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George Giannakopoulos N-Gram Graphs

N-gram Graphs and Operators

Richer information

Domain agnostic

Generic applicability

State-of-the-art performance in summary evaluation
Promising for language-independent summarization

Usable in classification, clustering, record linkage
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This episode

Representing behavior (using Optical Flow Proximity Graphs)
Combining N-gram Graphs with the Vector Space
User Modeling with N-gram Graphs

The JINSECT toolkit: An open source LGPL toolkit for
N-gram Graphs
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© Evolution of N-gram Graphs to Video Analysis
@ The Optical Flow Proximity Graph
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Video Analysis Optical Flow Proximity Graph

Complexity

Behavior Recognition

@ Assistive Environment

@ Super Market — Mall

@ Parking Lot

@ Vending Machines — ATMs
e Traffic

@ Sports
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Video Analysis The Optical Flow Proximity Graph

Whole Frame
Operators Revisited: Complexity
Hierarchy in Graphs

Optical Flow

Image from http://api.ning.com/files/

DPSX6QXHN*m77We50zsv1C1V7uwbqyicb90jUaDEda2vMbj*cnWX0m9T8YtCG61DU12ijCFR1n80fnvFHa0jWokUSEXwtKXE/
sam200. jpg
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The Method?

@ No a priori information required

@ No preprocessing steps required
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Video Analysis

The Optical Flow Proximity Graph
Whole Frame

Operators Revisited: Complexity
Hierarchy in Graphs

Behavior Recognition and Video Indexing

The Method?

@ No a priori information required
@ No preprocessing steps required

@ Only optical flow for feature vector calculation
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The Optical Flow Proximity Graph
Whole Frame

Operators Revisited: Complexity
Hierarchy in Graphs

Representing Behavior — Variations

Proposed Methods

© Whole frame representation using graphs (Optical Flow
Proximity Graphs - OFPGs)
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Video Analysis

The Optical Flow Proximity Graph
Whole Frame

Operators Revisited: Complexity
Hierarchy in Graphs

Representing Behavior — Variations

Proposed Methods

© Whole frame representation using graphs (Optical Flow
Proximity Graphs - OFPGs)

@ Segmentation and representation using hierarchy of graphs
(Symbolic)
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Whole Frame Representation (1)

Training Step
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Whole Frame
Operators Revisited
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Whole Frame Representation (2)

Testing Step

Y
Video Stream Frame Feature Vector (
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( ) e
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Optical Flow per frame
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Video Analysis e ca roximity Graph

Operators Revisited: Complexity
Hierarchy in Graphs

Graph Representation from Vectors

Extraction of feature vector.

-1, -1 o1 pf a1, e

Fii, i)
(i, i-11 a0l | OFG
Jorl= [+
G+1,j-13 G+ (i+1,j+13

|$ f=(norm, angle )
pixels and their

optical flows (OFs) features feature vector

f= (OFnorma OFang/e) (1)
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Video Analysis The Optical Flow Proximity Graph
Whole Frame
Operators ed: Complexity
Hierarchy in Graphs

Features

abs = getBinForV alue("abs”, \/ £Vector? + yVector?)

angle = getBinForValue(" angle”, (tan(zVector, yVector) +7) £ 180/7)

where getBinForValue is a function that returns the name of the
bin (quantization)
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Operators Revisited: Complexity
Hierarchy in Graphs

Parametrically Determined Window
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What is Used?

Using N-gram Graph Operators

@ Update operator
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Video Analysis e ca roximity Graph

Operators Revisited: Complexity
Hierarchy in Graphs

What is Used?

Using N-gram Graph Operators
@ Update operator
@ Comparison operator
@ Intersection operator

@ All-not-in or delta operator
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Noise in Data

Reasons for removal

@ Background noise due to camera
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@ Classification lies in the differences between classes
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Video Analysis The Optical F mity Graph
Whole Frame
Operators Revisited: Complexity
Hierarchy in Graphs

Noise in Data

Reasons for removal

@ Background noise due to camera

@ Classification lies in the differences between classes

gNoise = intersection;j{G., }, 1< j< N
for each G(.J do

| NoiselessClassGraph = NoiselessClassGraph.allNotIn(gNoise);
end
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Outline
© Evolution of N-gram Graphs to Video Analysis

@ Operators Revisited: Complexity
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Video Analysis
Whole Frame
Operators Revisited: Complexity
Hierarchy in Graphs

What is the Complexity of Trivially Implemented Graph
Operators?

e Extraction from Source (of size N, m dimensions):
O(Dwinm X N)
o Similarities |G| = min(|G1l,|Ga|), |GM| = max(|G1|,|Gz|)

o Size Similarity: O(1)
o Containment and Value Similarity: O(|G,,||G])

o Update, Merge: O(|Gpl|GM| + |Gm]c)
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Video Analysis The Optical Flow Proximity Graph
Whole Frame
Operators Revi Complexity
Hierarchy in Graphs

Improved Complexity of Graph Operators?

