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This paper presents a novel automatic method (AutoSummENG) for the evaluation of summa-

rization systems, based on comparing the character n-gram graphs representation of the extracted

summaries and a number of model summaries. The presented approach is language neutral, due to
its statistical nature, and appears to hold a level of evaluation performance that matches and even

exceeds other contemporary evaluation methods. Within this study, we measure the effectiveness

of different representation methods, namely word and character n-gram graph and histogram, dif-
ferent n-gram neighbourhood indication methods, as well as different comparison methods between

the supplied representations. A theory for the a priori determination of the methods’ parame-

ters, along with supporting experiments, concludes the study, to provide a complete alternative
of existing methods concerning the automatic summary system evaluation process.

Categories and Subject Descriptors: I.2.7 [Computing Methodologies]: Natural Language
Processing—Text analysis; I.2.7 [Computing Methodologies]: Natural Language Processing—

Language models

General Terms: Algorithms, Languages, Measurement, Performance

Additional Key Words and Phrases: automatic summarization, summarization evaluation, n-gram

graph

1. INTRODUCTION

The over-information commonground of recent information retrieval efforts has cre-
ated a serious motive for the design and implementation of summarization systems,
which are either based on existing information retrieval practices, or provide a
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new point of view on the retrieval process. The value of summarization has been
identified in the domain of cognitive psychology, as a means of optimizing learn-
ing [Anderson 1985, p.14]. The efforts for automatic extraction of summaries date
back to 1958 and Luhn [Luhn 1958], but is still an open issue. The difficulty in
the automation of the summarization process is that summarization – especially
from multiple documents – proves to be an abstractive mental process [Dang 2005],
which is not easy to model (see also [Endres-Niggemeyer 2000]). However, sev-
eral systems have managed to extract summaries that are rather informative, even
though they seem to suffer in terms of the legibility of the summary text [Dang
2005]. On the other hand, the evaluation of summarization systems seems to be
non-trivial in itself.

1.1 Motivation

We focus on the problem of evaluating summarization systems in an automated
fashion. In recent scientific attempts to evaluate summarization systems, a multi-
tude of problems arose, concerning mostly the inter-judge disagreement as well as
the difficulty to automatically determine the quality of a summary. These prob-
lems are met mainly within the domain of multi-document summarization, where
the synthesis of summaries appears to be more than mere extraction of text snippets
[van Halteren and Teufel 2003; Nenkova 2006].

The problem of inter-judge disagreement, as indicated in [van Halteren and Teufel
2003; Lin and Hovy 2002], is the result of human subjectivity in terms of evalua-
tion of summaries: it has been noted that human judges, appointed to grade the
quality of a summary, disagree notably between each other on the grades assigned
to different summaries. Several methodologies have been examined to systematize
the grade assignment process, aiming at smoothing or nullifying the disagreement
caused by methodology-specific practices [Nenkova 2006; Radev et al. 2000; Marcu
2000; Saggion and Lapalme 2002]. If one fails to create a methodology for humans
to correlate vigorously to each other on the process of evaluation, then either the
process of evaluation cannot be modeled objectively, which would be interesting to
examine further by itself, or we need to define the process of summarization and
its evaluation more precisely (for a more thorough discussion see [Giannakopoulos
et al. 2006]).

On the other hand, the rankings posed by human grading over summarization
systems correlate strongly. This indicates that people tend to prefer the same
systems over other systems, which leads, as we will shortly present, to research
concerning automatic evaluation methods that produce similar rankings. In order
to achieve the ranking, several attributes of summarization systems have to be
examined and graded. These attributes are based on the qualities of the output
summaries.

The problem of automatically determining the quality of a given summary ap-
pears to be approached using two different perspectives: either by intrinsic or
extrinsic evaluation [Mani and Bloedorn 1997; van Halteren and Teufel 2003]. In-
trinsic evaluation operates on the characteristics of the summary itself, independent
of the domain it may be used, trying for example to capture how many of the ideas
expressed in the original sources appear in the output. On the other hand, extrinsic
evaluation decides upon the quality of a summary depending on the effectiveness of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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using the latter for a specified task. Such a measure of extrinsic evaluation, namely
responsiveness, appeared in the Document Understanding Conference (DUC) of
20051. This extrinsic measure has been used in later DUCs as well.

In DUC 2005, the appointed task was the synthesis of a 250-word, well-organized
answer to a complex question, where the data of the answer would originate from
25 documents [Dang 2005]. In DUC 2005, the question the summarizing “peers”,
i.e. summarizer systems or humans, were supposed to answer consisted of a topic
identifier, a title, a narrative question and a granularity indication, with values
ranging from “general” to “specific”. The responsiveness score was supposed to
provide, as Dang states in [Dang 2005], a “coarse ranking of the summaries for each
topic, according to the amount of information in the summary that helps to satisfy
the information need expressed in the topic statement, at the level of granularity
requested in the user profile”. In other words, responsiveness grade was meant to
result in a partial ordering, indicative of how well a given summary answers a given
question, taking into account the specifications of a question. According to the
definition of extrinsic evaluation, responsiveness is an extrinsic evaluation measure.

The responsiveness grade was appointed by human judges and is therefore a
useful measure, which an automatic evaluation system would aim at determining
automatically. It is important to note that responsiveness was not meant to be an
absolute grading measure, but rather a partial ordering of the summarization abil-
ities of the peers [Dang 2005]. An automatic measure that could provide a similar
ordering should strongly correlate to the responsiveness grade ordering assigned by
humans.

Since there appears to be no absolute measure of quality for a summary, even
for human judges, an automatic measurement would require at least one model
summary (i.e. human extracted summary produced as a reference for measuring
the goodness of the summaries produced by others), also called ‘gold standard’ or
‘reference’ summary. Then, it would be possible to judge the peer summaries (i.e.
summaries extracted by peer systems). Such measurements actually determine
some kind of distance between the peer and the model summaries. The questions
posed for such an automatic measure, having the same utility as the one respon-
siveness provides, would be:

—What is the kind of information that can be used in order to represent the peer
and model summary?

—What should the actual representation method for the extracted information be,
in order to retain information valuable in the comparison process?

—What kind of similarity measure can be used or defined, in order to provide
meaningful results?

Automatic methods for the evaluation of summaries exist [Hovy et al. 2005; Lin
2004; Zhou et al. 2006] and correlate highly to the measure of responsiveness. There
are, however, some desired characteristics that do not coexist in a single method.
More precisely:

1Also see http://duc.nist.gov/
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—Language-neutrality. A method that does not require language dependent re-
sources (thesauri, lexica, etc.) can be applied directly to different languages.

—Full automation. A method should not require human intervention, apart from
the human model summaries.

—Context-sensitivity. A method should take into account contextual information,
so that well-formedness of text is taken into account. Well-formedness can be
loosely defined as the quality of a text that allows easy reading. A text that is a
random sequence of words would lack this quality, even if the words are on topic.

Our method, named AutoSummENG (AUTOmatic SUMMary Evaluation based on
N-gram Graphs), attempts to hold all these qualities, while bearing results with high
correlation to the responsiveness measure, which indicates correlation to human
judgement. The results of our experiments indicated that our method outperforms
current state-of-the-art systems in that sort of correlation, while remaining strictly
statistical, automated and context-sensitive due to the nature of the representation
used, namely the n-gram graph (more on this in section 3).

1.2 Structure of the Document

Within this document, we present an overview of the AutoSummENG method,
followed by a brief introduction to required background knowledge and related
work. After that, we elaborate on our method, both in terms of the proposed
representation of summaries, as well as the proposed similarity measures that can
be applied upon these representations. In section 3.1 we support the selection of the
presented representation via experimental results. Then, a second part concerning
a detailed model for a-priori estimation of the method’s parameters is presented and
evaluated. In addition, experiments indicative of the high evaluation performance
of the proposed method are presented in the evaluation section (section 5). We
close the paper with conclusions and future work.

2. SUMMARY OF METHOD AND BACKGROUND KNOWLEDGE

The AutoSummENG method, is based on the concept of using statistically ex-
tracted textual information from summaries, integrated into a rich representational
equivalent of a text, to measure similarity between generated summaries and a set
of model summaries. The novelty of the method concerns the following points:

—The type of statistical information extracted.
—The representation chosen for the extracted information.
—The method of similarity calculation.

The information extracted from source texts is a set of indicators of neighbour-
hood between n-grams contained within the source text. In other words, the method
proposes the extraction of relations between n-grams, given spatial proximity of
those n-grams within a given text.

Then, a graph is constructed to indicate the full set of relations deduced (as edges
between n-gram-labeled vertices), together with additional information concerning
these relations. Such representations are extracted from both generated and model
(i.e. human composed) summaries. The edges of the graphs may contain such
ACM Journal Name, Vol. V, No. N, Month 20YY.
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information as the mean distance between the neighbouring n-grams in all occur-
rences, or a distance-weighted co-occurrence count for any given pair of n-grams,
or even a detailed distribution of distances between pairs of n-grams in texts.

Finally, a comparison between the graph representation of generated and model
summaries is made, returning a degree of similarity between the graphs. At this
point, generated summaries that are found to be on average more similar to model
summaries are considered better. Systems that generate, on average, better sum-
maries are in turn considered better systems. The comparison methodology varies
from vertex-only comparison between graphs, to full comparison including the in-
formation attached to the edges.

Given the above, we have evaluated different representation types, based on both
the type of represented data (character or word n-grams) as well as the use or
not of connectivity information between the data (graph or histogram). During its
evaluation the system was found to perform differently based on its parameters.
Therefore, a full study was conducted, focusing on how these parameters can be a
priori optimized, to provide a fully automated evaluation methodology. The study
was based on the fact that there are relations between meaningful n-grams, we call
‘symbols’ and non-meaningful ones, which we call ‘non-symbols’. These categories
of n-grams are based on statistical criteria and are used to describe how noise
can deteriorate the performance of our method, as a function of the methodology
parameters. Given this noisy-channel model of our approach, we were able to
perform an a priori estimation of the method parameters.

