N-gram Graphs: A generic machine learning tool in the arsenal of NLP, Video Analysis and Adaptive Systems. (Part I)

George Giannakopoulos¹

¹University of Trento, Italy ggianna@disi.unitn.it

April 27, 2010

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Outline

1 The N-gram Graph — Overview and Framework

• Introducing the N-gram Graph

- N-Gram Graph Generic Operators
- N-Gram Graphs: Defining Noise
- Applications
- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications
- 3 Closing
 - Summary and Sneak Peek
 - Appendix

Overview and Framework

NLP Closing Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

イロン イロン イヨン イヨン

æ

An N-gram Graph

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

A D

What does an n-gram graph do?

- Indicates neighborhood
- Edges are important
- Edge weights can have different semantics

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

▲□ ► < □ ► </p>

Intuition — Perception

• People can read even when words are spelled wnorg

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

< /□ > <

Intuition — Perception

- People can read even when words are spelled wnorg
- But order *does* play some role: *not it does*?

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

A 10

Intuition — Perception

- People can read even when words are spelled wnorg
- But order *does* play some role: *not it does*?
- The same stands for images...

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

< A > <

Intuition — Perception

- People can read even when words are spelled wnorg
- But order *does* play some role: *not it does*?
- The same stands for images...
- ... and audio.

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

- 4 同 6 4 日 6 4 日 6

э

Intuition — Assumptions

• Neighborhood (or Proximity) can indicate relation, or causality

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

< A > <

Intuition — Assumptions

- Neighborhood (or Proximity) can indicate relation, or causality
- An object can be analyzed into its constituent items

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

A 1

Intuition — Assumptions

- Neighborhood (or Proximity) can indicate relation, or causality
- An object can be analyzed into its constituent items
- You can compute *similarity* or *distance* for the domain of these items.

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Intuition — Assumptions

- Neighborhood (or Proximity) can indicate relation, or causality
- An object can be analyzed into its constituent items
- You can compute *similarity* or *distance* for the domain of these items.
- Size of the neighborhood: level of description.

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Image: A image: A

Extraction Process (NLP example)

- Extract n-grams of ranks $[L_{min}, L_{MAX}]$. One graph per rank.
- Determine neighborhood (window size *D*_{win}).
- Assign weights to edges.

Example

String:	abcde
Character N-grams (Rank 3):	abc, bcd, cde
Edges (Window Size 1):	abc-bcd, bcd-cde
Weights (Occurrences):	abc-bcd (1.0) , bcd-cde (1.0)

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Window-based Extraction of Neighborhood — Examples

Figure: N-gram Window Types (top to bottom): non-symmetric, symmetric and gauss-normalized symmetric. Each number represents either a word or a character n-gram

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

< 🗇 🕨 <

N-gram Graph — Representation Examples

Figure: Graphs Representing the String *abcdef* (from left to right): non-symmetric, symmetric and gauss-normalized symmetric. N-Grams of Rank 3. D_{win} value 2.

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

A 1

What is an N-gram Graph?

- Restrictions upon relative positioning
- Correspond to all texts that comply with the restrictions
- Smaller distance, less generalization / fuzziness

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

▲ 同 ▶ → 三 ▶

What is Common with Existing Approaches

- Instance and class: common representation
- Updatable model

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

What is New with the N-gram Graph

- Co-occurrence information inherent
- Arbitrary fuzziness based on a parameter
- Generic applicability (domain agnostic) due to operators

...and more.

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Why not bag-of-words? Much more information
What about preprocessing (stemming, lemmatization, etc.)? Not needed
Are N-gram Graphs probabilistic? Not necessarily
Are N-gram Graphs automata for recognition? No, vertices are not states
Are they grammar models? Can be
I see too many parameters... Optimizable a priori

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Outline

1 The N-gram Graph — Overview and Framework

• Introducing the N-gram Graph

• N-Gram Graph Generic Operators

- N-Gram Graphs: Defining Noise
- Applications
- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications
- 3 Closing
 - Summary and Sneak Peek
 - Appendix

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

N-Gram Graph Generic Operators (1)

- Merging or Union \cup
- Intersection \cap
- Delta Operator (*All-Not-In* operator) △
- Inverse Intersection Operator \bigtriangledown