Using hash for nodes (or edges)

Quick search - slower insert

Extraction from Text (of length N): Dyin x N

Similarities |G| = min(|Gy|, |Gz|), |GM| = max(|G1|,|Gz|)
e Size Similarity: O(1)
o Containment and Value Similarity: O(|G,|log |GM|)
o Update, Merge: O(|Gn|log |G|+ |Gpmlc)
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The Optical Flow Proximity Graph
Whole Frame
Operators Revisited: Complexity

Video Analysis

Hierarchy in Graphs

N-gram Graph — Value Similarity

1.0 4.0 1 1
. 1.0 8.0 — .
Result: L+ =7+5= 0.375

George Giannakopoulos N-Gram Graphs



Video Analysis The Optical F mity Graph
Whole Frame
Operators Revisited: Complexity
Hierarchy in Graphs

Space Complexity and Related Considerations

@ Vertices can be burdensome
@ Edges can be burdensome
@ Operators copying graphs

@ Indexing increases memory requirement
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Video Analysis The Optical F mity Graph
Whole Frame
Operators Revisited: Complexity
Hierarchy in Graphs

Space Complexity and Related Considerations

Vertices can be burdensome

Edges can be burdensome

°
°

@ Operators copying graphs

@ Indexing increases memory requirement
°

Serialization
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Outline
© Evolution of N-gram Graphs to Video Analysis

@ Hierarchy in Graphs
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Video Analysis The Optical F mity Graph
Whole Frame
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Segmented Frame Representation — Hierarchy (1)

Training Step

FIRST LEVEL
(M _
Video Stream Frame Segmented Feature Vector \ ]
Frame \ |
T -
I OF _norm OF_angle / —~ - q) L
i) \ ) -
( - —
_
B Graph Index of Graphs
ey

Optical Flow per
segmentation

Optical Flow per frame
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Video Analysis The Optical F ximity Graph
Wi Frame
Operators Revisited: Complex
Hierarchy in Graphs

Searching and Updating the Index

Data: CurrentGraph, IndexOfGraphs
Result: informed IndexOfGraphs
dgName = null;
for each Graph in set of graphs of IndexOfGraphs do
compute similarity between CurrentGraph and Graph;
if similarity = marforMerging then
| dgName = name of the Graph;
else if similarity > minForMerging then
dgName = name of the Graph;

Graph = result of merging CurrentGraph and Graph;
else
| CurrentGraph = result of removal of Graph from CurrentGraph
end
end
if dgName = null then
assign a new name to the CurrentGraph and add CurrentGraph

and name m the index;
end

George Giannakopoulos ram Graphs



Video Analysis ca 0 imity Graph

Operators Revisited: Complexity
Hierarchy in Graphs

Segmented Frame Representation — Hierarchy (2)

Training Step

SECOND LEVEL

Segmented
Frame

Graph L )

Index of Graphs Second Level Graph

'd - -

Graph
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Video Analysis e Optica roximity Graph

Operators Revisited: Complexity
Hierarchy in Graphs

Segmented Frame Representation — Representing a Class

Training Step

SECOND LEVEL

Second Level Graph
Video Stream

)

Second Level Graph
() .
\ .
\
Q &)

Second Level Graph

Graph of Class
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The Optical F
Whole Frame
Operators Revisited: Complexity
Hierarchy in Graphs

Video Analysis roximity Graph

Segmented Frame Representation — Testing

Testing Step

Video Stream Frame

Optical Flow per frame

Index of Graphs

George Giannakopoulos

Frame

Optical Flow per

FIRST LEVEL

Segmented Feature Vector
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Symbol Graph Example
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Video Analysis

Size of Index vs. Frames

IndexSize
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Video Analysis The Optical Fl Proximity Graph
Whole Frame
Operators Revisited: Complexity
Hierarchy in Graphs

Experiments and Inter-class Similarity

Table 1. Before noise reduction inter-class similarity

Whole Frame Motion Representation | Symbolic Appraach

Category 1 Category 2 Similarity ilarity
run walk 04972
run abrupt 0,2001
walk run 04972
walk abrupt 03333

abrupt run 0,2001
abrupt walk 03333

Table 2: After noise reduction inter-class similarity

Whole Frame Motion Representation . Approach
Category 1 Category 2 Similarity larity
n walk 0.4148
run abrupt 01,0522
walk run 0.4148
walk abrupt 0,2073
abrupt run 0,0522
abrupt walk 01,2073

George Giannakopoulos am Graphs



Video Analysis The Optical F imity Graph
Whole Frame
Operators Revisited: Comp
Hierarchy in Graphs

Noise Removal Effect

Table 1: Before noise reduction inter-class similarity
Whole Frame Motion Representation | Symbaolic Approach
.

