
George Giannakopoulos¹

¹University of Trento, Italy
ggianna@disi.unitn.it

April 27, 2010
Outline

1. The N-gram Graph — Overview and Framework
 - Introducing the N-gram Graph
 - N-Gram Graph Generic Operators
 - N-Gram Graphs: Defining Noise
 - Applications

2. NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3. Closing
 - Summary and Sneak Peek
 - Appendix
An N-gram Graph

![N-gram Graph Diagram]

George Giannakopoulos

N-Gram Graphs
What does an n-gram graph do?

- Indicates neighborhood
- **Edges** are important
- Edge weights can have different semantics
People can read even when words are spelled *wnorg*
Intuition — Perception

- People can read even when words are spelled `wnorg`
- But order *does* play some role: *not it does?*
Intuition — Perception

- People can read even when words are spelled *wnorg*
- But order *does* play some role: *not it does*?
- The same stands for images...
Intuition — Perception

- People can read even when words are spelled *wnorg*
- But order *does* play some role: *not it does?*
- The same stands for images...
- ... and audio.
Intuition — Assumptions

- Neighborhood (or Proximity) can indicate relation, or causality
Intuition — Assumptions

- *Neighborhood* (or *Proximity*) can indicate relation, or causality
- An object can be analyzed into its constituent items
Intuition — Assumptions

- *Neighborhood* (or *Proximity*) can indicate relation, or causality
- An object can be analyzed into its constituent items
- You can compute *similarity* or *distance* for the domain of these items.
Intuition — Assumptions

- Neighborhood (or Proximity) can indicate relation, or causality
- An object can be analyzed into its constituent items
- You can compute similarity or distance for the domain of these items.
- Size of the neighborhood: level of description.
Extraction Process (NLP example)

- Extract n-grams of ranks \([L_{\text{min}}, L_{\text{MAX}}]\). One graph per rank.
- Determine neighborhood (window size \(D_{\text{win}}\)).
- Assign weights to edges.

Example

String: \(abcde\)

Character N-grams (Rank 3): \(abc, bcd, cde\)

Edges (Window Size 1): \(abc-bcd, bcd-cde\)

Weights (Occurrences): \(abc-bcd \ (1.0), \ bcd-cde \ (1.0)\)
Window-based Extraction of Neighborhood — Examples

Figure: N-gram Window Types (top to bottom): non-symmetric, symmetric and gauss-normalized symmetric. Each number represents either a word or a character n-gram
N-gram Graph — Representation Examples

Figure: Graphs Representing the String $abcdef$ (from left to right): non-symmetric, symmetric and gauss-normalized symmetric. N-Grams of Rank 3. D_{win} value 2.
What is an N-gram Graph?

- Restrictions upon relative positioning
- Correspond to all texts that comply with the restrictions
- Smaller distance, less generalization / fuzziness
What is Common with Existing Approaches

- Instance and class: common representation
- Updatable model
What is New with the N-gram Graph

- Co-occurrence information inherent
- Arbitrary fuzziness based on a parameter
- Generic applicability (domain agnostic) due to operators

...and more.
Frequently Asked Questions

Why not bag-of-words? Much more information

What about preprocessing (stemming, lemmatization, etc.)? Not needed

Are N-gram Graphs probabilistic? Not necessarily

Are N-gram Graphs automata for recognition? No, vertices are not states

Are they grammar models? Can be

I see too many parameters... Optimizable a priori
Outline

1 The N-gram Graph — Overview and Framework
 • Introducing the N-gram Graph
 • N-Gram Graph Generic Operators
 • N-Gram Graphs: Defining Noise
 • Applications

2 NLP Using N-gram Graphs
 • Introduction
 • Summary Evaluation
 • Optimizing N-gram Graph Parameters
 • Text Summarization
 • Other NLP Applications

3 Closing
 • Summary and Sneak Peek
 • Appendix
N-Gram Graph Generic Operators (1)

- Merging or Union \cup
- Intersection \cap
- Delta Operator (All-Not-In operator) \triangle
- Inverse Intersection Operator \triangledown
N-Gram Graph Generic Operators (2)

- Similarity function sim
- Update U (Merging is a special case of update)
- Degradation \(\downarrow \)
Representing Sets of Graphs

