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An automated lineament detection method based on a weighted Hough transform is presented. The method 

utilizes the result of unsupervised classification based on Kohonen’s self-organizing maps, for vector 

quantizing the input data space, followed by neuron clustering. It then post-processes the classification result 

with classical image processing techniques and finally applies the modified Hough transform in order to 

identify lineaments. The capabilities of the method are described using geophysical (airborne magnetic and 

electromagnetic) data from the Vammala area in Finland. The results of the automated analysis show major 

geological faults in the selected area. Finally, comparisons with the classical Hough transform algorithm 

show the advantages of our proposed modifications. 

 

 

INTRODUCTION 

Lineaments are line features or patterns on earth’s surface which reflect geological structure such as faults or 

fractures and should be discriminated from other line features (e.g. roads, airports) that are not due to geological 

structures. Detection and mapping of lineaments is an important operation in Environmental Geology for the 

study of the structural or tectonic history of a region, to aid detection of seismic horizons, investigation of active 

fault patterns, mineral deposits, water resources, etc. 

Most lineament mapping is done visually using regional scale aeromagnetic surveys and/or remotely sensed 

images. However, visual analysis has several disadvantages the most important of which are: a) it is time 

consuming to visually identify lineaments, and b) the results are somewhat subjective and sometimes hardly to 

be followed by other interpreters. 

As an aid to save time and improve the objectivity of lineament analysis we developed a novel method 

based on fast and efficient unsupervised classification followed by a modified implementation of the Hough 

transform. Starting from images corresponding to ancillary data from the areas of interest, unsupervised 

classification is achieved by first using Kohonen’s Self Organizing Map (SOM) algorithm for vector 

quantization of the input data space and then by clustering the neurons of the map. As was observed using 

images obtained from grided magnetic and electromagnetic (real and imaginary) data, categories with a 

relatively small number of pixels correspond to significant linear formations. Therefore, a threshold is imposed 

on the classification map. In the resulting black and white image, only categories with a small number of pixels 

are kept as foreground, with the rest of the categories considered as background. At this stage, usually many 

linear formations are present, along with regions that do not correspond to linear formations. 

At this point, further processing is needed in order to extract the significant information corresponding to 

lineaments from the unwanted information corresponding to correlated or uncorrelated noise. To this end, we 

have originally applied variants of the Hough transform (Duda and Hart, 1972), which is a well known method 

for detecting linear formations in the presence of noise. These variants have been applied with some success to 

the delineation of lineaments (Wang and Howarth, 1990). However, we noted that in most data sets, 

interference from unwanted pixels was very prominent. 

A novel, general purpose method is proposed for detecting linear formations in highly noisy images which 

proved much more successful for the delineation of lineaments. According to this method, the image is 

decomposed into connected regions following a fast, one pass, label assignment procedure which is outlined in 

Sonka et al., 1993. While in the original Hough transform all foreground pixels contribute the same amount to 

all accumulator array points that correspond to lines passing through them, our method achieves preferential 

weighting of certain pixels by introducing a suitable voting kernel, which depends on shape descriptors of the 

connected regions of the image. In particular, to form the voting kernel, we take into account the elongation of 

each connected region, its area and the angle formed by a candidate linear formation and the principal axis of 

the region. The method is successful in removing both correlated and uncorrelated noise and find lines and 

prevalent orientations in very noisy images (Perantonis et al., 1998). The whole procedure for the delineation of 

lineaments (application of self organizing map for unsupervised classification, suitable thresholding and 



application of the novel line detection method) is outlined in Figure 1. The major steps of this approach are 

analyzed in the subsequent sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Outline of the procedure for the delineation of lineaments. 

 

 

UNSUPERVISED CLASSIFICATION 

A new methodology for efficient clustering and automatic classification of images or grided spatial data was 

used (Vassilas and Charou, 1999; Vassilas et al., 1999). Significant clustering and classification speedup was 

achieved by: a) using a self-organizing map for vector quantization of the data space, b) clustering the neurons 

of the map instead of the pixels of the original image, and c) using fast indexing techniques for efficient 

classification. Moreover, the computational speedup allows the user to optimize the results through repeated 

classifications with different number of clusters each time. Application of the proposed methodology to 

aeromagnetic and satellite images shows speedup of several orders of magnitude with respect to conventional 

clustering and classification techniques with no significant loss in terms of final performance. 