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

< □ > < □ >

N-Gram Graph Generic Operators (2)

- Similarity function sim
- Update U (Merging is a special case of update)
- ullet Degradation \searrow

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

A representative graph for a set

- is similar to functionality to the centroid of vectors
- **cannot** be represented using the **merging** operator (unless trivial)
- can be represented using the update operator
- for non-common edges the effect is **non-linear**

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

イロン イロン イヨン イヨン

æ

Merge vs. Update (1)

 $\frac{1+2}{2} = 1.5$

Overview and Framework

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Merge vs. Update (2)

э

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

< A > < 3

Merge vs. Update (3)

 $updatedValue = oldValue + I \times (newValue - oldValue)$ (1)

where $0 \le l \le 1$ is the learning factor

Representative (or Centroid) Graph

Use update operator with learning factor: $\frac{1}{\text{instanceCount}}$, where *instanceCount* is the number of instances that will be described by the graph *after* the update.

Overview and Framework

NLP Closing Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

(日) (同) (三) (三)

э

Merge vs. Update (4)

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

N-gram Graph – Similarity (1)

- Size Similarity: Number of Edges
- Co-occurrence Similarity: Existence of Edges
- Value Similarity: Existence and Weight of Edges
- Derived Measures: Normalized Value Similarity
- Similarity measures are symmetric (with some exceptions)
- Overall similarity: Weighted Normalized Sum over All N-Gram Ranks

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

N-gram Graph – Similarity (2)

- T_i maps a set of graphs \mathbb{G}^r
- Size Similarity of G_1, G_2 : SS = $\frac{\min(|G_1|, |G_2|)}{\max(|G_1|, |G_2|)}$
- Containment Similarity: Each common edge adds $\frac{1}{\min(|G_1|,|G_2|)}$ to a sum.
- Value Similarity: Using weights, every common edge adds

$$\frac{\frac{\min(w_e^i, w_e^j)}{\max(w_e^i, w_e^j)}}{\text{SS}}$$

- Normalized Value Similarity, SS factored out: $NVS = \frac{VS}{SS}$
- Overall Similarity for $n \in [L_{\min}, L_{MAX}]$: Weighted sum of rank similarity.

Overview and Framework

N-Gram Graph Generic Operators

N-gram Graph – Size Similarity

Example

George Giannakopoulos

・ロッ ・ 一 ・ ・ ・ ・

Overview and Framework

N-Gram Graph Generic Operators

N-gram Graph – Containment Similarity

Example

▲ 同 ▶ → 三 ▶

-

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

N-gram Graph – Value Similarity

Example

Overview and Framework

N-Gram Graph Generic Operators

N-gram Graph – Normalized Value Similarity

Example

Result:
$$\frac{VS}{SS} = \frac{0.375}{0.5} = 0.75$$

< □ > < 同 > < 回 >

Introducing the N-gram Graph N-Gram Graph Generic Operators **Noise** Applications

Outline

1 The N-gram Graph — Overview and Framework

- Introducing the N-gram Graph
- N-Gram Graph Generic Operators
- N-Gram Graphs: Defining Noise
- Applications
- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications
- 3 Closing
 - Summary and Sneak Peek
 - Appendix

Introducing the N-gram Graph N-Gram Graph Generic Operators **Noise** Applications

A 10

Noise – Definition

The definition of noise is task based, *e.g.*:

- Classification Common inter-class graph.
- Text representation 'Stopword' effect edges.

Can the noise be easily detected and removed? **Yes** through simple graph operators.

Introducing the N-gram Graph N-Gram Graph Generic Operators **Noise** Applications

▲ 同 ▶ → 三 ▶

Noise – Questions

- How can one determine the maximum common subgraph between classes? Intersection operator.
- Is this (sub)graph unique? No, it is not.
- Noisy subgraph approximation? Yes. The noisy subgraph can be easily approximated in very few steps.
- Is the removal of the noisy (sub)graph effective? Yes.
Introducing the N-gram Graph N-Gram Graph Generic Operators **Noise** Applications

Effect of graph noise removal (1)

The task

- Sets of texts, each from a different topic
- Create representative (centroid) graph per class
- Using training instances assign each doc to maximally similar class