At this point, we will review underlying theory used in evaluation of summa-
rization systems, as well as existing methods of such evaluation. We begin by
indicating how the performance of evaluation methods is measured along with the
required statistical measures, then describe existing approaches for the evaluation
of summaries and summarization systems. Then, we provide background related
to basic concepts of our methodology, such as n-grams and graphs, also presenting
how comparison between graphs is performed and the use of graphs in the domain
of automatic summarization.

2.1 Measuring Correlation – Evaluation Method Performance

In the automatic evaluation of summarization systems we require automatic grades
to correlate to human grades. The measurement of correlation between two vari-
ables provides an indication of whether two variables are independent or not. Highly
correlated variables are dependent on each other, often through a linear relation-
ship. There are various types of correlation measures, called correlation coefficients,
depending on the context they can be applied. Three types of correlation will be
briefly presented here, as they are related to the task at hand:

—The Pearson’s product moment correlation coefficient reflects the degree of lin-
ear relationship between two variables2. The value of Pearson’s product moment
correlation coefficient ranges from -1 to 1, where 1 indicates perfect positive cor-
relation and -1 perfect negative correlation. Perfect positive correlation indicates

2The linear relationship of two correlated variables can be found using methods like linear regres-

sion.

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · G. Giannakopoulos et al.

that there is a linear relationship between the two variables and that when one
of the variables increases, so does the other in a proportional manner. In the
case of negative correlation, when one of the two variables increases, the other
decreases. A value of zero in Pearson’s product moment correlation coefficient
indicates that there is no obvious correlation between the values of two variables.

—The Spearman’s rank correlation coefficient [Spearman 1906] performs a corre-
lation measurement over the ranks of values that have been ranked before the
measurement. In other words, it calculates the Pearson’s product moment corre-
lation of the ranking of the values of two variables. If two rankings are identical,
then the Spearman’s rank correlation coefficient will amount to 1. If they are
reverse to each other, then the correlation coefficient will be -1. A value of zero in
Spearman’s rank correlation coefficient indicates that there is no obvious correla-
tion between the rankings of values of two variables. It is important to note that
this coefficient type does not assume linear relation between the values, as it uses
rankings. However, it presumes that subsequent ranks indicate equal distance
between the corresponding values of the measured variable.

—The Kendall’s tau correlation coefficient [Kendall 1962] raises one more limitation
of the previous methods: it does not expect subsequent ranks to indicate equal
distance between the corresponding values of the measured variable.

The above correlation coefficients have all been used as indicators of performance
for summary systems evaluation [Lin 2004; Nenkova 2006]. To clarify how this
happens, consider the case where an automatic evaluation method is applied on a
set of summarization systems, providing a quantitative estimation of the latter’s
performance by means of a grade. Let us say that we have assigned a number of
humans to the task of grading the performance of the same systems as well. If the
grades appointed by the method correlate to the grades appointed by humans, then
we consider the evaluation method good. Let us now elaborate on how summary
evaluation has been described and conducted according to the literature.

2.2 Summary Evaluation

A summary, even though it is supposed to be a reduced version of original texts,
is in any case a text by itself. This stands for the model summary as well as the
peer summaries. Therefore, one needs a representation of text, which will enable
semantic similarity determination between two texts. This representation would be
an intermediate one, that would – ideally – allow us to position the original textual
information in a metric space. However, in previous publications the presented
measures do not necessarily abide by the triangle inequality and are rather simple
similarity measures.

A number of different intermediate representations of summaries’ information
have been introduced in existing summarization evaluation literature, ranging from
automatically extracted snippets to human-decided sub-sentential portions of text.
More specifically, the “family” of BE/ROUGE3 [Hovy et al. 2005; Lin 2004] evalua-
tion frameworks, uses statistical measures of similarity, based on n-grams of words4,

3See also [Papineni et al. 2001] for the BLEU method on machine translation.
4We remind the reader that N-grams of words are groups of words with N elements. N-grams of
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although it supports different kinds of analysis, ranging from n-gram to semantic
[Hovy et al. 2005]. The intuition behind the BE/ROUGE family is that, in order
two texts to have similar meaning, they must also share similar words or phrases.
One can take into account simple unigrams (single words) in the similarity compari-
son, or may require larger sets of words to be shared between compared texts. Basic
Elements (BE) are considered to be ‘the head of a major syntactic constituent’ and
its relation to a single dependent. BEs are decided upon in many ways, includ-
ing syntactic parsing and the use of cutting rules [Hovy et al. 2005]. BEs can be
matched by simple string matching, or by more complex matching methods, like
semantic generalization and matching, according to the proposed framework [Dang
2005; Hovy et al. 2006].

A different approach [van Halteren and Teufel 2003] uses the “factoids”, which
are predicate-like structures representing summary information, while the approach
in [Passonneau et al. 2006] uses “Semantic Content Units” (SCUs) of the Pyramid
annotation method. These representation types – factoids, SCUs – represent ele-
mentary information units, mapping semantic information items to different surface
appearances.

Elaborating, the factoid concept specifies “atomic” pieces of information that can
differentiate summaries. These factoids are of various lengths, they are represented
in a manner similar to First Order Predicate Logic, and they are subjective. The
main directives on which factoid annotation was based, as indicated in [van Halteren
and Teufel 2003], was that a factoid could generally be represented by a simple First
Order Predicate Logic predicate. Additionally, potential factoids always appear-
ing together within a (source) text were viewed as one, joined factoid, containing
the union of all corresponding information. Systems with a high F-measure – i.e.
2×Recall×Precision

Recall+Precision – concerning factoids appearing in a gold-standard summary,
were deemed better. On the other hand, Semantic Content Units are annotated,
semantically adequate fragments of a text, no longer than a sentence, which are
defined by humans as instructed by a set of predefined rules. The notion of “se-
mantically adequate” supposes that no useless fragments of information will be used
as SCUs.

On the other hand, Semantic Content Units, need not be atomic, or predicate-
like. They are mere semantic equivalents of different surface appearances. In other
words, they represent the common meaning of a set of phrases. SCUs carry a
varying weight, which is calculated in terms of the number of appearances each
SCU has within the model summaries. Thus, SCUs appearing in many model
summaries are considered salient. The evaluated summaries were given a higher
score if more high-weight SCUs appeared within them (see also [Nenkova 2006] for
more information).

Other human-decided information items appearing in the literature are “informa-
tion nuggets” [Voorhees 2003], which were defined as facts for which the (human)
“assessor could make a binary decision as to whether a response contained the
nugget”. The information nuggets were used in the question answering track of
TREC2003, which explains what the word “response” refers to in the previous defi-
nition. Summaries containing more and distinct information nuggets were assigned

characters are groups of characters with N elements.
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a higher score.
The use of factoids, SCUs, information nuggets and similar information repre-

sentations, require human assessment, which can be costly. Therefore, even though
the definition of frameworks that reduce inter-judge agreement are a necessity to
perform more robust evaluation, one needs to devise automated evaluation methods
to avoid the cost of human intervention.

The family of BE/ROUGE evaluation frameworks support such automated eval-
uation. They rely on the statistical analysis of co-occurring word n-grams between
the peer and reference summary. There exist different models of n-gram analysis
methodology, for example ROUGE-2 identifies common bigrams, while ROUGE-
SU4 is a method where bigrams with a maximum gap of four words between them
are considered matching bigrams between the evaluated and model summary (also
consult [Lin 2004] for more information). Although ROUGE takes into account
contextual information, it remains at the word-level, which means we either re-
gard different types of the same word as different, or we need to apply (language-
dependent) stemming or lemmatization to remove this effect.

Basic Elements (BE) on the other hand use extraction techniques, based on the
use of structured representation in the form “head-modifier-relation”, where head is
a major syntactic constituent and relation is the relation holding between modifier
and head. The BE approach can use several preprocessing modules to extract head
terms, according to different parsing and cutting rules [Hovy et al. 2005], which
are language dependent. Therefore, this method cannot be easily applied when the
required linguistic modules do not exist for the specified language of the summaries.
Thus, one would prefer a method to be language-neutral to avoid prerequisites.

The approach of ParaEval described in [Zhou et al. 2006], uses a method based on
Machine Translation practices, where a paraphrase table is created based on parallel
aligned corpora in two different languages. The assumption made is that “if two
English phrases are translated into the same foreign phrase with high probability
(shown in the alignment results from a statistically trained alignment algorithm),
then the two English phrases are paraphrases of each other” [Zhou et al. 2006].
This kind of table is extracted automatically – even though the parallel corpus
should already exist. Then a three-level comparison between the peer and the
model summary is conducted, where, in the first-level, paraphrases are located in
the two summaries. If, for some portions of texts, this matching process fails, the
evaluation attempts to locate synonym words. Finally, if the latter match fails,
then simple lexical matching occurs.

The results of the application of Pyramid evaluation, and ROUGE-2, ROUGE-
SU4 on the DUC 2005 data, indicated high correlation to the responsiveness mea-
sure, and thus the measures were considered useful. The method presented herein
matches and even exceeds the correlation of the aforementioned methodologies on
the newer, DUC 2006 5 data, in a language neutral, statistical manner, while taking
into account contextual information.

5Also see http://duc.nist.gov/
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2.3 N-grams and Q-grams

In various applications of information extraction and retrieval, as well as natural
language processing, there have been a number of uses for the n-gram aspect of
texts. An n-gram is a, possibly ordered, set of words or characters, containing n
elements. Character n-grams are also called q-grams[Ukkonen 1992], but the term
q-grams is used mainly in database indexing and string matching research, thus
we will refer to q-grams as “character n-grams” to facilitate all readers. N-grams
have consisted a useful representation for tasks like text-categorization [Cavnar
and Trenkle 1994], machine translation [Zens and Ney 2006], authorship identifica-
tion [Houvardas and Stamatatos 2006] and summarization and summary evaluation
[Banko and Vanderwende 2004; Lin and Hovy 2003; Copeck and Szpakowicz 2004].

Especially in the automatic summarization domain, n-grams appear as word n-
grams, either used in the evaluation or the summarization process itself (e.g. in the
ROUGE/BE family of evaluator methods [Hovy et al. 2005; Lin 2004]). N-gram
fuzzy matching detects similar portions of text, even if other words appear between
the n-gram words in the text [Lin 2004]. There are different methods to allow
for varying degrees of flexibility in the comparison, indicating a tradeoff between
precision and laxity.