The unsupervised classification techniques are mainly used when no training sets are available and 

constitute a valuable objective alternative since they do not depend on previous knowledge and 

photointerpreter’s experience. These techniques, first cluster the data according to some similarity criterion, 

then assign a label to each cluster (usually a gray level or color) that corresponds to a (thematic) category and, 

finally, substitute each pixel of the original image with the cluster label to which it belongs (Figure 2). Among 

the most popular statistical clustering algorithms, we mention the Isodata algorithm (Duda and Hart, 1973) and 

those based on statistical analysis of multidimensional histograms (Goldberg and Shlien, 1978). It is worth 
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noticing that a number of other statistical clustering algorithms, such as the various hierarchical algorithms 

(Duda and Hart, 1973) and algorithms based on scale-space analysis (Wong and Posner, 1993) can not be used 

in applications involving large volumes of data due to their computational complexity. As far as the non 

conventional algorithms are concerned, we mention the Fuzzy Isodata algorithm (Bezdeck, 1981; Cannon et al., 

1986) from the fuzzy logic discipline and the neural algorithms such as the self-organizing maps (Cappellini et 

al., 1995; Kohonen,1989), a variant of the Adaptive Resonance Theory (ART) neural network (Baraldi and 

Parmiggiani, 1995) and the hybrid BatchMap algorithm (Kohonen, 1995). 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Traditional automatic classification. 

 

 

Kohonen's self-organizing maps (SOM) (Kohonen, 1989; Kohonen, 1995; Ienne et al., 1997), is one of the 

most popular neural algorithms for clustering and vector quantization. SOM is a competitive algorithm used for 

unsupervised training of single-layered neural networks (1-D or usually 2-D lattices of neurons), whereby, a 

sequence of inputs is randomly presented to the network (map) and its weights are then updated so as to 

reproduce the input probability distribution as closely as possible. The weights self-organize in the sense that 

neighboring neurons respond to neighboring inputs (topology preserving mapping of the input space to the 

neurons of the map) and tend toward asymptotic values that quantize the input space in an optimal way. Using 

the Euclidean distance metric, the SOM algorithm performs a Voronoi tessellation of the input space (Kohonen, 

1989; Kohonen, 1995) and the asymptotic weight vectors can then be considered as a catalogue of 

representatives or prototypes, with each such prototype representing all data from its corresponding Voronoi 

cell. 

In the sequel, we present our methodology for automatic classification with the following advantages: a) 

memory savings through data quantization, b) clustering speedup, due to the relatively small number of 

prototypes, allowing the use of even the most computationally demanding algorithms, and c) classification 

speedup by using fast indexing techniques. For the presentation, we will assume MxN images obtained from n 

grided data sets. The input space Rn is used to represent the image as a set of MxN points whose coordinates are 

the corresponding values of each data set. 

The first stage of the proposed methodology involves vector quantization of the input space using a 2-D 

lattice of neurons trained with the SOM algorithm. Following a random presentation of these n-dimensional 

points, the result is to obtain a catalogue of prototypes (the asymptotic weights of the neurons) that quantize the 

image. 

Next, we use indexing techniques for mapping the pixels of the original image to their corresponding 

prototypes. To this end, an MxN index table is constructed to store pointers from pixels to their closest 

prototypes. The replacement of the original image with the catalogue of prototypes and the index table (Figure 

3) constitutes the indexed representation of the image and results not only in data compression but also in a 

significant speedup of both data clustering and classification. 

In general, the larger the number of neurons of the map is, the better the approximation of the original data 

space will be, due to a smaller quantization distortion (provided that the map self-organizes). However, 

according to experience, map sizes of no more than 16x16 neurons should suffice in most applications. In the 

case of large volumes of data from n data sets with 256 values/data set, compression ratios of approximately 

n:1, when 256 prototypes are used, are readily attainable. 

Typically, automatic classification involves clustering of the data space followed by label assignment. 