Category | Category 2

run walk 0,6644 04972
un abrupt 0,6933 0,2001
wall run E
walk abrupt 0,3333
abrupt run 0,2001
abrupt walk 0,3333

oise reduction inter-closs similarity

Matiog Representation | Symbolic Approach
nilari Similarity

After

Whole Frame

Category 1 Category 2

walk 04148

abrupt 0,0522

walk run 04148

walk abrupt 0,207:
abrupt Tun 0,0

abrupt walk 0,2073
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Video Analysis
Whole Frame

Operators Revisited: Complexity
Hierarchy in Graphs

Experiments (Semveillance dataset)

Behavior

Precision | Recall | F-measure
run 0.9656 | 0.7178 0.8231
walk 0.6741 | 0.9287 0.7746
abrupt 0.9522 | 0.9298 0.9408

George Giannakopoulos N-Gram Graphs




Video Analysis The Optical Flo oximity Graph
Whole Frame
Operators Revisited: Complexity
Hierarchy in Graphs

Experiments (PETS04 dataset [Fisher, 2004])

Whole Frame Representation With Frame Segmentation |
Behavior| Precision| Recall F-measure | Precision| Recall F-measure |
browser | 0.2093 01.3439 0.3273 0.8065 0.7366 0.7377
walker 0.9423 0.9491 0.9456 0.9918 0.8480 0.9129
fighters | 0.1263 0.9461 0.2223 0.5608 08766 0.6437
meeters | 0,2934 0.9810 0.4294 0.6685 0.8537 0.7448

Table 6: Experimental results for video indexing,

Whole Frame Representation | With Frame Segmentation |
Behavior | Specificity Specificity |
brawser 0.3521 0.8444
walker 0.1829 0.8613
fighters 0.5257 0.8157
meeters 0.2603 0.8077

George Giannakopoulos
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@ Overview of Senses
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e Solution
nd Experiments

Entity Name System
(ENS) [Bouquet et al., 2008, Palpanas et al., 2008]

- % Gl

T 1 An ENS:

ENS node v v .
Access Services @ Maps real world entities to
‘ s E s | Unique identifiers.
—  — Lifecycle @ Provides for the reuse of
Storage | engiry o Menegement identifiers
Component repository ’
@ Supports disambiguation to
real world entities in the
Web.
RDF
document LU *
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Overview of Senses
Adaptive Systems Representation

Overview of Solution

Data and Experiments

Entity in the ENS is a set of:
@ Free-form attribute names

@ Free-form attribute values

Entity Example

title : Dr

firstName : Themis

family_name : Palpanas

homepage : http://dit.unitn.it/ themis
affiliation : University of Trento

George Giannakopoulos N-Gram Graphs
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xperiments

Entity Subscription Services

An Adaptive Entity Subscription System (AESS) provides for:
@ management of subscription to specific entities.
@ the update of subscribers over changes to entities.

@ informing subscribers over changes they are mostly interested
in.

@ takes into account explicitly or implicitly declared user
interests.

George Giannakopoulos N-Gram Graphs
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Adaptive Systems C

and Experiments

Change Examples - Type and Content

Type: Deletion (of entity)
Content:(N/A)

or

Type: Entity Update, Attribute Update
Content: title—Prof

or

Type: Entity Update, Attribute Insertion
Content: affiliation—University of Trento

George Giannakopoulos N-Gram Graphs



Overview of Senses
Adaptive Systems Repr tation
O of Solution
nd Experiments

Our AESS

@ expects user feedback for interest indication.
@ expresses interest as a real value.

o defines predefined values for interest levels.

We need to

@ create an architecture for the system.

George Giannakopoulos N-Gram Graphs



Overview of Senses
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O of Solution
nd Experiments

Our AESS

@ expects user feedback for interest indication.
@ expresses interest as a real value.

o defines predefined values for interest levels.

We need to
@ create an architecture for the system.

o represent efficiently the type and content (i.e. free form
strings) info of a change.
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Adaptive Systems

Our AESS

@ expects user feedback for interest indication.
@ expresses interest as a real value.

o defines predefined values for interest levels.