2.4 Graph-based Methods and Graph Matching

Graphs have been apparent in artificial intelligence for some time as a means of rep-
resenting related objects. In the domain of automatic summarization, graphs have
been used as a means to determine salient parts of text [Mihalcea 2004; Erkan and
Radev 2004a; 2004b] or determine query related sentences (see [Otterbacher et al.
2005] for a related sentece retrieval methodology). A text can be represented as a
graph, either to indicate simple, lexical relationships [Mohamed and Rajasekaran
2006], or more complex, rhetorical structure [Marcu 2000] and even non-apparent
information [Lamkhede 2005].

In multi-document summarization, graphs have also been used to detect differ-
ences and similarities between source texts [Mani and Bloedorn 1997] and inter-
document relations [Witte et al. 2006], as well as relations of various granularity
from cross-word to cross-document as described in Cross-Document Structure The-
ory [Radev 2000]. We also find the application of graphs to be a useful represen-
tation for multi-document summarization, for example in [Mihalcea 2005], where
different iterations over graph representations of texts determine the salient terms
over a set of source texts. Salience has also been determined by the use of graphs,
based on the fact that documents can be represented as ‘small world’ topology
graphs [Matsuo et al. 2001].

Graphs have not been used widely in the summary evaluation domain, even
though they can represent relations of complex structure. Probably this is linked
to the fact that graph comparison or graph matching is a non-trivial process.

There is a number of known methods for the calculation of graph similarity,
classified in two main categories:

Isomorphism-based. Isomorphism is a bijective mapping between the vertex set
of two graphs V1, V2, such that all mapped vertices are equivalent, and every pair
of vertices from V1 shares the same state of neighbourhood, as their corresponding

ACM Journal Name, Vol. V, No. N, Month 20YY.
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vertices of V2. In other words, in two isomorphic graphs all the nodes of one graph
have their unique equivalent in the other graph, and the graphs also have identi-
cal connections between equivalent nodes. Based on the isomorphism, a common
subgraph can be defined between V1, V2, as a subgraph of V1 having an isomorphic
equivalent graph V3, which is a subgraph of V2 as well. The maximum common
subgraph of V1 and V2 is defined as the common subgraph with the maximum num-
ber of vertices. For more formal definitions and an excellent introduction to the
error-tolerant graph matching, i.e. fuzzy graph matching, see [Bunke 1998].

Given the definition of the maximum common subgraph, a series of distance
measures have been defined using various methods of calculation for the maximum
common subgraph, or similar constructs like the Maximum Common Edge Sub-
graph, or Maximum Common Induced Graph (also see [Raymond et al. 2002]).

Edit-distance Based. Edit distance has been used in fuzzy string matching for
some time now, using many variations (see [Navarro 2001] for a survey on approx-
imate string matching). The edit distance between two strings corresponds to the
minimum number of edit character operations (namely insertion, deletion and re-
placement) needed to transform one string to the other. Based on this concept,
a similar distance can be used for graphs [Bunke 1998]. Different edit operations
can be given different weights, to indicate that some edit operations indicate more
important changes than others. The edit operations for graphs are:
—node deletion.
—node insertion.
—node substitution.
—edge deletion.
—edge insertion.
—edge substitution.

Given graph representations of text, these graph matching methods can be used
as a means to indicate text similarity, as will be shown in the description of our
method.

3. PROPOSED EVALUATION METHOD

Tackling the problem of what kind of information should be used to represent a
peer and a model summary in the evaluation of a summary, one should take into
account that the surface appearance of two equivalent pieces of the same semantic
content need not be identical, as happens in the case of paraphrases [Zhou et al.
2006]. Nevertheless, it is quite probable that the words expressing the content
will exist in the same context, or that part of the words used will be identical,
for example if different inflections are used. For more on the linguistic aspect of
this assumption please consult [Manning and Schütze 1999]. Our method accounts
for these assumptions, while retaining language-neutrality, by using only statistical
methods and language-independent assumptions for the extraction of information
from texts and for the computation of textual similarity.

3.1 Representation

Trying to capture more than simple co-occurrence of words and in order to allow
for different types of the same word, our method uses character n-grams, positioned
ACM Journal Name, Vol. V, No. N, Month 20YY.
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within a context-indicative graph. We shall call this construct an n-gram graph.
In our analysis, we consider that we view neighbourhood with respect to a current
n-gram, which is a subsequence of the text analysed. In the following analysis, we
have also used word n-grams to be able to evaluate the method, as the n-gram
graph representation is applicable to both word or character n-grams.

We have tested three methods, concerning how the n-gram graph can be con-
structed, based on how neighbourhood between adjacent n-grams is calculated in
a text. In general, a fixed-width window of characters (or words) around a given
n-gram N0 is used, with all characters (or characters) within the window considered
to be neighbours of N0. These neighbours are represented as connected vertices in
the text graph. The edge connecting the neighbours is weighted, indicating for ex-
ample the distance between the neighbours or the number of co-occurrences within
the text. Based on different types of windows, we can use:

The non-symmetric approach. A window of length n runs over the summary text.
If N0 is located (i.e. begins at) at position p0, then the window will span from
p0 − 1 to p0 − n, taking into account only preceding characters or words. Each
neighbourhood-indicative edge is weighted by the number of co-occurrences of the
neighbours within a given window of the text.

The symmetric approach. A window of length n runs over the summary text,
centered at the beginning of N0. If the n-gram we are interested in is located at
position p0, then the window will span from p0− [n

2 ] to p0 +[n
2 ], taking into account

both preceding and following characters or words. Each neighbourhood indicative
edge is weighted based on the number of window co-occurrences of the neighbours,
as previously indicated, within the text.

The Gauss-normalized symmetric approach. A window of length 3×n runs over
the summary text, centered on the beginning of our current n-gram, N0. If N0 is
located at position p0, then the window will span from p0 − [ 3×n

2 ] to p0 + [ 3×n
2 ]

(where [x] gives the integer part of x), taking into account both preceding and
following characters and words. However, in this case the distance of a neighbour
n-gram to the current n-gram is taken into account. In other words, an n-gram
N1 with distance d1 from the beginning of N0, positioned at p0, is considered
to be “less of a neighbour” than n-gram N2, positioned at distance d2, d2 < d1

from p0. Therefore, each neighbourhood indicative edge is weighted based on the
number of co-occurrences of the neighbours within the text and the neighbours’
distance at each occurrence. Also, the Gauss-normalized symmetric approach takes
into account neighbours outside the given window size Dwin, to a full distance of
3×Dwin. This distance was selected given the fact that this accounts for 99.99% of
the mass under the Gaussian distribution, given we consider a standard deviation
of Dwin

6; that is to say, n-grams outside that distance have almost no effect. Thus,
it is better in terms of complexity to just ignore those outliers.

In figure 1 schematic representations of the three approaches have been illustrated.
The numbers indicate adjacent n-grams, which can either be word n-grams or char-
acter ones. The line over a number indicates that the n-gram has been taken

6This can be easily derived by using the probability mass function of the Gaussian distribution:

pdf(x) = 1
σ
√

2π
exp− (x−µ)2

2σ2 . See also [Duda et al. 2001, Appendix A]
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Fig. 1. Different types of n-gram windows (top to bottom): non-symmetric, symmetric and

Gauss-normalized symmetric. N-gram 4 is the n-gram of interest.

Fig. 2. Graphs extracted from the string abcdef, based on the three types of windows (left to

right): non-symmetric, symmetric and Gauss-normalized symmetric. The n-grams are character
n-grams of rank 3.

into account as a neighbour. In the third part of the figure, the bell-shaped line
indicates the different weights assigned to different distances from the n-gram po-
sitioned at p0. The latter n-gram, we call n-gram of interest, is indicated by the
emphasized number in the figure. We found, through a set of experiments, that the
most promising approach was the symmetric one, which may indicate that there is
indeed a maximum distance, outside which relations do not hold.

We now provide the definition of n-gram, given a text (viewed as a character
sequence):

Definition 3.1. If n > 0, n ∈ Z, and ci is the i-th character of an l-length char-
acter sequence T l = {c1, c2, ..., cl} (our text), then
a character n-gram Sn = (s1, s2, ..., sn) is a subsequence of length n of T l ⇐⇒
∃i ∈ [1, l − n+ 1] : ∀j ∈ [1, n] : sj = ci+j−1. We shall indicate the n-gram spanning
from ci to ck, k > i, as Si,k, while n-grams of length n will be indicated as Sn.

The meaning of the above formal specification, is that n-gram Sn can be found
as a substring of length n of the original text, spanning from the i-th to the j-th
character of the original text. For example if the text is the following sentence:

Do you like this summary?

then S1,2 is the sequence {‘D’,‘o’}≡‘Do’ for display purposes.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Extracting N-grams

If we choose to extract the n-grams (Sn) of a text T l, the (elementary) algorithm
is indicated as algorithm 1.

Input: text
Output: n-gram set
// T is the text we analyse
for all i in [1,length(T)-n+1] do1

get substring of T from index i to i+n-12

end3

Algorithm 1: Extraction of n-grams

The algorithm applies no preprocessing (such as extraction of blanks, punctuation
or lemmatization). Furthermore, it obviously extracts overlapping parts of text, as
the window is shifted by one position at a time and not by n positions at a time.
This technique is used to avoid the problem of segmenting the text. The redundancy
apparent in this approach proves to be useful similarly to a convolution function:
summing similarities over a scrolling window may prove more useful if you do not
know the exact centre of the match. In other words, the extracted n-grams are
certain to result in a match to n-grams of the model summary, if such an n-gram
exists, whereas a method where the text was segmented in equal n-grams might
not locate the matching n-grams.

Example 3.2. Application of our method to the sentence we have used above,
with a requested n-gram size of 3 would return:
{‘Do ’, ‘o y’, ‘you’, ‘ou ’, ‘u l’, ‘ li’, ‘lik’, ‘ike’, ‘ke ’, ‘e t’, ‘ th’, ‘thi’, ‘his’, ‘is ’, ‘s s’,
‘ su’, ‘sum’, ‘umm’, ‘mma’, ‘mar’, ‘ary’, ‘ry?’}
while an algorithm taking disjoint n-grams would return
{‘Do ’, ‘you’, ‘ li’, ‘ke ’, ‘thi’, ‘s s’, ‘umm’, ‘ary’} (and ‘?’ would probably be
omitted).