NOTE: The maxarg operator is trivial for classification

Introducing the N-gram Graph N-Gram Graph Generic Operators **Noise** Applications

A 10

Effect of graph noise removal (2)

Figure: Class recall histogram for the classification task including noise

Introducing the N-gram Graph N-Gram Graph Generic Operators **Noise** Applications

Effect of graph noise removal (3)

Figure: Class recall histogram for the classification task without noise

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Outline

1 The N-gram Graph — Overview and Framework

- Introducing the N-gram Graph
- N-Gram Graph Generic Operators
- N-Gram Graphs: Defining Noise

Applications

- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3 Closing

- Summary and Sneak Peek
- Appendix

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

- 4 同 6 4 日 6 4 日 6

э

Example Domains

• NLP: Texts, words, sentences, whole texts

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

▲ 同 ▶ → 三 ▶

Example Domains

- NLP: Texts, words, sentences, whole texts
- *Pattern Matching:* Time series, short sequences, long sequences

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

< 67 ▶

Example Domains

- NLP: Texts, words, sentences, whole texts
- *Pattern Matching:* Time series, short sequences, long sequences
- Natural Science: Events, simple events, complex events

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

A ►

Example Domains

- NLP: Texts, words, sentences, whole texts
- *Pattern Matching:* Time series, short sequences, long sequences
- Natural Science: Events, simple events, complex events
- Social Science: Relations, groups, community

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Text Classification – Spam filtering

CEAS 2008¹ Classify 140000 e-mails as spam or ham (on-line feedback).

	Í	Gold Standard	
		Ham	Spam
Filter	Ham	24900	1777
Result	Spam	2229	108799
	Total	27129	110576

Percentages:

Ham% 8.22

Spam% 1.61

Using the trivial maxarg operator for the decision. *Extremely few* instances needed (tens).

¹See http://www.ceas.cc/2008/challenge/ for more on the challenge. = -22

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

Record Linkage and Text Stemmatology (1)

Lineage of texts or record descriptions

- Compare all to all texts/records
- Determine threshold of similarity and *cluster*
- Create latent parents, through merging

Introducing the N-gram Graph N-Gram Graph Generic Operators Noise Applications

< 同 ▶

Record Linkage and Text Stemmatology (2)

Figure: A case of latent node addition

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Outline

- 1 The N-gram Graph Overview and Framework
 - Introducing the N-gram Graph
 - N-Gram Graph Generic Operators
 - N-Gram Graphs: Defining Noise
 - Applications
- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications
- 3 Closing
 - Summary and Sneak Peek
 - Appendix

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

▲ 同 ▶ → 三 ▶

Intuition — Language Analysis

• One thing that is common in all languages: context

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

< A > <

Intuition — Language Analysis

- One thing that is common in all languages: context
- All characters are important in a text

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

A ►

Intuition — Language Analysis

- One thing that is common in all languages: context
- All characters are important in a text
- Even delimiters play a role in meaning

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Intuition — Language Analysis

- One thing that is common in all languages: context
- All characters are important in a text
- Even delimiters play a role in meaning
- A word is a neighborhood of characters

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Outline

1 The N-gram Graph — Overview and Framework

- Introducing the N-gram Graph
- N-Gram Graph Generic Operators
- N-Gram Graphs: Defining Noise
- Applications
- 2 NLP Using N-gram Graphs
 - Introduction

Summary Evaluation

- Optimizing N-gram Graph Parameters
- Text Summarization
- Other NLP Applications

3 Closing

- Summary and Sneak Peek
- Appendix

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Image: A image: A

э

э

Given a set of model summaries, determine the quality of a given peer summary text.

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

The problem

Given a set of model summaries, determine the quality of a given peer summary text.

Solution

- Represent all texts as n-gram graphs.
- Version 1: Compare between models and peer text and extract the average similarity.
- Version 2: **OR** merge models and compare peer text to merged model.

Indicative of responsiveness.