A representative graph for a set

- is similar to functionality to the centroid of vectors
- **cannot** be represented using the **merging** operator (unless trivial)
- **can** be represented using the **update** operator
- for non-common edges the effect is **non-linear**
Merge vs. Update (1)

\[
\begin{align*}
_\text{abc} & \quad \text{∪} \quad _\text{bcd} \\
1.00 & \quad 2.00 = 1.50
\end{align*}
\]

\[
\frac{1 + 2}{2} = 1.5
\]
Merge vs. Update (2)

\[
\begin{align*}
&\text{_abc} \\
&\quad 1.50 \\
&\quad \text{_bcd}
&\quad \cup \\
&\text{_abc} \\
&\quad 3.00 \\
&\quad \text{_bcd}
&= \\
&\text{_abc} \\
&\quad 2.25 \\
&\quad \text{_bcd}
\end{align*}
\]

\[
\frac{1.5 + 3}{2} = 2.25
\]

But what if we want \(\frac{1+2+3}{3} = 2 \)?
updatedValue = oldValue + \(l \times (newValue - oldValue) \) \((1) \)

where \(0 \leq l \leq 1 \) is the learning factor

Representative (or Centroid) Graph

Use update operator with learning factor: \(\frac{1}{instanceCount} \), where \(instanceCount \) is the number of instances that will be described by the graph after the update.
Merge vs. Update (4)

\[l = \frac{1}{3} \]

\[\text{update}(_abc _bcd, 1.50), _bcd, 3.00, l) = _abc _bcd, 2.00 \]

\[1.5 + \frac{1}{3} \times (3 - 1.5) = \frac{3}{2} + \frac{1}{3} \times \frac{3}{2} = \frac{4}{2} = 2 \]
N-gram Graph – Similarity (1)

- Size Similarity: Number of Edges
- Co-occurrence Similarity: **Existence** of Edges
- Value Similarity: **Existence** and **Weight** of Edges
- Derived Measures: Normalized Value Similarity
- Similarity measures are symmetric (with some exceptions)
- Overall similarity: Weighted Normalized Sum over All N-Gram Ranks
N-gram Graph – Similarity (2)

- T_i maps a set of graphs \mathcal{G}^r
- Size Similarity of G_1, G_2: $SS = \frac{\min(|G_1|, |G_2|)}{\max(|G_1|, |G_2|)}$
- Containment Similarity: Each common edge adds $\frac{1}{\min(|G_1|, |G_2|)}$ to a sum.
- Value Similarity: Using weights, every common edge adds
 \[
 \frac{\min(w_i^e, w_j^e)}{\max(w_i^e, w_j^e)} \frac{1}{SS}
 \]
- Normalized Value Similarity, SS factored out: $\text{NVS} = \frac{\text{VS}}{SS}$
- Overall Similarity for $n \in [L_{\text{min}}, L_{\text{MAX}}]$: Weighted sum of rank similarity.
N-gram Graph – Size Similarity

Example

\[|G_1| = 2 \quad |G_2| = 4 \]

Result: \[\frac{2}{4} = 0.5 \]
N-gram Graph – Containment Similarity

Example

Result: \(\frac{1}{2} + \frac{1}{2} = 1.0 \)
N-gram Graph – Value Similarity

Example

Result: \[\frac{1.0}{4} + \frac{4.0}{4} = \frac{1}{4} + \frac{1}{8} = 0.375 \]
N-gram Graph – Normalized Value Similarity

Example

Result: \(\frac{VS}{SS} = \frac{0.375}{0.5} = 0.75 \)
Outline

1. The N-gram Graph — Overview and Framework
 - Introducing the N-gram Graph
 - N-Gram Graph Generic Operators
 - N-Gram Graphs: Defining Noise
 - Applications

2. NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3. Closing
 - Summary and Sneak Peek
 - Appendix
Noise – Definition

The definition of noise is task based, e.g.:

- Classification – Common inter-class graph.
- Text representation – ‘Stopword’ effect edges.

Can the noise be easily detected and removed? Yes through simple graph operators.
Noise – Questions

- How can one determine the maximum common subgraph between classes? – Intersection operator.
- Is this (sub)graph unique? – No, it is not.
- Noisy subgraph approximation? – Yes. The noisy subgraph can be easily approximated in very few steps.
- Is the removal of the noisy (sub)graph effective? – Yes.
The task

- Sets of texts, each from a different topic
- Create representative (centroid) graph per class
- Using training instances assign each doc to maximally similar class

NOTE: The maxarg operator is trivial for classification
Effect of graph noise removal (2)

Figure: Class recall histogram for the classification task including noise
Effect of graph noise removal (3)

Figure: Class recall histogram for the classification task *without* noise
Outline