We need to
@ create an architecture for the system.

o represent efficiently the type and content (i.e. free form
strings) info of a change.

@ create a user model, from user feedback, that can use this
representation.
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Adaptive Systems

Our AESS

@ expects user feedback for interest indication.
@ expresses interest as a real value.

o defines predefined values for interest levels.

We need to
@ create an architecture for the system.

o represent efficiently the type and content (i.e. free form
strings) info of a change.

@ create a user model, from user feedback, that can use this
representation.

@ take into account both simple and complex scenarios of
preference.

George Giannakopoulos N-Gram Graphs



Overview of Senses
Adaptive Systems Representation

Overview of Solution

Data and Experiments

Architecture

@ Change Queue

Change
Info

H H Consumers
Change H User
Queue : Feedback
Entity Change | | H
Trigger H H
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Overview of Senses

Adaptive Systems

Architecture

<

User Profile
DB

@ Change Queue
i @ User Profile DB

Consumers.

1\ change H User
i ) Queue H Feedback
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Architecture

>

User Profile
DB

@ Change Queue
i @ User Profile DB

: Adaptive : Consumers
<> ool | o Adaptive Information
N Change i User Control

Queue Feedback

Entity Chang

Trigger
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Overview of Senses
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Architecture

@ Change Queue
@ User Profile DB

o Adaptive Information
Control

User Profile
DB

Adaptive
Information

: Control
H Change
H Queue

Entity Change | !

Trigger B

Consumers

User
Feedback

@ Subscription Information
Broker

Subscription
Information
Broker
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@ Representation
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Adaptive Systems
io
and Experiments

Representing Changes — Type

The type of a change:
o deletion, splitting, merging or update
@ updates can involve: attribute deletion, attribute insertion or
attribute update
@ given graded indication of normality of the change, e.g. 0
(abnormal) to 1 (normal)

Feature Space
A dimension indicative of each type/subtype of change.

But what about Content?

George Giannakopoulos N-Gram Graphs



Adaptive Systems

Representing Changes — Content

The content of a change:
@ Instances of attribute names

@ Instances of attribute values

Problems and requirements

@ Free form strings

Other types (numeric, date, etc.)
Fuzzy string matching

o
o
@ Updatable model — if possible
o

Graded similarity from comparison of instance to model

We use Character N-gram Graphs

George Giannakopoulos N-Gram Graphs



Adaptive Systems

of Solution
<periments

Content as a graph

A character n-gram graph is a string model based on the
coexistence of character n-grams in a string.

first_name:Basil

Graph Size: 39 bidirectional edges

George Giannakopoulos N-Gram Graphs



Adaptive Systems

Content as a graph: Updating

first_name:Basil
first_name:George

Graph Size: 42 bidirectional edges

i.e., not bad scaling for normal user requirements.

George Giannakopoulos N-Gram Graphs
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Adaptive Systems Representation
of Solution

Data and Experiments

Text Size to Graph Size — Actual vs Random
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Adaptive Systems

Mapping Content to the Feature Space

Given

a set of labeled changes and a new change.
We want

dimensions indicative of content similarity.

N-gram Graph Normalized Value Similarity (NVS)

@ Create a graph representing labeled instances for each level.

@ We have one similarity-based feature for each interest level.

George Giannakopoulos N-Gram Graphs



Adaptive Systems
Overview of Solution
Data and Experiments

Outline

© Modeling User Preferences

@ Overview of Solution
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Data and Experiments

From Change to Feature Space: Workflow Overview

To map a change instance to the feature space:
@ Apply values to Type dimensions.
o Calculate Content graph similarities for every interest level.

@ Add dimensions for Content graph similarity.

George Giannakopoulos N-Gram Graphs
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Adaptive Systems e tation
of Solution
Data and Experiments

Update Model with New Data

To update the user model with a new instance:
@ Merge Content-based graph into corresponding interest level
graph.
@ Initialize new vector.

e Calculate an e-SVR [Chang and Lin, 2001, Vapnik, 1998]
regression model to estimate interest.

How does this model perform?

George Giannakopoulos N-Gram Graphs



v of Sense:
Adaptive Systems

Outline
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@ Data and Experiments
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Adaptive Systems
io
Data and Experiments

Experimental Setting

@ Synthetic data for data changes

@ 10-fold validation

@ 1000 changes per fold

@ Each iteration is mapped to a set of 10 changes
We judge

o if learning occurs and its rate.

e if the use of content (graphs) is useful.