In the case of the word n-gram extraction, the text is considered to be a word
sequence (as opposed to character sequence). The text has been preprocessed, using
a simple tokenizer based on punctuation and blanks, to determine word boundaries.
However, it is important that this ‘simple’ tokenizer deprives the method of its
complete language neutrality, if used. Therefore, we will prefer the character n-gram
version to the word n-gram version, if their use in evaluation renders equivalent
results.

Back to the character n-gram version, it is rather obvious that segmentation
should be done carefully in order to avoid redundancy, without losing information
on important sequences of characters. Consider the case where we match character
n-grams between two segmented texts. In the given example, the fact that the word
‘summary’ has been broken down in three disjoint n-grams may cause a mismatch,
or not match at all, of the word ‘summary’. For n-grams of higher length, or rank
as it is called, the effect of information loss in the case of a careless segmentation
may prove more deteriorating, if we consider two n-grams to match if and only
if they are exactly the same. Perhaps other methods of string comparison, like

ACM Journal Name, Vol. V, No. N, Month 20YY.
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substring comparison, may decrease this loss. However, within this method we will
use simple string matching between n-grams.

The segmentation process by itself, even if one uses our approach, does not keep
information concerning the relative position of n-grams in the original text; it only
extracts n-grams. What this means is that we do not know if the n-gram ‘Do’
is next to the n-gram ‘you’, or not. Thus, words (n-grams) that consist what is
called a “collocation”, i.e. that when found together possess a meaning that is not
simply a concatenation or composition of each separate word meaning [Manning
and Schütze 1999], will lose their connection when extracted. This is where the
graph representation comes in.

N-gram Graph

The n-gram graph is a graph G = {V G, EG} which has n-grams as its vertices
vG ∈ V G and the edges eG ∈ EG (the superscript G will be omitted where easily
assumed) connecting the n-grams indicate proximity of the corresponding vertex
n-grams (also see figure 2). The edges can be weighted, by applying the distance
between the two neighbouring n-grams in the original text. If the n-grams are
found to be neighbours more than once in the original text, which is usually the
case, one could assign a distribution of distances to each edge to use the distance
information. More formally:

Definition 3.3. if S = {S1, S2, ...}, Sk 6= Sl, fork 6= l, k, l ∈ N is the set of distinct
n-grams extracted from a text T l, and Si is the i-th extracted n-gram, then G is a
graph, where there is a bijection (one-to-one and onto) function f : S → V .

The edges E, are assigned weights of ci,j where ci,j is the number of times a
given pair Si, Sj of n-grams happen to be neighbours within some distance Dwin

(in characters for character n-grams) of each other, or within a function of the
given distance Dwin - as in the Gauss-normalized approach. Since, probably, not all
distances are of importance, and thus two n-grams neighbouring by 150 characters
probably have no actual relation, we take into account only a window around Si in
the original text, to determine which Sj deserves our attention. The vertices vi, vj

corresponding to n-grams Si, Sj that are located within this parameter distance
Dwin are connected by a corresponding edge e ≡ {vi, vj}.

Following this method of representation, we have reached a point where we have
kept some information for a determined n-gram length n and parameter distance
Dwin. It is non-trivial, though, to choose a single {n,Dwin} pair, that can be
optimal for n-gram extraction independent of the text: if one chooses a very low
value for n, then the relation between different n-grams can be taken into account
only by augmenting the Dwin parameter. However, in the case of a high Dwin value,
the fact that we only take into consideration whether the n-grams are neighbours
and not their actual distance, may prove detrimental to the information we keep.
In other words, if our Dwin is 50, then a neighbour by 1 character will be considered
equally close to one with a distance of 50 characters.

If n, on the other hand, is too high, then the information we gather for each
text will be extremely redundant and will definitely cause consumption of more
resources, as well as make the matching process more time-consuming. This hap-
pens because there are much more unique 10-grams than 2-grams in any selected
ACM Journal Name, Vol. V, No. N, Month 20YY.



Summarization System Evaluation Revisited: N-gram Graphs · 15

(adequately long) text of a natural language, like English or Greek. Furthermore,
the number of vertices of the graph Gn for rank n of n-grams will increase expo-
nentially to the rank n of n-grams7 (subscript n of Gn will be omitted when easily
assumed).

In order to tackle these problems we take into consideration n-grams of various
ranks, with a rather small maximum distance between them, determined to be
valued around the average word length of the text language. The selection of
different n-gram ranks allows for matching of various length n-grams, without use
of the distance metric, while the small Dwin allows small variations of distances and
provides less accuracy loss concerning the distribution of distances. However, the
selection of an optimal n-gram rank range [rmin, rmax] proved to be an issue worth
investigating, and so we did as will be seen in section 4.

In the research conducted, it was important to see if a histogram offers equally
well results with a graph in the process of the evaluation. If that stood, it would
mean that the graph representation should not be used altogether.

N-gram Histogram

The n-gram histogram representation is a simple frequency histogram measuring
n-grams occurrences. In other words, it simply indicates the number of times an
n-gram appears, without any neighbourhood information. This representation will
be used as a baseline to indicate whether neighbourhood information is indeed
important in our domain of application.

3.2 Comparison

In order to compare two summaries T1 and T2, we need to compare their rep-
resentations. Given that the representation of a text Ti is a set of graphs Gi,
containing graphs of various ranks, we propose the following similarity measures
between graphs Gi, Gj of the same supposed rank n:

—Co-occurrence Similarity (CS), indicating how many of the edges contained in
graph Gi are contained in graph Gj . We define e ∈ EG ≡ e ∈ G. Thus co-
occurrence is defined as:

CS(Gi, Gj) =
∑

e∈Gi µ(e,Gj)
max(|Gi|, |Gj |)

(1)

µ is the membership function, which returns 1 if e belongs to G, else it returns 0.
Also |G| is the number of edges e ∈ G. The definition causes CS to be symmetric,
i.e.

CS(Gi, Gj) = CS(Gj , Gi) (2)

Also, CS takes values in [0, 1], with a value of 1 indicating a full match of the
two graphs, even though edge weights are not taken into account. On the other
hand, a value of 0 means that no edge from one graph exists in the other. In
this measure, each matching edge contributes by 1

max(|Gi|,|Gj |) to the sum. The

7The grammar of each language does not allow all combinations of alphabet characters, and thus
the possible 5-grams of a language with 26-letter alphabet are not 265, but somewhat lower. See

also [Manning and Schütze 1999, sections 2.2.1-2.2.2].
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CS is a normalized derivative of common graph distance measures, based on the
Maximum Common Subgraph [Bunke 1998].

—Value Similarity (VS), indicating how many of the edges contained in graph Gi

are contained in graph Gj , considering also the weights of the matching edges.
In this measure each matching edge e having weight wi

e in graph Gi contributes
VR(e)

max(|Gi|,|Gj |) to the sum, while not matching edges do not contribute (consider
that if an edge e /∈ Gi we define wi

e = 0). The ValueRatio (VR) scaling factor is
defined as:

VR(e) =
min(wi

e, w
j
e)

max(wi
e, w

j
e)

(3)

The equation indicates that the ValueRatio takes values in [0, 1], and is symmet-
ric. It is easy to see that this allows the VS metric to retain the symmetricity
inherited from the CS equation part. Thus, the full equation for VS is:

VS(Gi, Gj) =

∑
e∈Gi (µ(e,Gj)× min(wi

e,wj
e)

max(wi
e,wj

e)
)

max(|Gi|, |Gj |)
(4)

VS is a metric converging to 1 for graphs that share both the edges and similar
weights, which means that a value of VS = 1 indicates perfect match between
the compared graphs.

The analogous measure of CS from graphs to histograms, which we name CSH ,
is actually based upon a binary decision of whether an element h of histogram H1,
with a value of v1, also exists in a histogram H2, independent of the value v2 of the
same element in H2. Each co-existing element h contributes to CSH a quantity of

1
max(|H1|,|H2|) and, therefore, the equation for CSH is:

CSH(H1, H2) =
∑

h∈H1

µ(h,H2)
max(|H1|, |H2|)

(5)

where µ(h,H) equals to 1 if ∃h ∈ H : v(h,H) > 0, otherwise it equals to 0, where v
is the value corresponding to h in histogram H. Also, |H| is the number of elements
in histogram H.

On the same basis and by setting v(h,H) of h /∈ H to 0, then VSH is defined as:

VSH(H1, H2) =
∑

h∈H1

µ(h,H2)× v(h,H2)
max(|H1|, |H2|)

(6)

The fact that we have proposed extraction of different ranks of n-grams for the
composition of the graphs allows us to take advantage of matching between different
ranks. The overall result of both the CS and the VS calculations, here depicted by
the superscript ‘O’, is a weighted average of the ranks. For example, for CS we have:

CSO =

∑
r∈[Lmin,LMAX] r × CSr∑

r∈[Lmin,LMAX] r
(7)

where CSr is the CS measure for extracted graphs of rank r, and Lmin, LMAX are
arbitrary chosen minimum and maximum ranks.
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The intuition behind equation 7 is that matching between higher order ranks
is more important between matching in lower level ranks. This intuition relies
on the fact that languages rely on the composition of simpler character strings to
create more complex ones, which bear richer meaning than their components. This
composition occurs in characters, words, sentences, paragraphs and so forth and has
been founded both by generative as well as statistical language processing research
(e.g. [Manning and Schütze 1999, Introduction]). Similarly for VSO, CSO

H , VSO
H .

In the experiments, these overall values were used as results for the comparison
process. It should be noted that the function of weight given the rank has been
found empirically, and thus better alternatives can be found8.

3.3 Experimental Setup – Representation

Based on the definition of the proposed similarity measures we wish to show, by
experiments, that systems with summaries getting higher CS or VS than others, are
indeed better systems; and so it has proved to be, by correlation to the responsive-
ness measure (see table VI). We will refer to this correlation to the responsiveness
measure as evaluation performance (EP), as opposed to system or method perfor-
mance which refers to the grade appointed to an evaluated system or method.