However, due to the large number of data points (up to MxN different values), clustering performed on the 

original image data is inefficient in terms of both memory and time requirements. On the other hand, in our 

methodology clustering is performed on the neurons of the map (i.e., the catalogue of prototypes), thus, 

achieving orders of magnitude a speedup, allowing us to use even the most computationally complex methods 
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Figure 3:  Indexed representation. 

 

 

such as the hierarchical algorithms (Duda and Hart, 1973). Following clustering, the next step assigns labels to 

each cluster. These clusters along with their labels will represent the automatic classification categories. At the 

final stage of the proposed methodology, first the catalogue of prototypes is classified to obtain a corresponding 

catalogue of labels (Figure 4) and then by using fast indirect addressing through the index table (its pointers to 

the prototypes also point to their labels) the final classification result (thematic map) is obtained (Figure 5). 

 

 

 

 

 

 

 

 

 

 
 

Figure 4:  Creation of the catalogue of labels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Fast indexed classification 
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THRESHOLDING OF THE CLASSIFICATION RESULT 

A thresholding method was used as the binarization method of the classified image. A histogram of the 

image is plotted in order to assist on the specification of one of the four following thresholding methods: 

 

 Percentage Threshold (0-100%): Gray levels whose percentage of pixels with respect to the total number of 

pixels in the image are below the threshold, are assigned to the foreground. Otherwise they are assigned to 

the background. 

 

 Gray Level Threshold (0-255): This is the traditional thresholding method in image processing. All gray 

levels above the threshold are assigned to foreground, otherwise, they are assigned to background. 

 

 Foreground Gray Levels: Explicitly defined values of grays to be assigned to foreground. 

 

 Background Gray Levels: Explicitly defined values of grays to be assigned to background. 

CONNECTED REGION IDENTIFICATION - SHAPE DESCRIPTOR EVALUATION 

The connected regions of the binary image were specified by using the label assignment procedure outlined 

in (Sonka et al., 1993), whereby a linked list is constructed for storing simultaneously the following: 

 

1. labels belonging to different regions using vertical pointers, and 

 

2. equivalence classes, i.e., labels assigned to pixels of the same region using horizontal pointers. 

 

The image is scanned top to bottom and left to right, skipping background pixels, until a new foreground 

pixel is found. If all the top and left connected neighbors (e.g. assuming 4- or 8-connectedness) belong to the 

background, a new label is added to the bottom of the linked list and the pixel points to this label (the pointers 

from pixels to labels are stored in a 2-D array with the same dimensions as the original image). Otherwise, the 

pixel is made to point to the first label found among the foreground top and left neighbors. Inconsistencies due 

to two different neighboring pixels having different labels are easily resolved as follows: the second found label 

is first removed from the vertical label list, then placed to the equivalence class (horizontal list) of the first 

found label and finally changed to the first found label (also specifying the equivalence class). Such a technique 

has the advantage of speed, since it does not require a second image scanning in order to assure uniformity in 

region labeling, i.e., changing all equivalent labels to one. 

For each connected region we then calculate three shape descriptors, all of which can be evaluated in terms 

of the central moments mij of the region: 

 

1. The area: 

 A = m00. (1) 

 

2. The angle  of the principal axis relative to the x-axis, given by the equation: 

 

  = 
2

1
 tan-1 [2 m11/(m20 - m02)]). (2) 

 

3. The elongation of the region. This is evaluated by finding the ellipse that best fits the region (in the sense 

that it has the same moments of inertia). The elongation ε is then equal to the major to minor axis length 

ratio (so that ε > 1) and can be found as: 

 

 ε = | Imax/Imin | 
1/2 , (3) 

where 

 Imin = m20sin2 + m02cos2 - m11sin2 (4) 

and 

 Imax = m20cos2 + m02sin2 + m11 sin2. (5) 

 

Details on the derivation of these formulae can be found in (Jain, 1989). 