1. The N-gram Graph — Overview and Framework
 - Introducing the N-gram Graph
 - N-Gram Graph Generic Operators
 - N-Gram Graphs: Defining Noise
 - Applications

2. NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3. Closing
 - Summary and Sneak Peek
 - Appendix
Example Domains

- **NLP**: Texts, words, sentences, whole texts
Example Domains

- **NLP**: Texts, words, sentences, whole texts
- **Pattern Matching**: Time series, short sequences, long sequences
Example Domains

- **NLP**: Texts, words, sentences, whole texts
- **Pattern Matching**: Time series, short sequences, long sequences
- **Natural Science**: Events, simple events, complex events
Example Domains

- **NLP**: Texts, words, sentences, whole texts
- **Pattern Matching**: Time series, short sequences, long sequences
- **Natural Science**: Events, simple events, complex events
- **Social Science**: Relations, groups, community
Text Classification – Spam filtering

CEAS 2008¹ Classify 140000 e-mails as spam or ham (on-line feedback).

<table>
<thead>
<tr>
<th></th>
<th>Gold Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ham</td>
</tr>
<tr>
<td>Filter</td>
<td>Ham</td>
</tr>
<tr>
<td></td>
<td>Spam</td>
</tr>
<tr>
<td>Result</td>
<td>Total</td>
</tr>
</tbody>
</table>

Percentages:
Ham% 8.22
Spam% 1.61

Using the trivial maxarg operator for the decision. Extremely few instances needed (tens).

¹See http://www.ceas.cc/2008/challenge/ for more on the challenge.
Record Linkage and Text Stemmatology (1)

Lineage of texts or record descriptions

- Compare all to all texts/records
- Determine threshold of similarity and cluster
- Create latent parents, through merging
Figure: A case of latent node addition
Outline

1. The N-gram Graph — Overview and Framework
 - Introducing the N-gram Graph
 - N-Gram Graph Generic Operators
 - N-Gram Graphs: Defining Noise
 - Applications

2. NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3. Closing
 - Summary and Sneak Peek
 - Appendix
One thing that is common in all languages: context
Intuition — Language Analysis

- One thing that is common in all languages: context
- All characters are important in a text
One thing that is common in all languages: context
- All characters are important in a text
- Even delimiters play a role in meaning
Intuition — Language Analysis

- One thing that is common in all languages: context
- All characters are important in a text
- Even delimiters play a role in meaning
- A word is a neighborhood of characters
The problem

Given a set of model summaries, determine the quality of a given peer summary text.
The problem

Given a set of model summaries, determine the quality of a given peer summary text.

Solution

- Represent all texts as n-gram graphs.
- Version 1: Compare between models and peer text and extract the average similarity.
- Version 2: OR merge models and compare peer text to merged model.

Indicative of responsiveness.
Overview of AutoSummENG

- Statistical *i.e.* **Language-Neutral**
- Word N-gram or **Character** N-Gram (Q-Gram) Based
- Graph Based on Neighborhood *i.e.* Includes Uncertainty / Fuzziness

AutoSummENG method [Giannakopoulos et al., 2008]:
AutoSummENG – Evaluation Over DUC & TAC

Figure: Pearson Correlation: Measures to (Content) Responsiveness for peers only
Outline

1. The N-gram Graph — Overview and Framework
 - Introducing the N-gram Graph
 - N-Gram Graph Generic Operators
 - N-Gram Graphs: Defining Noise
 - Applications

2. NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3. Closing
 - Summary and Sneak Peek
 - Appendix
Optimizing Parameters (1)

- Minimum n-gram length, indicated as L_{min}.
- Maximum n-gram length, indicated as L_{MAX}.
- Neighborhood Window Size, indicated as D_{win}.
Signal-to-Noise Optimization [Giannakopoulos et al., 2008]

- Symbols (Signal): contain letters neighboring more often than random characters
- Non-symbols (Noise): the rest
We count, given a corpus T_0:

- times X appears in T_0, represented by N_X.
- how many times the string Xy appears in T_0, represented by N_{Xy}.
- the total number of n-grams of a given size n within T_0, represented by $|T_{0,n}|$.
Signal-to-Noise: Elaboration (2)

- $P(y|X)$ of a given suffix y, given the prefix X is

 $$P(y|X) = P(X) \times P(y, X)$$

 where $P(y, X) = \frac{N_{Xy}}{|T_{0,n}|}$ and $P(X) = \frac{N_X}{|T_{0,|X|}|}$

- Random sequence probability is

 $$P(y_r|X) = P(y_r)$$
Signal-to-Noise: Elaboration (3)