The data on which the measurements were conducted was the summary and
evaluation corpus of DUC 2006. The corpus consists of summaries for 50 different
topics. Each topic had a number of automatically extracted summaries, one for
each participating system, and 4 human created summaries. The human summaries
were differentiated by means of an identifier, as were the baseline system summaries,
which originated from a baseline system created by NIST, which simply took the
first 250 words of the most recent document for each topic. It is important to
indicate that human summaries were used both as model summaries and as peer
summaries. All summaries were truncated to 250 words before being evaluated. To
verify some of our experiments using a second corpus, we have used the corpora of
DUC 2005 and DUC 2007 as well. The corpus of DUC 2005, similarly to the one of
DUC 2006, consists of summaries for 50 different topics. The only major difference
is that 30 of the topics had 4 human summaries each, while the remaining 20 topics
each had either 9 or 10 human summaries. The corpus of DUC 2007 consists of
summaries for 45 different topics. Each topic has 4 humanly created summaries, as
well as 28 machine generated summaries.

The measure used for evaluation performance was the correlation of the method
evaluation metric to the responsiveness measure, which has already been used and
accepted by recent research [Dang 2005; Hovy et al. 2005; Nenkova 2006]. The
statistical measures used were Pearson’s product moment correlation coefficient, as
well as Spearman’s rank correlation. We remind the reader that Pearson correlation
takes values in [−1, 1], where a value of 1 (or -1) indicates perfect (or negative
perfect) correlation between two measures, while a value of 0 indicates no apparent
correlation. Spearman correlation indicates whether two measures used as grades
will provide similar rankings given a set of contesting entities, with values near 1
indicative of a higher correlation. On that basis, we would require our method
to approach the maximum correlation value of 1 to the responsiveness measure.

8We have also tried the simple reverse of rank r ( 1
r

), with worse results.
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In the following tests, we consider representations and measures with Spearman’s
coefficient values closer to 1 better. It should be noted that the experiments used
both character and word n-grams as granularity levels, to see if there is a difference
between the two.

The set of experiments concerning representation, attempted to evaluate simple
n-gram histogram representation, in comparison to the graph representation. The
measures of Co-occurrence Similarity CS and Value Similarity VS have been used
for both representation schemes and the results of the experiments were correlated
to the responsiveness measure.

Each peer summary was compared both in terms of character n-gram and word
n-gram graphs, as well as the corresponding character and word n-gram histograms,
to all model summaries separately. Then the similarities were averaged to conclude
a final similarity of the peer summary to the models. Human summaries, that
appeared both as peer and model summaries, were not compared to themselves in
the process of comparison.

Requiring that representations are compared between themselves, regardless of
the parameters, we conducted a series of experiments within a very wide range of
parameter settings. The three parameters used are:

(1) Minimum n-gram length, indicated as Lmin.
(2) Maximum n-gram length, indicated as LMAX.
(3) Neighbourhood Window Size, indicated as Dwin.

The values given to the above parameters were as follows:

—Lmin∈ [1, 10], which means we have taken into account n-grams from unigrams
to ten-grams.

—LMAX∈ [Lmin, 10], which means we have taken into account n-grams from the
size of the selected Lmin and up to ten-grams.

—Dwin∈ [1, 20], which means we have taken into account a window size of one and
up to twenty in different iterations of the experiment.

The features that differentiate representations are:

—the word or character nature of the n-grams in the representation.
—the type of the representation: histogram or graph.
—the existence of binary or real values in the representation (co-occurrence vs.

value). For example, a histogram indicative of occurrence would only use binary
values, while a histogram containing frequence or probability of occurrence would
use real values. In the case of a graph, a binary value may indicate co-occurrence,
while a real value may also indicate strength of this co-occurrence.

3.4 Results on Characters: Histogram or Graph – Co-occurrence or Value

Table I depicts the evaluation performance of four different approaches concerning
the representation (either graph or histogram) and measure (either co-occurrence
or value). For each approach, we have measured the maximum evaluation perfor-
mance, the minimum evaluation performance, the mean and the standard deviation
of evaluation performance. Concerning character n-grams, in table I we can see that
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Table I. Histogram and Graph Character N-gram Statistics Ranked by Mean Performance

Representation - Measure Max Min Mean Std. Deviation

Graph – Value 0.938 0.803 0.914 0.019

Histogram – Co-occurrence 0.934 0.723 0.912 0.035

Graph – Co-occurrence 0.912 0.738 0.883 0.020

Histogram – Value 0.854 0.502 0.633 0.097

the most promising representation is that of the graph value, based on the ranking
of average performance and robustness (i.e. least standard deviation).

Statistical Evidence

In order to statistically support whether different approaches indeed rendered differ-
ent results and, thus, conclude on which approach is better, we tested whether the
distribution of evaluation performance values for each method was normal (Gaus-
sian). If this stood, we would be able to apply a simple one-sided t-test to reach a
decision about comparison between approaches. The Anderson-Darling normality
test [Stephens 1974] was used to judge normality. This test has the null hypothesis
that the samples examined come from a normal distribution. Unfortunately, the
distributions of the samples used are not normal (the samples had a probability of
less than 2.2 × 10−16 to originate from a normal distribution) and we had to use
another test.

At first, we tested whether the distributions of results from all methods were
all different from one another, which would indicate that there is not a reason to
choose a specific distribution. To do this, the Kolmogorov-Smirnov goodness-of-
fit test [Massey Jr 1951] was used, which has the null hypothesis that two sets of
samples come from the same distribution. The test indicated that all distributions
are indeed different with a confidence of more than 99%9.

The test selected as appropriate for the task of deciding which evaluation ap-
proach performs better was the Wilcoxon rank sum test (also called Mann-Whitney
test) [Hollander and Wolfe 1973, p. 27-33,68-75]. This test ranks the samples (in
our case the evaluation performance values) over a common axis (in our case the
R axis). Then, it uses the sum of the ranks of each sample set to see which cor-
responding distribution is more probable to give samples that stand higher than
the samples of the other in the given axis. According to this test, the ranking of
methods indicated that Histogram-Co-occurrence is probably a little better than
Graph-Value methods, contrary to what the mean and standard deviation have
indicated. In the bottom half of the ranking, Graph-Co-occurrence is worse than
Graph-Value but better than Histogram-Value, as expected.

There was a hint that the oddity concerning Histogram-Co-occurrence and Graph-
Value may be due to the effect of the Dwin parameter in Graph-Value results.
In other words, there are a lot of samples from the Graph-Value approach that
have extreme Dwin values, which affect the whole distribution of results. To check
this possibility we performed the same test between Histogram-Co-occurrence and
Graph-Value evaluation performances, where we had kept only performances of
the Graph-Value approach for Dwin <= 10, which is still a high value consider-

9The p-value of the null hypothesis was less than 2.2 × 10−16 for all cases except for the G-V –

G-C case where p-value was 0.001015; well over the 99% confidence level.
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Table II. Statistics using Spearman Correlation for Character N-Grams on DUC 2006. Each
square indicates whether the representation of the corresponding row gives better results
than the one in the corresponding column, based on a Wilcoxon rank sum test with 95%
confidence level. G stands for Graph, H for Histogram, C for co-occurrence and V for
value.

G – C G – V H – C H – V

G – C - No No Yes
G – V Yes - No Yes

H – C Yes Yes - Yes

H – V No No No -

ing the average size of words in English. This indeed turned things around, and
Histogram-Co-occurrence was presented as being worse than Graph-Value, even
though the confidence level of 95% could not be reached (p-value of 0.1123). We
double checked our intuition in the DUC 2005 corpus, once more for values of Dwin

under 10, inclusive, and got a result indicating that Graph-Value is better than
Histogram-Co-occurrence with a confidence level of 99%. The above indications
gave us the incentive to delve further in the optimization of parameters, as can
be seen in section 4. However, all the analysis pointed that, given non-extreme
values of all three parameters (Dwin, Lmin, LMAX), the Graph-Value approach can
outperform the Histogram-Co-occurrence one.

One should note that the Dwin parameter does not affect the histogram repre-
sentation (as there is no Dwin parameter when using the histogram). This means
that the test concerning the histogram only included Lmin, and LMAX parameters.
The experiments concerning the graph representation, on the other hand included
Dwin. We tested the effect of all parameters to the system performance.

To determine the effect of different parameters on the performance of the Graph
– Histogram evaluation, we used a scatterplot graph. The scatterplot graph indi-
cates how the values of our evaluation performance (vertical axis), as a value of
correlation to human grading, varied between different runs, given different values
of a parameter. Grand variation in performance for a single parameter value is
indicated by highly dispersed points in the vertical axis, while robustness is indi-
cated by many, closely positioned points in the vertical axis. The smooth line in the
graphs was extracted via LOWESS regression [Cleveland 1981] and helps identify
the trend of the performance given the parameter.

In figure 3 we can see that marginal values of Lmin, which is the parameter under
study, worsen the performance of the system. In low values the deviation is raised,
while in high values the average performance is lowered.

In figure 3 we can see that, like Lmin, marginal values of LMAX worsen the
performance of the system. In this case, there is no obvious effect in the robustness
of the performance.

Finally, in figure 4 we can see that, while there is no obvious effect in the robust-
ness of the performance by increasing the value of the Dwin parameter (depicted as
Dist in the figure itself), the performance appears to deteriorate gradually.

In order to validate this impression we examined the Pearson correlation between
the three parameters and the performance of the system. The results, shown in table
III with the first column indicating the parameter and the second the correlation
of its value to the evaluation performance, indicate that there is indeed negative
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 3. Scatterplot of Lmin (MinNGram) on the left and LMAX (MaxNGram) on the right and
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Fig. 4. Scatterplot of Dwin (Dist) and Performance (Spearman) - Char N-Grams
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Table III. Pearson Correlation between Dwin and Performance for Character N-Grams Graph –

Value

Parameter Correlation

Dwin -0.316
Lmin -0.148

LMAX 0.080

correlation between Dwin and performance, even though it is not very strong. The
assumption derived from the negative impact of the distance to the performance
was that we should be very careful with the selection of Dwin, as it seems to insert
some type of noise in the evaluation process.
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Table IV. Histogram and Graph Word N-gram Statistics ranked by Mean Performance

Representation - Measure Max Min Mean Std. Deviation

Histogram – Value 0.898 0.450 0.767 0.108

Histogram – Co-occurrence 0.909 0.306 0.741 0.173

Graph – Value 0.909 0.072 0.478 0.227

Graph – Co-occurrence 0.882 0.046 0.457 0.223

Fig. 5. Scatterplot of Lmin and Performance (Spearman) - Word N-Grams
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Table V. Pearson Correlation between Dwin and Performance for Word N-Grams Histogram –

Value

Parameter Correlation

Lmin −0.255

LMAX −0.038

3.5 Results on Words: Histogram or Graph – Co-occurrence or Value

Applying the same pattern of analysis for the word n-grams we reach the following
conclusions:

—In word n-grams the histogram is by far better than the graph (see table IV).