George Giannakopoulos N-Gram Graphs
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Determining Learning Ability

Table: Correlation between Emission-lteration Number and Regression
Mean Absolute Error per Subscriber Profile and Method

Subscriber Graphs | Correlation (p-value)

Type-based v -0.3398559 (< 10~?)

-0.2993715 (< 1072)

v -0.3734062 (< 107?)

-0.03564642 (0.2601)

Attribute name-value pair-based v -0.08581718 (< 1072
v

Attribute name-based

-0.02068072 (0.3484)
-0.5989662 (< 10~ ?)
-0.03393356 (0.2837)

Complex

George Giannakopoulos N-Gram Graphs
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Determining Speed and Stability of Learning (1)

Rate of Acceptable Errors (RAE): Percentage of errors in
estimation that cannot cause ranking error.

Black line: Content aware method. Gray line: Simple method.
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Determining Speed and Stability of Learning (2)

Rate of Acceptable Errors (RAE): Percentage of errors in
estimation that cannot cause ranking error.

Black line: Content aware method. Gray line: Simple method.
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Importance of Representation

Rate of Acceptable Errors (RAE): Percentage of errors in
estimation that cannot cause ranking error.
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JINSECT: A Toolkit for All Why use it?

Outline

© JINSECT: A Toolkit for All
@ Overview
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Overview
JINSECT: A Toolkit for All Why use it?

Application suite

AutoSummENG (plus new version)
MUDOS-NG

Document Classifier

Spam filter

Grammaticality Estimator
Entropy-based Chunk Splitter
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Overview
JINSECT: A Toolkit for All Why use it?

Library

Character and Word N-gram Graphs

N-Gram Distribution Graphs

Operators

Serializability

Distributed Processing Examples (JADE)
Multi-threading

Utilities (file to string, Distribution class, etc.)
Interoperability (R, thesauri, etc.)
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Outline

© JINSECT: A Toolkit for All

© Why use it?
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JINSECT: A Toolkit for All Why use it?

Source

e LGPL
o Extendable

@ Reusable

@ Lots of examples
o

Non-trivial implementations
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JINSECT: A Toolkit for All

Easy to Apply

@ Find what the vertices should be
@ Define the neighborhood relation

@ Use them
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Q@ Closing
@ Summary and the Future
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Almost there...

Optical Flow Proximity Graphs

Proximity Graphs in a Hierarchy
Combining Graphs with Vector Space
JINSECT Toolkit and Library
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Into the future...

Indexing graphs
Hierarchy and granularity criteria
Expressiveness of proximity graph

Recognition of n-gram graphs
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Closing

Into the future...

Indexing graphs

Hierarchy and granularity criteria
Expressiveness of proximity graph
Recognition of n-gram graphs

...and whatever you plan to make out of them.
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N-gram Graphs: A New Perspective

Thank you
George Giannakopoulos (ggianna@disi.unitn.it)

Please provide your thoughts on the feedback form?!.

1See http://tinyurl.com/2fna572
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Change Data Generation: User Simulation

User type (Prob.) \ Change type \ Probability
Benevolent (0.95) | Attribute change (normal) 0.60
Attribute insertion 0.30

Attribute deletion 0.10

Sys.admin.(0.03) Entity merge 0.45
Entity split 0.45

Entity deletion 0.10

Malevolent (0.02) | Attribute change (abnormal) 0.70
Attribute deletion 0.30
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Subscription User Simulation

Subscriber Importance Description
Type-based Critical Attribute deletion.
Interesting Entity deletion.
Attribute Critical Any change concerning an attribute that
name-based contains the string “name”.
Interesting (None)

Attribute Critical Attribute change or insertion on “isDe-

name-value ceased” attribute, with a new value of

pair-based “true”.
Interesting Attribute change or insertion on ‘“isDe-
ceased” attribute, with a new value of

“false”.

Complex Critical Default attribute (some attributes in the
ENS are considered default — e.g., the
name of a person entity — while all the oth-
ers non-default) update or insertion with an
abnormal value.

Interesting Default attribute deletion or normal update.
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[§ Bouquet, P., Stoermer, H., and Bazzanella, B. (2008).
An entity name system (ENS) for the semantic web.
In ESWC, pages 258-272.

[§ Chang, C-C. and Lin, C.-J. (2001).
LIBSVM: a library for support vector machines.
Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[ Fisher, R. (2004).
The PETS04 surveillance ground-truth data sets.
In Proc. 6th IEEE International Workshop on Performance
Evaluation of Tracking and Surveillance, pages 1-5.

E Palpanas, T., Chaudhry, J. A., Andritsos, P., and Velegrakis,
Y. (2008).
Entity data management in OKKAM.
In DEXA Workshops, pages 729-733.
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