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Overview of AutoSummENG

- Statistical i.e. Language-Neutral
- Word N-gram or Character N-Gram (Q-Gram) Based
- Graph Based on Neighborhood *i.e.* Includes Uncertainty / Fuzziness
- No Preprocessing

AutoSummENG method [Giannakopoulos et al., 2008]: State-of-the-art DUC 2005-2007, TAC 2008-2010

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

AutoSummENG – Evaluation Over DUC & TAC

Pearson Correlation to Responsiveness Per Year

2005-2008

Figure: Pearson Correlation: Measures to (Content) Responsiveness for peers only

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Outline

1 The N-gram Graph — Overview and Framework

- Introducing the N-gram Graph
- N-Gram Graph Generic Operators
- N-Gram Graphs: Defining Noise
- Applications
- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation

• Optimizing N-gram Graph Parameters

- Text Summarization
- Other NLP Applications

3 Closing

- Summary and Sneak Peek
- Appendix

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

A ►

Optimizing Parameters (1)

- Minimum n-gram length, indicated as L_{min}.
- Maximum n-gram length, indicated as L_{MAX}.
- Neighborhood Window Size, indicated as D_{win}.

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

< A > <

Optimizing Parameters (2)

Signal-to-Noise Optimization [Giannakopoulos et al., 2008]

- Symbols (Signal): contain letters neighboring more often than random characters
- Non-symbols (Noise): the rest

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Signal-to-Noise: Elaboration (1)

We count, given a corpus T_0 :

- times X appears in T_0 , represented by N_X .
- how many times the string Xy appears in T_0 , represented by N_{Xy} .
- the total number of n-grams of a given size *n* within T_0 , represented by $|T_{0,n}|$.

Introduction Summary Evaluation **Optimizing N-gram Graph Parameters** Text Summarization Other NLP Applications

▲□ ► < □ ► </p>

Signal-to-Noise: Elaboration (2)

• P(y|X) of a given suffix y, given the prefix X is

$$P(y|X) = P(X) * P(y,X)$$

where
$$P(y, X) = \frac{N_{Xy}}{|T_{0,n}|}$$
 and $P(X) = \frac{N_X}{|T_{0,|X|}|}$

Random sequence probability is

$$P(y_r|X) = P(y_r)$$

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Image: A = A

Signal-to-Noise: Elaboration (3)

Signal-to-Noise

$$\mathcal{SN}(L_{\min}, L_{\max}) = 10 imes \log_{10}(rac{\mathcal{S}(L_{\min}, L_{\max})}{\mathcal{N}(L_{\min}, L_{\max})})$$

 $\mathcal{N}(L_{\min}, L_{\max}) = \sum_{i=L_{\min}}^{L_{\max}} |\text{Non-Symbols}_i|$

Signal is more complex: Importance of symbols is related to their length. *Weighted symbols* are calculated and redistributed over ranks (Appendix — Slide 5).

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

- 4 同 6 4 日 6 4 日 6

э

Extracting Symbols

```
Input: text T_0^L
  Output: symbol set S
  // t denotes the current iteration
  //T[i] denotes the i-th character of T
  // \epsilon is the empty string
  // P(y_r) is the probability of a random suffix y_r
  // The plus sign (+) indicates concatenation where
      character series are concerned.
1 S = \emptyset:
2 s_t = T_0^L[1];
3 for all i in [2, length(T_0^L)] do
     y = T_0^{L}[i];
 4
   c_t = s_t + y;
5
     if P(y|s_t) > P(y_r) then
6
      S_t = C_t;
7
8
      end
      else
9
         S = S + s_t:
10
         s_t = v:
11
12
      end
13 end
  // Add last symbol
14 S = S + s_t:
```

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

(日) (同) (三) (三)

э

Extracting Symbols — Example

Text: Trying to understand ...

1st Step $s_t = T'$ y = T' $P(y_r) = \frac{1}{64}, P(y|s_t) = \frac{1}{60}$

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

(日) (同) (三) (三)

э

Extracting Symbols — Example

Text: Trying to understand ...

2nd Step $s_t =' Tr'$ y =' y' $P(y_r) = \frac{1}{64}, P(y|s_t) = \frac{1}{40}$

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

(日) (同) (三) (三)

э

Extracting Symbols — Example

Text: Trying to understand ...

3rd Step $s_t =' Try'$ y =' ' $P(y_r) = \frac{1}{64}, P(y|s_t) = \frac{1}{80}$

Introduction Summary Evaluation **Optimizing N-gram Graph Parameters** Text Summarization Other NLP Applications

(日)

Extracting Symbols — Example

Text: Trying to understand ...

