# N-gram Graphs: A generic machine learning tool in the arsenal of NLP, Video Analysis and Adaptive Systems. (Part II)

George Giannakopoulos<sup>1</sup>

<sup>1</sup>University of Trento, Italy ggianna@disi.unitn.it

April 26, 2010



# In the previous episode...

- N-gram Graphs and Operators
- Richer information
- Domain agnostic
- Generic applicability
- State-of-the-art performance in summary evaluation
- Promising for language-independent summarization
- Usable in classification, clustering, record linkage

Representing behavior (using Optical Flow Proximity Graphs)

- Representing behavior (using Optical Flow Proximity Graphs)
- Combining N-gram Graphs with the Vector Space

- Representing behavior (using Optical Flow Proximity Graphs)
- Combining N-gram Graphs with the Vector Space
- User Modeling with N-gram Graphs

- Representing behavior (using Optical Flow Proximity Graphs)
- Combining N-gram Graphs with the Vector Space
- User Modeling with N-gram Graphs
- The JINSECT toolkit: An open source LGPL toolkit for N-gram Graphs

#### Outline

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- Closing
  - Summary and the Future
  - Appendix

#### Examples

Assistive Environment



- Assistive Environment
- Super Market Mall



- Assistive Environment
- Super Market Mall
- Parking Lot



- Assistive Environment
- Super Market Mall
- Parking Lot
- Vending Machines ATMs



- Assistive Environment
- Super Market Mall
- Parking Lot
- Vending Machines ATMs
- Traffic



- Assistive Environment
- Super Market Mall
- Parking Lot
- Vending Machines ATMs
- Traffic
- Sports



# **Optical Flow**



Image from http://api.ning.com/files/

 ${\tt DPSX6QXHN*m77We5ozsvlC1V7uw5qyicb90jUaDEda2vMbj*cnWX0m9T8YtCG61DU12ijCFR1n80fnvFHa0jWokU5EXwtKxE/looperstart and the content of the cont$ 

sam200.jpg



The Method<sup>a</sup>

<sup>a</sup>In collaboration with Panagiota Antonakaki, NCSR Demokritos.

#### The Method<sup>a</sup>

<sup>a</sup>In collaboration with Panagiota Antonakaki, NCSR Demokritos.

No a priori information required

#### The Method<sup>a</sup>

<sup>a</sup>In collaboration with Panagiota Antonakaki, NCSR Demokritos.

- No a priori information required
- No preprocessing steps required

#### The Method<sup>a</sup>

<sup>a</sup>In collaboration with Panagiota Antonakaki, NCSR Demokritos.

- No a priori information required
- No preprocessing steps required
- Only optical flow for feature vector calculation

# Representing Behavior — Variations

#### Proposed Methods

 Whole frame representation using graphs (Optical Flow Proximity Graphs - OFPGs)

# Representing Behavior — Variations

#### Proposed Methods

- Whole frame representation using graphs (Optical Flow Proximity Graphs - OFPGs)
- Segmentation and representation using hierarchy of graphs (Symbolic)

#### Outline

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- 4 Closing
  - Summary and the Future
  - Appendix

# Whole Frame Representation (1)

# Training Step Feature Vector OF, norm, OF, angle Graph

Optical Flow per frame

# Whole Frame Representation (2)



# Graph Representation from Vectors

Extraction of feature vector.



$$f = (OF_{norm}, OF_{angle}) \tag{1}$$

#### **Features**

$$abs = getBinForValue("abs", \sqrt{xVector^2 + yVector^2})$$
 
$$angle = getBinForValue("angle", (tan(xVector, yVector) + \pi) * 180/\pi)$$

where getBinForValue is a function that returns the name of the bin (quantization)

# Parametrically Determined Window



#### Using N-gram Graph Operators

Update operator

#### Using N-gram Graph Operators

- Update operator
- Comparison operator

#### Using N-gram Graph Operators

- Update operator
- Comparison operator
- Intersection operator

#### Using N-gram Graph Operators

- Update operator
- Comparison operator
- Intersection operator
- All-not-in or delta operator