MODIFIED HOUGH TRANSFORM 

The Hough transform is a popular and powerful method for detecting parametrically described shapes in 

images. However, even in its simplest application, which is the detection of straight lines, the original Hough 

transform is susceptible to the presence of both random and correlated noise that may give rise to spurious 

maxima in the accumulator array (Leavers, 1993). The problem is especially acute in cases where the required 

lines are axes located in the interior of objects, so that edge detection followed by Hough transform application 

is not appropriate for locating them (Gatos et al., 1996). It is thus highly desirable to have methods of hindering 

irrelevant pixels from contributing to the accumulator array. In the original Hough transform all foreground 

pixels contribute the same amount to all accumulator array points that correspond to lines passing through them. 

Preferential weighting of certain pixels can be achieved by introducing a voting kernel (Palmer et al., 1997). 

Here we present a novel method that employs a suitably defined voting kernel to reduce interference effects and 

avoid spurious accumulator array maxima even in very noisy images. The kernel depends on the shape 

descriptors of the connected regions of the image described in the previous section. The method is highly 

successful in finding linear directions in demanding image processing and computer vision applications. 

Given a binary image, we are interested in the detection of straight lines whose points (x,y) are 

parameterized by  r = x cos + y sin, where r is the distance of the origin from a particular line and  is the 

angle formed by the normal to the line and the x-axis (Figure 6). For each connected region, we consider its 

geometrical center and increment for various values of θ the corresponding cells in the accumulator array. To 

evaluate the contribution of each region to various cells in the accumulator array we take into account its related 

shape descriptors and express the dependence formally by introducing a voting kernel.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Parametrization of a straight line for application of Hough transform. 

 

 

The voting kernel is a continuous function of the shape descriptors and is constructed by taking into account 

the following considerations. The presence of an elongated region is taken as strong evidence for the existence 

of a line parallel to the principal axis of the region. Thus, the contribution to the accumulator array should 

increase with ε. Moreover, for a given value of ε, this contribution should be maximum for  =  and drop with 

increasing | -  |. The rate of change with increasing | -  | should clearly depend on ε. For very elongated 

regions, only the direction  =   should be incremented. On the other hand, nearly circular regions (ε  1) 

should be allowed to vote equally for all directions. Finally, a dependence of the kernel on the area A should be 

introduced in order to minimize interference effects and avoid spurious accumulator array maxima. 

Contributions from regions of large A and relatively small ε should be suppressed. These regions are a major 

source of correlated noise, because spurious lines can be formed from points lying in their interior. At the other 

extreme, regions of very small A should also be discarded as random noise. In-between these extreme cases, 

regions of small ε whose area is comparable to a characteristic intermediate area scale A0 may be part of a chain 

of regions contributing to a disrupted linear structure and should be taken into account. 

To summarize, given a connected region whose center is located at (x
_

 , y
_

 ) and a value of the angle  , the 

contribution to the accumulator array cell (r,  ) is of the form f (A, ε,  -  ) where f must fulfill the following 

conditions: 

 

1. should be asymptotically proportional to  ε  as  ε   

2. f should not depend on   as  ε  1  and should tend to   ( - )  as  ε   

3. for  ε  1, we should have f   0 as A   0  or A    

The following function is modeled to conform with the above conditions: 

 

r 

θ x 

y 



 f  =  ε exp[ - (ε - 1) ( -  )2 ]  A exp[ - (Α – Α0)/(Α0 ε
2)]  (6) 

 

The factor ε weights elongated regions in accordance with condition 1; the factor exp[ - (ε - 1) ( -  )2 ] is 

inserted to conform with condition 2; and the factor A exp[ - (Α – Α0)/(Α0 ε
2)], which has a maximum at A = A0 

for given ε, plays the role of a band-pass filter for values of ε close to 1 (so that condition 3 is fulfilled).  A0 can 

be chosen as the average area of regions whose elongation exceeds a threshold. However, our simulations have 

shown that the method is robust, exhibiting stable performance for a wide range of values for A0. 

EXPERIMENTAL RESULTS AND DISCUSSION 

The automatic lineament detection method has been applied with success on different combinations of 

geophysical airborne magnetic and electromagnetic (real and imaginary) data from the Vammala area in 

Finland. For visualization purposes, the original 601x801 grid data were first linearly mapped in [0, 255], then 

quantized to the nearest integer and finally shown as images. In the sequel, we show the results produced by a 

combination of magnetic and real electromagnetic data (Figures 7a and 7b). 