New Symbol

$$s_t = t'$$

 $v = t'$

and so on...

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

17 ▶

Optimizing Parameters (4)

Figure: Correlation between Estimation (SN) and Performance

Introduction Summary Evaluation Optimizing N-gram Graph Parameters **Text Summarization** Other NLP Applications

Outline

1 The N-gram Graph — Overview and Framework

- Introducing the N-gram Graph
- N-Gram Graph Generic Operators
- N-Gram Graphs: Defining Noise
- Applications
- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters

Text Summarization

• Other NLP Applications

3 Closing

- Summary and Sneak Peek
- Appendix

Introduction Summary Evaluation Optimizing N-gram Graph Parameters **Text Summarization** Other NLP Applications

< /□ > <

Summarizing Multiple Documents

- Given a set of texts referring to a subject
- Output summary

Introduction Summary Evaluation Optimizing N-gram Graph Parameters **Text Summarization** Other NLP Applications

A D

Summarizing Multiple Documents

- Given a set of texts referring to a subject
- Output summary
- Capture salient information
- Avoid redundancy
Introduction Summary Evaluation Optimizing N-gram Graph Parameters **Text Summarization** Other NLP Applications

The MUDOS-NGSystem

э

George Giannakopoulos N-Gram Graphs

Introduction Summary Evaluation Optimizing N-gram Graph Parameters **Text Summarization** Other NLP Applications

A D

Per Subtask Strategy

- Common Content: Intersection
- Expanded Query: Query expanded with synonyms
- Chunk Grading: Similarity
- Redundancy Checking: Similarity of Chunk vs.
 - other chunks
 - iteration summary text

Introduction Summary Evaluation Optimizing N-gram Graph Parameters **Text Summarization** Other NLP Applications

- ▲ - □

Novelty Detection Algorithm

- Extract the n-gram graph representation of the summary so far, indicated as G_{sum}.
- Keep the part of the summary representation that does not contain the common content of the corresponding document set \mathbb{U} , $G'_{sum} = G_{sum} \bigtriangleup C_{\mathbb{U}}$.
- $\textcircled{\sc 0}$ For every candidate sentence in $\mathbb L$ that has not been already used
 - extract its n-gram graph representation, G_{cs} .
 - e keep only $G'_{cs} = G_{cs} △ C_{U_1}$ because we expect to judge redundancy for the part of the n-gram graph that is not contained in the common content C_{U_1} .
 - ${\rm \bigcirc}\,$ assign the similarity between $G_{cs}',\,G_{\rm sum}'$ as the sentence redundancy score.
- ${\small { \bullet } \hspace{-.5em} \bullet \hspace{-.5em} \bullet$
 - ${\rm 0}~$ Set the score of the sentence to be its rank based on the similarity to $C_{\rm U}$ minus the rank based on the redundancy score.
- Select the sentence with the highest score as the best option and add it to the summary.
- Repeat the process until the word limit has been reached or no other sentences remain.

Introduction Summary Evaluation Optimizing N-gram Graph Parameters **Text Summarization** Other NLP Applications

(日)

MUDOS-NG Performance (1)

System (DUC 2006 SysID)	AutoSummENG Score		
Baseline (1)	0.1437		
Top Peer (23)	0.2050		
Last Peer (11)	0.1260		
Peer Average (All Peers)	0.1842 (Std. Dev. 0.0170)		
Proposed System (-)	0.1783		

Table: AutoSummENG performance data for DUC 2006. NOTE: The top and last peers are based on the AutoSummENG measure performance of the systems.

Introduction Summary Evaluation Optimizing N-gram Graph Parameters **Text Summarization** Other NLP Applications

A (1) > A (2) > A

MUDOS-NG Performance (2)

System (TAC 2008 SysID)	AutoSummENG Score		
Top Peer (43)	0.1991		
Last Peer (18)	0.1029		
Peer Average (All Peers)	0.1648 (Std. Dev. 0.0216)		
Proposed System (-)	0.1303		

Table: AutoSummENG performance data for TAC 2008. NOTE: The top and last peers are based on the AutoSummENG measure performance of the systems.