Signal-to-Noise

\[SN(L_{\text{min}}, L_{\text{MAX}}) = 10 \times \log_{10} \left(\frac{S(L_{\text{min}}, L_{\text{MAX}})}{N(L_{\text{min}}, L_{\text{MAX}})} \right) \]

\[N(L_{\text{min}}, L_{\text{MAX}}) = \sum_{i=L_{\text{min}}}^{L_{\text{MAX}}} |\text{Non-Symbols}_i| \]

Signal is more complex: Importance of symbols is related to their length. *Weighted symbols* are calculated and redistributed over ranks (Appendix — Slide 5).
Extracting Symbols

Input: text T_0^L

Output: symbol set S

// t denotes the current iteration

// $T[i]$ denotes the i-th character of T

// ϵ is the empty string

// $P(y_r)$ is the probability of a random suffix y_r

// The plus sign (+) indicates concatenation where character series are concerned.

1. $S = \emptyset$;
2. $s_t = T_0^L[1]$;
3. for all i in $[2, \text{length}(T_0^L)]$ do
 4. $y = T_0^L[i]$;
 5. $c_t = s_t + y$;
 6. if $P(y|s_t) > P(y_r)$ then
 7. $s_t = c_t$;
 end
 8. else
 9. $S = S + s_t$;
 10. $s_t = y$;
5. end
5. end

// Add last symbol
14. $S = S + s_t$;
Extracting Symbols — Example

Text: *Trying to understand...*

1st Step

\[s_t \Rightarrow T' \]
\[y \Rightarrow r' \]

\[P(y_r) = \frac{1}{64}, P(y|s_t) = \frac{1}{60} \]
Extracting Symbols — Example

Text: *Trying to understand...*

2nd Step

\[s_t = ' Tr' \]
\[y = ' y' \]

\[P(y_r) = \frac{1}{64}, P(y|s_t) = \frac{1}{40} \]
Extracting Symbols — Example

Text: *Trying to understand...*

3rd Step

\[s_t = 'Try' \]
\[y = ' ' \]
\[P(y_r) = \frac{1}{64}, P(y|s_t) = \frac{1}{80} \]
Extracting Symbols — Example

Text: *Trying to understand...*

New Symbol

\[s_t = ' ' \]

\[y = ' t' \]

and so on...
Figure: Correlation between Estimation (SN) and Performance
Summarizing Multiple Documents

- Given a set of texts referring to a subject
- Output summary
Summarizing Multiple Documents

- Given a set of texts referring to a subject
- Output summary
- Capture salient information
- Avoid redundancy
The MUDOS-NGSystem

Source Texts Analysis

Candidate Content

Common Content

Query Expansion

Expanded Query

Candidate Content Grading

Redundancy Removal
or
Novelty Detection

Summary
Per Subtask Strategy

- Common Content: Intersection
- Expanded Query: Query expanded with synonyms
- Chunk Grading: Similarity
- Redundancy Checking: Similarity of Chunk vs.
 - other chunks
 - iteration summary text
Novelty Detection Algorithm

1. Extract the n-gram graph representation of the summary so far, indicated as G_{sum}.
2. Keep the part of the summary representation that does not contain the common content of the corresponding document set \mathbb{U}, $G'_{\text{sum}} = G_{\text{sum}} \Delta C_{\mathbb{U}}$.
3. For every candidate sentence in \mathbb{L} that has not been already used
 1. extract its n-gram graph representation, G_{cs}.
 2. keep only $G'_{cs} = G_{cs} \Delta C_{\mathbb{U}}$, because we expect to judge redundancy for the part of the n-gram graph that is not contained in the common content $C_{\mathbb{U}}$.
 3. assign the similarity between G'_{cs}, G'_{sum} as the sentence redundancy score.
4. For all candidate sentences in \mathbb{L}
 1. Set the score of the sentence to be its rank based on the similarity to $C_{\mathbb{U}}$ minus the rank based on the redundancy score.
5. Select the sentence with the highest score as the best option and add it to the summary.
6. Repeat the process until the word limit has been reached or no other sentences remain.
MUDOS-NG Performance (1)