All programs were run on a SUN ULTRA II Enterprise workstation (64MB, 167MHz). A map of 16x16 

neurons was trained with 105 random presentations of the 2-D grid data in 20.35sec. Following SOM training, 

the storage of asymptotic weights into the catalogue of SOM prototypes (256 prototypes x 2 floats/prototype x 4 

bytes/float x 8 bits/byte = 214 bits) and the index table construction (601 x 801 indices x 8 bits/index  1.8 x 221 

bits) required 87.06sec. The SOFM prototypes and index table can also be used for representing the original 

data (2 data sets x 601 x 801 integers/data set x 32 bits/integer  1.8 x 224 bits) in a compressed form. The 

compression ratio achieved in this case is about 8 while higher ratios can be obtained for more data sets and/or 

smaller maps, although, caution should be exercised with the latter since small maps may lead to large 

quantization distortions. 

Automatic classification in 10 categories was then performed by clustering the neurons of the map using the 

Fuzzy Isodata algorithm. The algorithm was terminated after a preselected maximum number of 100 iterations 

in 0.58sec and the classification result is shown in Figure 8a. The additional indexed classification time was 

0.40sec. Direct application of the Fuzzy Isodata algorithm to the original data is possible at a cost of about 1880 

times (601x801/256) longer clustering time per iteration.  In fact, original data clustering in 10 categories 

required 1153.34 sec (100 iterations) while classification required 3.75sec. 

From the above, the clustering speedup per iteration, achieved by using the proposed methodology with 

Fuzzy Isodata, is about 1153.34/0.58 = 1988 while the classification speedup, due to the indexing techniques, 

was 3.75/0.4 = 9.375. At this point, it is important to notice that if SOM training and index table construction 

(requiring 107.41sec) are not off-line computations, the speedup in the first user trial will be smaller. However, 

for any additional classification trials (with different number of clusters) performed by the user for optimizing 

the results, the speedup will be as stated above. 

Following unsupervised classification, the image is then binarized in 0.03sec using a variant of the first 

thresholding criterion, whereby, the foreground pixels inlude the smallest categories that cummulatively do not 

exceed 20% of the total image area (see Figure 8b). The 8-neighbors connected regions along with the area, 

principal axis angle and elongation shape descriptors of each region are then computed in 0.67sec. Finally, the 

lineaments are found using the proposed weighted Hough transform in 5.96sec and are shown superimposed on 

the binarized classification result in Figure 9a. 

Figure 9b shows the lineaments found by the original Hough method superimposed on the binarized 

classification result. It is apparent that interference from unwanted pixels (mainly from the large regions found 

in the bottom of the image) was very prominent and that this method fails to delineate lineaments. On the other 

hand, the result obtained with the proposed (modified) Hough transform following extraction of the appropriate 

shape descriptors clearly shows significant linear formations (see Figure 9a). Similar results are also obtained 

by applying the original Hough transform to the image of Figure 10a which contains the edges of the binarized 

classification result. As most of the edge pixels lie in the bottom of the image, the method fails to detect the true 

linear formations (see Figure 10b). 

In short, we believe that our proposed method for automatic lineament detection can prove a useful tool not 

only to those involved with environmental informatics but also to geologists and geophysicists who would like 

to have a first glance on a digital lineament map without significant time investment. Such a map can then serve 

as the starting map of a series of improved lineament maps produced within a Geographical Information System 

(GIS), whereby, existing lineaments can be modified, new ones added and wrong ones removed, by the use of 

pointing devices, incorporating additional geological and/or geophysical information. 
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Figure 7: Original geophysical grid data from Vammala area visualized as 601x801 gray level images: 

(a) magnetic data, (b) real part of electromagnetic data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

 

Figure 8: (a) Classification result in 10 categories using a self-organizing map and Fuzzy Isodata neuron 

clustering, and (b) binarized classification result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

 

Figure 9: Lineament detection from the Vammala area, superimposed on thresholded classification result using 

(a) the modified Hough transform, and (b) the original Hough transform. 

  
  

  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

 

Figure 10: (a) Binary image produced by extracting the edges of Figure 8b, and (b) the most prominent lines 

found by the original Hough transform. 
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