—The two best approaches, both of which concern histograms, do not have statis-
tically supported difference in their performance. Therefore the simplest of the
two should be chosen (i.e. Histogram-Co-occurrence).

—There is very serious variance in results for different parameter values. The stan-
dard deviation is actually an order of magnitude higher that that of the character
n-grams. This has to do with the impact of parameter values on performance.
The word-based system seems to be much more sensitive than its character coun-
terpart to Lmin (see figure 5 and table V). On the other hand, LMAX seems not
to affect the histogram performance (see table V). The above indicate that for
word n-grams one should be very careful in choosing minimal values for the graph
approach.
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To recapitulate, our experiments indicate that, in the task of summary system
evaluation:

—the best representation for character n-grams is the Graph – Value representation,
even though the Histogram – Co-occurrence representation is almost equally
effective, when the distance parameter for the Graph – Value representation is
extreme. A low value in the distance parameter of the graph is more likely to
produce good results. The LMAX parameter should be chosen to have a non-
extreme value, even though further experiments, presented in section 4, were
conducted to show which value can be considered as non-extreme.

—the best representation word n-grams is that of Histogram – Value, even though
Histogram – Co-occurrence is not much less effective. In word n-grams, the
minimum n-gram rank parameter Lmin of the histogram plays a serious role,
indicating that low-rank n-grams are important and should be used, while the
upper limit to the choice of n-gram rank is not directly linked to the overall
performance and should therefore be kept low to reduce number of calculations.

—considering the fact that the use of character n-grams performs overall much
higher than its word counterpart (look again at tables I and IV), we should ex-
amine the use of character n-grams further. As we discuss in the concluding
section, section 6, the word n-gram methodology should be examined under an-
other point of view to see whether it correlates to other evaluation measures,
outside the limitations of this work.

4. OPTIMIZING N-GRAM GRAPH PARAMETERS

Despite the robustness of the proposed method, we attempted to delve further in the
strengths and weaknesses of the n-gram graph representation and the parameters
inherent in the described method. We remind the reader that the three parameters
used are:

(1) Minimum n-gram length, indicated as Lmin.
(2) Maximum n-gram length, indicated as LMAX.
(3) Neighbourhood Window Size, indicated as Dwin.

The absolute limits of the above three parameters are actually text-driven, since
all parameters cannot exceed the size of the text. There is an additional obvious
restriction, demanding that the maximum n-gram length should not be lower than
the minimum n-gram length. However, since the complexity of the data struc-
ture and the number of calculations is exponential to the n-gram lengths, as well
the window size, we created a model that can predict near-optimal values for the
parameters.

In order to verify the correctness of the model, as well as the deviation of its
response from the actual optimal, we conducted a series of experiments in the
corpus of DUC 2006 using two approaches:

(1) The exhaustive approach, where a big number of combinations of the triplet
Lmin, LMAX, Dwin were evaluated within adequately big limits for each param-
eter to extract an overall optimum.
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(2) The model-based approach, where the model-predicted values of the parame-
ters were evaluated to indicate whether the response was approximate to the
optimum.

During the exhaustive approach the parameters were given values as follows:

—Lmin∈ [1, 10], which means we have taken into account n-grams from unigrams
to ten-grams.

—LMAX∈ [Lmin, 10], which means we have taken into account n-grams from the
size of the selected Lmin and up to ten-grams.

—Dwin∈ [1, 20], which means we have taken into account a window size of one and
up to twenty in different iterations of the experiment.

The limits of the given values were set arbitrarily, however it was obvious during
the experiments that performance of the system near the limits was very low, de-
teriorating with every step with higher parameter values. Thus, it was obvious
that our limits were rational, given the language10 and the set of texts. It should
be reminded that we used the symmetric approach for the extraction of n-gram
neighbours (see section 3.1) in all our experiments, because it exhibited the most
promising results and is probably the most language neutral, considering orientation
in the writing of texts (left-to-right or right-to-left).

At first we attempted, in order to reduce the number of experiments, to hold
the Dwin parameter constant in the arbitrary, but well-performing, value of 3 and
change only the values of Lmin and LMAX. This way we planned to find a local-
maximum and to investigate a correlation between n-gram size limits and system
performance. In the course of our experiments we discovered that the optimal value
of Dwin is correlated to Lmin, LMAX and cannot be held constant. At that point
we formed a model that would contain all our findings.

4.1 Symbols, Non-symbols

We considered our text T to contain symbols and non-symbols. Let us elaborate in
these two types of character sequence:

Symbols. They are supposed to carry the meaning of the text, and they should
be sequences of characters (letters) that are not neighbours by mere chance. The
letters of an existent word should be found neighbouring more often than random
characters that do not form a word.

Non-symbols. They are sequences of characters (letters) that simply happen to
occur near each other and have no actual meaning by themselves. Non-symbols are
all the letter sequences from the text that are not symbols.

In figure 6 we have indicated some sample extracted symbols and in figure 7
some non-symbols. We see that symbols may include simple terms and collocations
(more on collocations in [Manning and Schütze 1999, section 1.4.4]). We can also
see other sequences of letters, like words lacking their endings (e.g. ‘permitt’),
ending themselves (e.g. ‘perty’, ‘pes’) or other sequences of no apparent semantics
(e.g. ‘pes o’).

10A language where the average word length would be twenty characters may require different

limits.
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Fig. 6. Sample extracted symbols from the symbol process
‘permanent’, ‘permit’, ‘permits’, ‘persist’, ‘person’,
‘personal’, ‘personal computers’, ‘personnel,’

‘persons’, ‘persuade’, ‘pesticide’, ‘pesticides.’,

‘permi’, ‘permitt’, ‘pers’, ‘pers and’, ‘person kn’, ‘person or’,
‘perti’, ‘perty’, ‘pes’, ‘pes o’

Fig. 7. Sample non-symbols

‘permit </HEADLINE>’, ‘permit program’, ‘permit approved’

Ideally, we would like our representation to only include symbols. However, based
on the given method, the n-gram graph includes information for both symbols and
non-symbols, which induces noise in the comparison process. Therefore, we need to
identify such values of parameters Lmin,0, LMAX,0, Dwin,0 that minimize the noise,
while maximizing the quantity of useful information.

The following problems arise:

—How can we formally define and detect symbols and non-symbols?
—Is the usefulness of all symbols equal and how do we measure it?
—Can we define a single, easily understood quantity that we need to maximize in

order to achieve the required result?

4.2 Detection of Symbols

As described above, a symbol is a sequence of characters in the case of character
n-grams. This sequence abides by a single rule: each letter is more probable to tail
its preceding subsequence of characters than a character drawn randomly from a
pool of characters. We elaborate on how a symbol is extracted from a text.

We have a text T l. We denote by st the symbol we have composed at step t of
the extraction process, and ct the candidate symbol for the t-th step. A candidate
symbol will become a symbol, if and only if it conforms to the rule described
in the previous paragraph. In order to determine what is the probability of a
given substring X to be followed by a given character y, we construct a corpus
containing a set of texts from the domain. In our case, we simply used all the
model summaries as the corpus and we created an overall text, TL

0 of length L,
formed by the concatenation of the corpus texts. Thus, given a pair (X,y) with X
having a length of |X|, we can count:

—how many times X appears in T0, represented by NX .
—how many times the string Xy appears in T0, represented by NXy.
—the total number of n-grams of a given size n within T0, represented by |T0,n|.

We need to calculate the probability P (y|X) of a given suffix y, given the prefix X:

P (y|X) = P (X) ∗ P (y,X),where P (y,X) =
NXy

|T0,n|
and P (X) =

NX

|T0,|X||
(8)

On the other hand, the probability P (yr|X) of a random suffix yr, given the
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prefix X, is given by:

P (yr|X) = P (yr), since yr is chosen randomly and
independently from X.

Thus,

P (yr) =
1
|A|1

(9)

|A|n is the number of strings of length n, found in the alphabet A of T0. When
we use the term alphabet of T0, we refer to the set of unique characters appearing
in T0. We select this definition of an alphabet because we want our approach to
remain language-neutral, and therefore we do not presume any given alphabet.

The extraction of symbols from TL
0 is described as algorithm 2.

Input: text TL
0

Output: symbol set S
// t denotes the current iteration, but has no use in the

algorithm
// T [i] denotes the i-th character of T
// ε is the empty string
// The plus sign (+) indicates concatenation where character

series are concerned.
S = ∅;1

st = T [1];2

for all i in [2,length(T)] do3

y = T [i];4

ct = st + y;5

if P (y|st) > P (yr) then6

st = ct;7

end8

else9

S = S + st;10

st = y;11

end12

end13

// Add last symbol
S = S + st;14

Algorithm 2: Extracting Symbols

Descriptively, the above algorithm runs through the text, splitting symbols when
the next character seems to have been positioned after the current substring by
mere chance. Starting with a single-character candidate symbol, the algorithm
adds new characters to the candidate symbol, until a split point is reached. Then,
the candidate symbol is upgraded to a symbol, and a new candidate symbol is
formed using the next character. In figure 8 we can see the distribution of symbol
sizes as extracted by the algorithm from the DUC 2006 corpus.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 8. The Distribution of Symbols per Rank (Symbol Size) in the DUC 2006 corpus

The aware reader may note that this method is related to the Symmetric Con-
ditional Probability used in the LocalMaxs algorithm [da Silva et al. 1999], as well
as the notion of “glue” in [Houvardas and Stamatatos 2006]. The main difference
is that we do not evaluate candidate n-grams to keep the most prominent ones,
but we consider all n-grams that represent symbols to be important, and all others
not important. Additionally, the probabilities used in the extraction of symbols
here are different from the ones already in previous publications (e.g. SCP), and
there are no fixed rules based on the n-gram size, because these would be language-
dependent. However, it would be interesting to see whether the use of other existing
methods for variable rank n-gram extraction can prove more fruitful than the pro-
posed one. This has not been done in the context of the current work, due to the
reasons stated above.