<table>
<thead>
<tr>
<th>System (DUC 2006 SysID)</th>
<th>AutoSummENG Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (1)</td>
<td>0.1437</td>
</tr>
<tr>
<td>Top Peer (23)</td>
<td>0.2050</td>
</tr>
<tr>
<td>Last Peer (11)</td>
<td>0.1260</td>
</tr>
<tr>
<td>Peer Average (All Peers)</td>
<td>0.1842 (Std. Dev. 0.0170)</td>
</tr>
<tr>
<td>Proposed System (-)</td>
<td>0.1783</td>
</tr>
</tbody>
</table>

Table: AutoSummENG performance data for DUC 2006. NOTE: The top and last peers are based on the AutoSummENG measure performance of the systems.
MUDOS-NG Performance (2)

<table>
<thead>
<tr>
<th>System (TAC 2008 SysID)</th>
<th>AutoSummENG Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Peer (43)</td>
<td>0.1991</td>
</tr>
<tr>
<td>Last Peer (18)</td>
<td>0.1029</td>
</tr>
<tr>
<td>Peer Average (All Peers)</td>
<td>0.1648 (Std. Dev. 0.0216)</td>
</tr>
<tr>
<td>Proposed System (-)</td>
<td>0.1303</td>
</tr>
</tbody>
</table>

Table: AutoSummENG performance data for TAC 2008. NOTE: The top and last peers are based on the AutoSummENG measure performance of the systems.
Outline

1. The N-gram Graph — Overview and Framework
 - Introducing the N-gram Graph
 - N-Gram Graph Generic Operators
 - N-Gram Graphs: Defining Noise
 - Applications

2. NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3. Closing
 - Summary and Sneak Peek
 - Appendix
Sentiment Analysis [Rentoumi et al., 2009]

- Classification task
- Positive vs. Negative thesaurus sense descriptions
- Polarity assignment based on similarity of word sense to classes
Semantic Annotation [Giannakopoulos, 2009]

- **Symbolic Graph**
 - Indicates substring relations as a tree
 - Mapping strings to sense descriptions or synonyms (from thesaurus)

- A string is assigned the union of meanings of its substrings
Semantic Similarity (1)

\[
\text{rel}_{\text{Meaning}}(t_1, t_2) = \frac{\sum G_{1i}, G_{2j} \text{sim}(G_{1i}, G_{2j})}{|D_1| \times |D_2|}
\]

Similarity: the average similarity between all pairs of senses.
Semantic Similarity (2)

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
<th>$\text{rel}_{\text{Meaning}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>run</td>
<td>jump</td>
<td>0.0017</td>
</tr>
<tr>
<td>smart</td>
<td>stupid</td>
<td>0.0020</td>
</tr>
<tr>
<td>run</td>
<td>walk</td>
<td>0.0020</td>
</tr>
<tr>
<td>smart</td>
<td>pretty</td>
<td>0.0036</td>
</tr>
<tr>
<td>smart</td>
<td>clever</td>
<td>0.0000</td>
</tr>
<tr>
<td>hollow</td>
<td>empty</td>
<td>0.1576</td>
</tr>
<tr>
<td>run</td>
<td>operate</td>
<td>0.2162</td>
</tr>
<tr>
<td>hollow</td>
<td>holler</td>
<td>0.3105</td>
</tr>
</tbody>
</table>
Outline

1. The N-gram Graph — Overview and Framework
 - Introducing the N-gram Graph
 - N-Gram Graph Generic Operators
 - N-Gram Graphs: Defining Noise
 - Applications

2. NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3. Closing
 - Summary and Sneak Peek
 - Appendix
Almost there...

- N-gram Graphs and Operators
- Richer information
- Domain agnostic
- Generic applicability
Almost there...

- N-gram Graphs and Operators
- Richer information
- Domain agnostic
- Generic applicability
- State-of-the-art performance in summary evaluation
- Promising for language-independent summarization
- Usable in classification, clustering, record linkage
- ...and others
Representing behavior with N-gram Graphs
Representing behavior with N-gram Graphs
Combining N-gram Graphs with the Vector Space
Sneak Peek in Second Part

- Representing behavior with N-gram Graphs
- Combining N-gram Graphs with the Vector Space
- User modeling with N-gram Graphs
Sneak Peek in Second Part

- Representing behavior with N-gram Graphs
- Combining N-gram Graphs with the Vector Space
- User modeling with N-gram Graphs
- The JINSECT toolkit: An open source LGPL toolkit for N-gram Graphs
Looking forward to seeing you in the second part

Thank you
Outline

1. The N-gram Graph — Overview and Framework
 - Introducing the N-gram Graph
 - N-Gram Graph Generic Operators
 - N-Gram Graphs: Defining Noise
 - Applications

2. NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3. Closing
 - Summary and Sneak Peek
 - Appendix
AutoSummENG – Evaluation TAC 2008

<table>
<thead>
<tr>
<th>AE to...</th>
<th>Spearman</th>
<th>Kendall</th>
<th>Pearson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp.</td>
<td>0.8953 (< 0.01)</td>
<td>0.7208 (< 0.01)</td>
<td>0.8945 (< 0.01)</td>
</tr>
<tr>
<td>Ling.</td>
<td>0.5390 (< 0.01)</td>
<td>0.3819 (< 0.01)</td>
<td>0.5307 (< 0.01)</td>
</tr>
</tbody>
</table>

Table: Correlation of the system AutoSummENG score to human judgment for peers only (p-value in parentheses)

<table>
<thead>
<tr>
<th>AE to ...</th>
<th>Spearman</th>
<th>Kendall</th>
<th>Pearson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp.</td>
<td>0.3788 (< 0.01)</td>
<td>0.2896 (< 0.01)</td>
<td>0.3762 (< 0.01)</td>
</tr>
<tr>
<td>Ling.</td>
<td>0.1982 (< 0.01)</td>
<td>0.1492 (< 0.01)</td>
<td>0.1933 (< 0.01)</td>
</tr>
</tbody>
</table>

Table: Correlation: *Summary* AutoSummENG to human judgment for peers only
MUDOS-NG Variations’ Performance

<table>
<thead>
<tr>
<th>System ID</th>
<th>CS</th>
<th>SS</th>
<th>RR</th>
<th>ND</th>
<th>QE</th>
<th>NE</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.1202</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.1303</td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.1218</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.1198</td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.1299</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>0.1255</td>
</tr>
</tbody>
</table>

Table: AutoSummENG summarization performance for different settings concerning scoring, redundancy and query expansion. **Legend** CS: Chunk Scoring, SS: Sentence Scoring, RR: Redundancy Removal, ND: Novelty Detection, QE: Query Expansion, NE: No Expansion. Best performance in **bold.**
Symbols and Non-symbols

| 'permanent', 'permit', 'permits', 'persist', 'person', 'personal', 'personal computers', 'personnel', 'persons', 'persuade', 'pesticide', 'pesticides.' |
| 'permi', 'permitt', 'pers', 'pers and', 'person kn', 'person or', 'perti', 'perty', 'pes', 'pes o' |

Figure: Sample extracted symbols

| 'permit </HEADLINE>', 'permit program', 'permit approved' |

Figure: Sample non-symbols
The number of weighted symbols for each n-gram rank r is calculated in two steps, within the given range $[L_{\text{min}}, L_{\text{MAX}}]$:

- Calculate the weight w_r of symbols for the specified rank r and sum over all weighted symbols to find the total, *weighted symbol sum* W_r for rank r. The weight w_s is defined to be the inverse of the probability of producing a symbol of rank r given a symbol of rank $r-1$, as longer symbols are less probable to appear as a result of a random sampling of characters. This means that we consider more important sequences that are less likely to have been randomly produced. Thus:

$$P(s_r|s_{r-1}) = \begin{cases} \frac{1}{|\text{Symbols}_r| + |\text{Non-Symbols}_r|} & \text{if } r = 1. \\ \frac{1}{|\text{Symbols}_{r-1}| + |\text{Non-Symbols}_{r-1}|} \times \frac{1}{|\text{Symbols}_r| + |\text{Non-Symbols}_r|} & \text{else.} \end{cases}$$

So $w_r = 1/P(s_r|s_{r-1})$ \hspace{1cm} (2)

where $|\text{Symbols}_r|$ is the number of symbols in rank r.

- Normalize W_r so that the sum of W_r over $r \in [L_{\text{min}}, L_{\text{MAX}}]$ is equal to the original number of symbols in the texts. The normalized, weighted symbols W^0_r for rank r are calculated by:

$$W^0_r = W_r \times \frac{|\text{Symbols}_r|}{\sum_{i=L_{\text{min}}}^{L_{\text{MAX}}}|\text{Symbols}_i|}$$ \hspace{1cm} (3)

We indicate once more that the W^0_r measure actually represents the *importance of symbols* per rank r for the symbols of the texts, instead of the *number of symbols* per rank that is indicated by $|\text{Symbols}_r|$.

George Giannakopoulos

N-Gram Graphs