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Outline

1 The N-gram Graph — Overview and Framework

- Introducing the N-gram Graph
- N-Gram Graph Generic Operators
- N-Gram Graphs: Defining Noise
- Applications
- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications
- 3 Closing
 - Summary and Sneak Peek
 - Appendix

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Sentiment Analysis [Rentoumi et al., 2009]

- Classification task
- Positive vs. Negative thesaurus sense descriptions
- Polarity assignment based on similarity of word sense to classes

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

Semantic Annotation [Giannakopoulos, 2009]

- Symbolic Graph
 - Indicates substring relations as a tree
 - Mapping strings to sense descriptions or synonyms (from thesaurus)
- A string is assigned the union of meanings of its substrings

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

< □→ <

Semantic Similarity (1)

$$\mathsf{rel}_{\mathsf{Meaning}}(t_1, t_2) = \frac{\sum_{G_{1i}, G_{2j}} \mathsf{sim}(G_{1i}, G_{2j})}{|D_1| \times |D_2|}$$

Similarity: the average similarity between all pairs of senses.

Introduction Summary Evaluation Optimizing N-gram Graph Parameters Text Summarization Other NLP Applications

æ

Semantic Similarity (2)

t_1	<i>t</i> ₂	$rel_{Meaning}$
run	jump	0.0017
smart	stupid	0.0020
run	walk	0.0020
smart	pretty	0.0036
smart	clever	0.0000
hollow	empty	0.1576
run	operate	0.2162
hollow	holler	0.3105

Summary and Sneak Peek Appendix

Outline

1 The N-gram Graph — Overview and Framework

- Introducing the N-gram Graph
- N-Gram Graph Generic Operators
- N-Gram Graphs: Defining Noise
- Applications
- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3 Closing

- Summary and Sneak Peek
- Appendix

Summary and Sneak Peek Appendix

Almost there...

- N-gram Graphs and Operators
- Richer information
- Domain agnostic
- Generic applicability

Summary and Sneak Peek Appendix

Almost there...

- N-gram Graphs and Operators
- Richer information
- Domain agnostic
- Generic applicability
- State-of-the-art performance in summary evaluation
- Promising for language-independent summarization
- Usable in classification, clustering. record linkage
- ...and others

Summary and Sneak Peek Appendix

▲ 同 ▶ → 三 ▶

Sneak Peek in Second Part

• Representing behavior with N-gram Graphs

Summary and Sneak Peek Appendix

Sneak Peek in Second Part

- Representing behavior with N-gram Graphs
- Combining N-gram Graphs with the Vector Space

Summary and Sneak Peek Appendix

Sneak Peek in Second Part

- Representing behavior with N-gram Graphs
- Combining N-gram Graphs with the Vector Space
- User modeling with N-gram Graphs

Summary and Sneak Peek Appendix

Sneak Peek in Second Part

- Representing behavior with N-gram Graphs
- Combining N-gram Graphs with the Vector Space
- User modeling with N-gram Graphs
- The JINSECT toolkit: An open source LGPL toolkit for N-gram Graphs

Summary and Sneak Peek Appendix

Looking forward to seeing you in the second part

Thank you

George Giannakopoulos N-Gram Graphs

Summary and Sneak Peek Appendix

Outline

1 The N-gram Graph — Overview and Framework

- Introducing the N-gram Graph
- N-Gram Graph Generic Operators
- N-Gram Graphs: Defining Noise
- Applications
- 2 NLP Using N-gram Graphs
 - Introduction
 - Summary Evaluation
 - Optimizing N-gram Graph Parameters
 - Text Summarization
 - Other NLP Applications

3 Closing

- Summary and Sneak Peek
- Appendix

Appendix

AutoSummENG – Evaluation TAC 2008

AE to	Spearman	Kendall	Pearson
Resp.	0.8953 (< 0.01)	0.7208 (< 0.01)	0.8945 (< 0.01)
Ling.	0.5390 (< 0.01)	0.3819 (< 0.01)	0.5307 (< 0.01)

Table: Correlation of the system AutoSummENG score to human judgment for peers only (p-value in parentheses)

AE to	Spearman	Kendall	Pearson
Resp.	0.3788 (< 0.01)	0.2896 (< 0.01)	0.3762 (< 0.01)
Ling.	0.1982 (< 0.01)	0.1492 (< 0.01)	0.1933 (< 0.01)