4.3 Signal to Noise – Symbol Importance

In order to determine a measure of the importance of each symbol in our method,
we insisted on the probabilistic approach. We consider any given symbol to be more
important, if it is less probable to be generated by a random symbol creator. This
symbol creator, in order to create a new n-gram of size n, would choose randomly
a n − 1 rank n-gram from a pool of valid symbols and would randomly select an
1-gram symbol to append, creating the new n-gram. The importance of a symbol
is indicated by a weighting factor. On the other hand, we consider non-symbols to
be equally (un)important, in that each non-symbol has an importance of 1.

The fact that we have interesting and uninteresting pieces of data that form our
input is analogous to a noisy channel model, where a signal (interesting pieces) is
transmitted over a medium (algorithm) that adds noise (uninteresting pieces). In
this case we would like to change the medium parameters (Lmin, LMAX, Dwin), in
order to maximize the signal and minimize the noise. A signal-to-noise approach,
trying to predict what is the tradeoff between different values of Lmin and LMAX
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concerning the signal-to-noise ratio, can be based on an equation like:

SN(Lmin, LMAX) = 10× log10(
S(Lmin, LMAX)
N(Lmin, LMAX)

) (10)

where S(Lmin, LMAX), N(Lmin, LMAX) are functions returning a measure of sig-
nal and noise correspondingly, for a given range (Lmin, LMAX). SN indicates the
function of signal-to-noise. The signal is the useful information we have captured
via symbols, while the noise is the redundant or useless information we have cap-
tured via non-symbols.
N(Lmin, LMAX) is defined as the count of non-symbols appearing in a given

corpus for the given range:

N(Lmin, LMAX) =
LMAX∑
i=Lmin

|Non-Symbolsi| (11)

where |Non-Symbolsi| is the number of symbols of rank i.
On the other hand, for the case of symbols we wish to take into account the

importance of each symbol, and therefore calculate normalized weighted symbols.
The latter are weighted according to their importance, which is a function of their
rank. The normalization step occurs over the weighted symbols to provide a new
set of symbols, same in number as the ones found in the texts, which are however
rearranged over different ranks in a way that they also illustrate the importance
of any given rank. The number of weighted symbols for each n-gram rank r is
calculated in two steps, within the given range [Lmin, LMAX]:

(1) Calculate the weight wr of symbols for the specified rank r and sum over all
weighted symbols to find the total, weighted symbol sum Wr for rank r. The
weight ws is defined to be the inverse of the probability of producing a symbol
of rank r given a symbol of rank r − 1, as longer symbols are less probable to
appear as a result of a random sampling of characters. Thus:

P (sr|sr−1) =

{
1

|Symbolsr|+|Non-Symbolsr|
if r = 1.

1
|Symbolsr−1|+|Non-Symbolsr−1|

× 1
|Symbolsr|+|Non-Symbolsr|

else.

So wr = 1/P (sr|sr−1) (12)

where |Symbolsr| is the number of symbols in rank r.

(2) Normalize Wr so that the sum of Wr over r ∈ Lmin,LMAX is equal to the
original number of symbols in the texts. The normalized, weighted symbols
W 0

r for rank r are calculated by:

W 0
r = Wr ×

|Symbolsr|∑LMAX
i=Lmin

|Symbolsi|
(13)

We indicate once more that the W 0
r measure actually represents the importance

of symbols per rank r for the symbols of the texts, instead of the number of
symbols per rank that is indicated by |Symbolsr|.
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Fig. 9. Correlation between Estimation (SN) and Performance
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Thus, S(Lmin, LMAX) finally equals to:

S(Lmin, LMAX) =
LMAX∑
i=Lmin

W 0
i (14)

Having defined our signal-to-noise function, we wish to maximize it and, there-
fore, we search the space of parameter values for optimum values. However, we
have to investigate whether our estimate of signal-to-noise is correlated to the per-
formance of the system, because only then will SN be useful. Indeed, SN offers an
important 0.949 rank correlation (Spearman) to the maximum performance that
can be achieved by our method (see figure 9). The same correlation holds for the
mean performance for a given Lmin, LMAX pair and different values of Dwin. In
fact, SN is also almost linear to the performance of the system, with a Pearson
correlation of 0.918. Therefore, our estimator is rather good in finding optimal
values for Lmin and LMAX.

However, we have not yet discussed the distance parameter. We have said that it
has a rather serious impact on the performance of the system. Up to this point the
Dwin parameter was presumed to be independent from Lmin and LMAX. However,
further evolution and testing of our model indicated a possible connection between
Dwin and LMAX.

We want to know, in the same manner as above, what is the signal-to-noise ratio
as a function of distance Dwin. We shall refer to this ratio as SNd.

In order to determine SNd, we can once more count the symbols and non-symbols
expected to be found in a given distance Dwin from our n-gram. Let us consider,
without harming generality, the case where we are in the middle of our (infinitely
long) text and we have a visibility of Dwin characters to the right and left. Our
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current n-gram is of rank s0. We are extracting n-grams of size r.
During our n-gram extraction, we extract d0 = 2 ×Dwin n-grams (for the sym-

metric approach). Thus, there are d0 candidate symbols. In order to calculate the
probability of extracting Ns symbols from d0 attempts, we can model the process
of extraction with a binomial success probability, calculated for Ns successes in d0

attempts. The chance of success for the binomial for a given n-gram rank of r is
given by:

Ps =
W 0

r

W 0
r + |Non-Symbolsr|

(15)

The chance that our current n-gram is a symbol P 0
s is the probability calculated

by:

W 0
s0

W 0
s0

+ |Non-Symbolss0
|

(16)

Presuming that only information about neighbouring symbols is important, the
signal function should take into account only the probability of having both a
symbol current n-gram and a symbol neighbour n-gram. Even though the maximum
number of non-overlapping, neighbour symbols we can find within d0 is [d0

r ], we will
not use this limitation in our analysis. We do so, because the analogy of symbols
and non-symbols remains the same on average over all our corpus and our estimator
can count on this analogy to extract good results on average. To extract an estimate
Er

s of the number of symbols that can be extracted for a given rank r, we use the
algorithm indicated as algorithm 3.

Input: Distance Dwin, Success Probability of Single Trial Ps

Output: Expected Number of Symbols Er
s

// D(x) is a discrete probability distribution
for all i in [1,Dwin] do1

D(x) = binomial(i;Dwin,Ps) ;2

end3

// E(y) is the mean function
Er

s=E(D(x)) ;4

Algorithm 3: Symbol Count Estimation

From algorithm 3, we get an estimated number of symbols. The rest of the d0

extractions are non-symbols and account for d0 − Er
s extractions. Therefore, SNd

can be calculated by:

SNd(Lmin, LMAX) = 10× log10

Sd(Lmin, LMAX, Dwin)
Nd(Lmin, LMAX, Dwin)

(17)

where Sd, Nd are the signal and noise functions correspondingly, calculated by:
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Fig. 10. Correlation between Estimation (SN) and Performance for Given Lmin, LMAX
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Sd(Lmin, LMAX, Dwin) =P 0
s ×

M∑
i=Lmin

(Er
s ) (18)

Nd(Lmin, LMAX, Dwin) =
M∑

i=Lmin

(d0 − Er
s ) (19)

(20)

As a result of this analysis, we conclude that the optimal distance is a function
of Lmin, LMAX and should be considered as an independent parameter. In order
to evaluate our model we will repeat the extraction of correlation between the SNd

and actual performance for different values of Dwin.
Indeed, SNd offers an important 0.920 rank correlation (Spearman) to the max-

imum performance that can be achieved for the selected optimal n-gram range (see
figure 10). SNd has a promising Pearson correlation of 0.896 to the performance.
Therefore, our estimator is good in finding near-optimal Dwin values11. In the
given example of the DUC 2006 corpus, the best performance was 0.938 and the
one returned using the estimation was 0.935, while the average over all candidate
distances was 0.927, with a standard deviation of 0.008.

The near-optimal values for the pair (Lmin, LMAX) were according to the estima-
tion values (4, 4), while in deed they optimal values were (1, 3) (DUC 2006 corpus).

11This holds for already decided optimal values of Lmin, LMAX as we found through a series of

experiments.
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Table VI. Correlation of Measures to the Content Responsiveness Metric of DUC 2006 for Au-

tomatic peers only. Within parethenses the p-value of the corresponding test.

Metric Spearman Pearson Kendall

Overall Responsiveness 0.718 0.833

Rouge-2 0.767 0.836

Rouge-SU4 0.790 0.850

BE-HM 0.797 0.782

AutoSummENG 0.870 (0.00) 0.904 (0.00) 0.712 (0.00)

AutoSummENG B/S 0.858 (0.00) 0.899 (0.00) 0.712 (0.00)

Table VII. Pearson Correlation of Measures to the Content Responsiveness Metric of DUC 2006

for Automatic peers, Human peers and All peers, excluding peer 17. Within parethenses the
p-value of the corresponding test.

