 
of the skew, the corresponding correction is applied in the 
handwritten word image and the core-region of the word is 
detected. The word is divided again in two equal overlapping 
parts and the centers of mass are updated taking under 
consideration only information inside the core-region. The 
inclination of the line that connects the updated centers of 
mass is calculated and a new finer skew correction is made in 
the word image. After correcting the detected skew, the 
second step is repeated iteratively till the finest skew 
estimation is done.  

The proposed coarse-to-fine method uses a new way to 
divide the word image in overlapping parts which provide 
continuity in the information of the left and the right side and 
introduces the suitable way to calculate their centers of mass. 
Also, it integrates the core-region information of the word in 
the algorithm and in this way, the ascenders and descenders 
which have a major contribution in the vertical average 
deviation of the foreground pixels are excluded from the 
algorithm’s calculations providing a finer estimation of the 
skew. Repeating the correction of the word image and the 
update of the centers of mass iteratively, consequently the 
proposed method will reach to the finest skew estimation. 

Extensive testing based on various test-sets has 
demonstrated that the proposed method outperforms the state-
of-the-art algorithms concerning word skew estimation. 
Moreover, it is demonstrated that this coarse-to-fine technique 
is more robust in variations of the writing style while the 

contribution of each of the innovative elements proposed is 
experimentally proved. The proposed algorithm is not 
computationally expensive, it is more robust and accurate and 
it can perform well also with words of small length. 

AKNOWLEDGEMENT 
The research leading to these results has received funding 
from the European Union's Seventh Framework Programme 
(FP7/2007-2013) under grant agreement n° 600707 - 
tranScriptorium. 

REFERENCES 
[1] J. Dong, D. Ponson, A. Krzyÿzak and C. Y. Suen, “Cursive word 

skew/slant corrections based on Radon transform,” Proc. of 8th 
International Conference on Document Analysis and Recognition, 
pp.478-483, 2005. 

[2] S. Madhvanath, G. Kim and V. Govindaraju, “Chaincode contour 
processing for handwritten word recognition,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 21, no. 9, pp. 928–932, 
1999. 

[3] M. Morita, J. Facon, F. Bortolozzi, S. Garnes and R. Sabourin, 
“Mathematical morphology and weighted least squares to correct 
handwriting baseline skew,” Proc. of 5th International Conference on 
Document Analysis and Recognition, pp. 430–433, 1999. 

[4] M. Cote, E. Lecolinet, M. Cheriet and C. Suen, “Automatic reading of 
cursive scripts using a reading model and perceptual concepts,” 
International Journal on Document Analysis and Recognition, vol. 1, no. 
1, pp. 3–17, 1998. 

[5] E. Kavallieratou, N. Fakotakis and G. Kokkinakis, “New algorithms for 
skewing correction and slant removal on word-level,” Proc. IEEE 6th 
International Conference on Electronics, Circuits and Systems, pp. 
1159–1162, 1999.  

[6] M. Blumenstein, C. K. Cheng and X. Y. Liu, “New Preprocessing  
Techniques for Handwritten Word Recognition”, Proc. of 2nd IASTED 
International Conference on Visualization, Imaging and Image 
Processing, pp.332-336, 2002. 

[7] A. Papandreou and B. Gatos, “Slant estimation and core-region 
detection for handwritten Latin words”, Pattern Recognition Letters, 
Available online 29 August 2012, ISSN 0167-8655, 
10.1016/j.patrec.2012.08.005. 

[8] www.iam.unibe.ch/fki/databases/iam-handwriting-database,last accessed 
on 27 of June 2012 

[9] B. Gatos, I. Pratikakis and S. J. Perantonis, “Adaptive Degraded 
Document Image Binarization”, Pattern Recognition, Vol. 39, pp. 317-
327, 2006. 

[10] http://www.psychpage.com/learning/library/assess/feelings.html, last 
accessed on 27 of June 2012 

[11] R. Safabakhsh and S. Khadivi, “Document Skew Detection Using 
Minimum-Area Bounding Rectangle”, Proc. of International Conference 
on Information Technology: Coding and Computing, pp. 253 – 258, 
2000. 

[12] W. Postl, “Detection of linear oblique structures and skew scan in 
digitized documents”, Proc. of 8th International Conference on Pattern 
Recognition, pp. 687-689, 1986. 

[13] A. Papandreou and B. Gatos, “A Novel Skew Detection Technique 
Based on Vertical Projections”, Proc. of 11th International Conference on 
Document Analysis and Recognition, pp. 384-388, 2011. 

 

229