Table: Correlation: Summary AutoSummENG to human judgment for peers only

- 4 同 6 4 日 6 4 日 6

Summary and Sneak Peek Appendix

・ 同・ ・ ヨ・

MUDOS-NG Variations' Performance

System ID	CS	SS	RR	ND	QE	NE	Score
1		\checkmark		\checkmark		\checkmark	0.1202
2		\checkmark	\checkmark			\checkmark	0.1303
3	\checkmark		\checkmark		\checkmark		0.1218
4		\checkmark		\checkmark	\checkmark		0.1198
5		\checkmark	\checkmark		\checkmark		0.1299
6	\checkmark					\checkmark	0.1255

Table: AutoSummENG summarization performance for different settings concerning scoring, redundancy and query expansion. Legend CS: Chunk Scoring, SS: Sentence Scoring, RR: Redundancy Removal, ND: Novelty Detection, QE: Query Expansion, NE: No Expansion. Best performance in **bold**.

Summary and Sneak Peek Appendix

- ● ● ●

Symbols and Non-symbols

'permanent', 'permit', 'permits', 'persist', 'person',
'personal', 'personal computers', 'personnel,'
'persons', 'persuade', 'pesticide', 'pesticides.',
'permi', 'permitt', 'pers', 'pers and', 'person kn', 'person or',
'perti', 'perty', 'pes', 'pes o'

Figure: Sample extracted symbols

'permit </HEADLINE>', 'permit program', 'permit approved'

Figure: Sample non-symbols

Summary and Sneak Peek Appendix

1.

Image: A mathematical states of the state

Signal Calculation

The number of weighted symbols for each n-gram rank r is calculated in two steps, within the given range [L_{min} , L_{MAX}]:

Calculate the weight w_r of symbols for the specified rank r and sum over all weighted symbols to find the total, weighted symbol sum W_r for rank r. The weight w₂ is defined to be the inverse of the probability of producing a symbol of rank r given a symbol of rank r - 1, as longer symbols are less probable to appear as a result of a random sampling of characters. This means that we consider more important sequences that are less likely to have been randomly produced. Thus:

$$\begin{split} P(s_r|s_{r-1}) &= \begin{cases} \frac{|Symbols_r| + |Non-Symbols_r|}{|Symbols_{r-1}| + |Non-Symbols_{r-1}|} & \text{if } r = \\ \frac{1}{|Symbols_{r-1}| + |Non-Symbols_{r-1}|} \times \frac{1}{|Symbols_r| + |Non-Symbols_{r}|} & \text{else.} \end{cases} \\ \text{So } w_r &= 1/P(s_r|s_{r-1}) & (2) \end{cases} \end{split}$$

where |Symbols,| is the number of symbols in rank *r*. ● Normalize W_r so that the sum of W_r over *r* = [L_{min}, L_{MAX}] is equal to the original number of symbols in the texts. The normalized, weighted symbols W⁰₀ for rank *r* are calculated by:

$$W_r^0 = W_r \times \frac{|\text{Symbols}_r|}{\sum_{i=L_{\min}}^{L_{\text{MAX}}} |\text{Symbols}_i|}$$
(3)

We indicate once more that the W_r^0 measure actually represents the *importance of symbols* per rank r for the symbols of the texts, instead of the *number of symbols* per rank that is indicated by $|Symbols_r|$.

Summary and Sneak Peek Appendix

- Giannakopoulos, G. (2009). Automatic Summarization from Multiple Documents. PhD thesis, Department of Information and Communication Systems Engineering, University of the Aegean, Samos, Greece, http://www.iit.demokritos.gr/~ggianna/thesis.pdf.
- Giannakopoulos, G., Karkaletsis, V., Vouros, G., and Stamatopoulos, P. (2008).
 Summarization system evaluation revisited: N-gram graphs.

ACM Trans. Speech Lang. Process., 5(3):1–39.

Rentoumi, V., Giannakopoulos, G., Karkaletsis, V., and Vouros, G. (2009).

Sentiment analysis of figurative language using a word sense disambiguation approach.

Image: A = A

Borovets, Bulgaria.