Evaluated Group Rouge-2 Rouge-SU4 BE-HM AutoSummENG - B/S

Automatic Peers 0.84 (0.00) 0.85 (0.00) 0.78 (0.00) 0.91 (0.00) - 0.90 (0.00)

Human Peers 0.64 (0.05) 0.69 (0.03) 0.57 (0.09) 0.68 (0.03) - 0.67 (0.00)

All Peers 0.90 (0.00) 0.88 (0.00) 0.88 (0.00) 0.97 (0.00) - 0.97 (0.00)

5. OVERALL PERFORMANCE OF AUTOSUMMENG

In order to check the performance of our method, compared to other existing meth-
ods, we used the Spearman correlation and Pearson correlation that is used in [Dang
2006], but for our method we have also calculated the Kendall’s tau correlation coef-
ficient, which we consider to be the most fitting coefficient for the given task, based
on its definition (see section 2.1). The Responsiveness measure in DUC 2006 was
named Content Responsiveness, because another measure appeared named Overall
Responsiveness (see [Dang 2006]). Briefly, Overall Responsiveness represents an
overall quality measure (including grammaticality and other textual qualities) for
a given system, while Content Responsiveness only refers to whether the required
information were contained in summaries from a given system, without taking into
account the well-formedness of output summary. The results concern application
of the character n-gram Graph – Value representation with a symmetric window.
P-values reported zero (0.00) indicate actual p-values that are rounded to zero when
two digits are considered significant. We should note that we have also used an or-
dinary non-parametric bootstrapping approach12 with 10000 replications to better
determine the results for our method. The corresponding results appear either in
the AutoSummENG entries as seperate entries (see table VI) or as second value –
p-value pairs (see table VII). 13

In table VI, there is an obvious difference between the performance of Auto-
SummENG and existing approaches. Table VII indicates the Pearson correlation
performance of evaluation methods when not including system 17 of DUC 2006, for
which BE-HM breaks (due to some characters in the input) and performs abnor-
mally.

As an overview of the major evaluation systems’ performance over the data of

12For an introduction to bootstrapping see [Efron and Tibshirani 1993].
13Given the fact that the results using bootstrapping were only marginally modified over many

experiments we did not further perform bootstrapping, considering the given original values to be
good and indicative estimations of the process, not wanting to diversify the method of calculation

of our results from other corresponding works.
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Table VIII. Correlation of AutoSummENG to the Responsiveness Metric of DUC 2005 for Au-

tomatic peers, Human peers and All peers. Within parethenses the p-value of the corresponding
test.

Evaluated Group Spearman Pearson Kendall

Automatic peers 0.906 (0.00) 0.908 (0.00) 0.755 (0.00)

Human peers 0.857 (0.00) 0.830 (0.00) 0.764 (0.00)

All peers 0.957 (0.00) 0.985 (0.00) 0.847 (0.00)

Table IX. Correlation of AutoSummENG to the Content Responsiveness Metric of DUC 2006 for
Automatic peers, Human peers and All peers. Within parethenses the p-value of the corresponding

test. Statistical importance lower than the 95% threshold are noted by emphatic text in the

parentheses.

Evaluated Group Spearman Pearson Kendall

Automatic peers 0.870 (0.00) 0.904 (0.00) 0.712 (0.00)
Human peers 0.648 (0.04) 0.684 (0.03) 0.471 (0.07 )

All peers 0.935 (0.00) 0.966 (0.00) 0.804 (0.00)

Table X. Correlation of AutoSummENG to the Content Responsiveness Metric of DUC 2007 for
Automatic peers, Human peers and All peers. Within parethenses the p-value of the correspond-

ing test. Statistical importance lower than the 95% threshold is noted by emphatic text in the

parentheses.

Evaluated Group Spearman Pearson Kendall

Automatic peers 0.864 (0.00) 0.88 (0.00) 0.707 (0.00)
Human peers 0.615 (0.06 ) 0.649 (0.04) 0.396 (0.12 )

All peers 0.935 (0.00) 0.964 (0.00) 0.801 (0.00)

DUC 2005 to 2007, the table XI has been provided, based partly on [Conroy and
Dang 2008]. It should be noted that the AutoSummENG performance does not
correspond necessarily to its optimal value, but rather to the performance achieved
using pre-estimated parameters. Another important note is that, even though
there is a difference between the performance of systems, statistic analysis indicates
through confidence intervals that the difference in performance may be due to
randomness (see also [Dang 2005; 2006; Hovy et al. 2005]).

Even though the evaluation process itself contains the a-priori estimation step
for its parameters, we wanted to check whether the model parameters determined
for the corpus of DUC 2006 would function effectively when applied to DUC 2005
and DUC 2007 corpora. In tables VIII, IX, X we can see the results for all corpora
(DUC 2005, DUC 2006, DUC 2007). In the tables the results have been separated
by groups (automatic peers and human peers) and there is also the overall ranking
correlation, including all peers. The results indicate that the DUC 2006 parameters
perform well in other corpora as well, showing that the parameters did not simply
overfit the DUC 2006 corpus.

To verify this fact, we also determined model parameters for DUC 2005 and
applied them to all corpora: DUC 2005, DUC 2006, DUC 2007. The results were
once more satisfying as can be seen in table XII. This hints on the fact that the
model parameters are more language-dependent than corpus dependent, but this
will have to be verified against another language.

The fact that our method does not require parsing of some kind, nor syntactic or
grammatical analysis like other existing methods, offers an advantage, both in terms
of complexity, as well as in terms of inherited noise from erroneous preprocessing
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Table XI. Pearson Correlation of Measures to the Content Responsiveness Metric of DUC 2005-

2007 for Automatic Systems

Year BE(-HM) Rouge-2 Rouge-SU4 AutoSummENG

2005 0.87 0.94 0.93 0.91
2006 0.85 0.84 0.85 0.90

2007 0.89 0.88 0.83 0.88

Table XII. Correlation of AutoSummENG to the Responsiveness Metric of DUC 2005 and Con-

tent Responsiveness Metric of DUC 2006, 2007 for Automatic peers, Human peers and All peers
using estimated parameters based on DUC 2005. Within parethenses the p-value of the corre-

sponding test. Statistical importance lower than the 95% threshold are noted by emphatic text in

the parentheses.

Year - Evaluated Group Spearman Pearson Kendall

2005 - Automatic peers 0.840 (0.0) 0.885 (0.0) 0.669 (0.0)
2005 - Human peers 0.936 (0.0) 0.878 (0.00) 0.854 (0.00)

2005 - All peers 0.929 (0.00) 0.977 (0.00) 0.803 (0.0)

2006 - Automatic peers 0.871 (0.0) 0.891 (0.0) 0.709 (0.0)

2006 - Human peers 0.759 (0.01) 0.715 (0.02) 0.566 (0.03)
2006 - All peers 0.937 (0.00) 0.967 (0.00) 0.806 (0.0)

2007 - Automatic peers 0.842 (0.0) 0.871 (0.0) 0.687 (0.0)

2007 - Human peers 0.659 (0.04) 0.673 (0.03) 0.442 (0.08 )

2007 - All peers 0.925 (0.00) 0.966 (0.00) 0.792 (0.0)

Table XIII. Correlation of AutoSummENG to the Overall Responsiveness Metric G stands for

Graph, H for Histogram, C for co-occurrence and V for value.

Representation Spearman Pearson

G – C 0.748 0.860

G – V 0.786 0.893
H – C 0.811 0.920

H – V 0.537 0.858

(which was indicated as a problem in the case of BE [Dang 2006]).
In the course of our experiments, we used the optimal values found for content

responsiveness correlation to check the correlation of the proposed method to the
Overall Responsiveness of systems in DUC 2006. The results are illustrated in table
XIII. Once more the method seems to do adequately well, with the histogram-
co-occurrence version reaching the highest performance (for the given parameter
setting of Lmin = 4, LMAX = 4, Dwin = 4). This indicates that our method can
have more applications than meets the eye and this seems worth investigating.

The fact that we need to estimate parameters, on the critic side of this analysis,
can be time consuming and even error-prone, which will affect the overall perfor-
mance of the system. This problem is only partially addressed by the robustness
of the results for non-marginal parameter values. Another lesser drawback of our
method is that the graph representation can be memory consuming, even though in
our implementation14 we have optimized the code and the problem has been tack-
led. Finally, there have been no experiments in different languages, which means
that we have not answered the question of whether the language-neutral approach
will have similar performance in other languages. On the other hand, this does

14The full project, including source code, of AutoSummENG can be found at

http://www.ontosum.org/static/AutomaticSummarization.
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not contradict the fact that the approach remains strictly language-neutral in its
methodology.

6. CONCLUSIONS – FUTURE WORK

The AutoSummENG method for summarization evaluation is a promising method
based on language-neutral analysis of texts and comparison to gold-standard sum-
maries. The method is based on n-gram graphs, even though it provides support
for other, histogram-based, approaches. We have found that the character n-gram
graph representation, including information of neighbourhood frequency, can render
the best results for the given task. The presented method appears to outperform
current approaches in the corpus of DUC 2006, providing a good evaluation alter-
native for future attempts.

Answering the questions posed in section 1.1, statistical information related to co-
occurrence of character n-grams seem to provide important information concerning
the evaluation process of summary systems. The actual representation used for
capturing this information can be an n-gram graph, as this has been described
within out method, with parameters optimized a priori. The distance metric to be
preferred would be the Value Similarity between the graph representation of peer
summaries and model summaries. Our method, complemented by the parameter
optimization step, has proved to be a language-neutral, fully automated, context-
sensitive method with competitive performance.

Concerning future work, it would be interesting to use only symbols in our analy-
sis of the summary texts, to see if there is hidden information in what we have called
“non-symbols” or not. On the same basis, a parameter-free version of the method
would determine n-grams of various length and synthesize a single n-gram graph,
not requiring any input but the corpus of summaries. It would also be interesting to
investigate different types of neighbourhood and different functions of importance
for neighbourhood, as well as different weighting functions for the importance of
matching n-grams of specific rank (e.g. longer vs. shorter n-grams) or nature (e.g.
rare vs. common n-grams). We are planning to investigate the evaluation of other
characteristics, like grammaticality, cohesion and so forth, using the same scheme
with different parameters. In this investigation, the word n-gram dimension should
be re-examined, because it may provide more noise-free information, considering
the fact that whole words usually follow our definition of symbols by being mean-
ingful. Furthermore, there is a drawback of our method tied to the complexity of
extracting and comparing n-gram graphs. This drawback has already been handled
in terms of implementation, but the algorithm itself holds a complexity much higher
that that of constructing a histogram, per se. Therefore, it would be interesting to
hold only “useful” subgraphs based on a statistical measure of usefulness or find an
algorithmic alternative to our own.

Even though a series of numerous experiments has already been conducted, we
feel that the presented method should be further investigated, as it may hold im-
plications concerning the potential of using the graph representation in a language
neutral way for various NLP tasks.
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