#### Noise in Data

#### Reasons for removal

• Background noise due to camera

#### Noise in Data

#### Reasons for removal

- Background noise due to camera
- Classification lies in the differences between classes

#### Noise in Data

#### Reasons for removal

- Background noise due to camera
- Classification lies in the differences between classes

$$gNoise = intersection_j\{G_{c_j}\}, 1 \le j \le N$$

for each  $G_{c_j}$  do
| NoiselessClassGraph = NoiselessClassGraph.allNotIn(gNoise);
end

#### Outline

- 1 Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- Closing
  - Summary and the Future
  - Appendix

# What is the Complexity of Trivially Implemented Graph Operators?

• Extraction from Source (of size *N*, *m* dimensions):

$$O(D_{\mathsf{win}}^m \times N)$$

- Similarities  $|G_m| = min(|G_1|, |G_2|), |G^M| = max(|G_1|, |G_2|)$ 
  - Size Similarity: O(1)
  - Containment and Value Similarity:  $O(|G_m||G^M|)$
- Update, Merge:  $O(|G_m||G^M| + |G_m|c)$

# Improved Complexity of Graph Operators?

- Using hash for nodes (or edges)
- Quick search slower insert
- Extraction from Text (of length N):  $D_{win} \times N$
- Similarities  $|G_m| = min(|G_1|, |G_2|), |G^M| = max(|G_1|, |G_2|)$ 
  - Size Similarity: O(1)
  - Containment and Value Similarity:  $O(|G_m| \log |G^M|)$
  - Update, Merge:  $O(|G_m|\log|G^M|+|G_m|c)$

# N-gram Graph – Value Similarity



Result: 
$$\frac{\frac{1.0}{1.0}}{4} + \frac{\frac{4.0}{8.0}}{4} = \frac{1}{4} + \frac{1}{8} = 0.375$$

# Space Complexity and Related Considerations

- Vertices can be burdensome
- Edges can be burdensome
- Operators copying graphs
- Indexing increases memory requirement

# Space Complexity and Related Considerations

- Vertices can be burdensome
- Edges can be burdensome
- Operators copying graphs
- Indexing increases memory requirement
- Serialization

## Outline

- 1 Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- 4 Closing
  - Summary and the Future
  - Appendix

# Segmented Frame Representation — Hierarchy (1)

## Training Step

#### FIRST LEVEL



# Searching and Updating the Index

```
Data: CurrentGraph, IndexOfGraphs
Result: informed IndexOfGraphs
dgName = null:
for each Graph in set of graphs of IndexOfGraphs do
    compute similarity between CurrentGraph and Graph;
   if similarity ≥ maxForMerging then
| dgName = name of the Graph;
else if similarity ≥ minForMerging then
| dgName = name of the Graph;
| Graph = result of merging CurrentGraph and Graph;
    else
        CurrentGraph = result of removal of Graph from CurrentGraph
    end
end
if dqName = null then
    assign a new name to the CurrentGraph and add CurrentGraph
    and name in the index:
end
```

# Segmented Frame Representation — Hierarchy (2)



# Segmented Frame Representation — Representing a Class



# Segmented Frame Representation — Testing

# Testing Step



# Frame as Symbols Example

# Symbol Graph Example



## Size of Index vs. Frames



# Experiments and Inter-class Similarity

Table 1: Before noise reduction inter-class similarity

|            |            | Whole Frame Motion Representation | Symbolic Approach |
|------------|------------|-----------------------------------|-------------------|
| Category 1 | Category 2 | Similarity                        | Similarity        |
| run        | walk       | 0,6644                            | 0,4972            |
| · run      | abrupt     | 0,6933                            | 0,2001            |
| walk       | run        | 0,6644                            | 0,4972            |
| walk       | abrupt     | 0,6738                            | 0,3333            |
| abrupt     | run        | 0,6933                            | 0,2001            |
| abrupt     | walk       | 0,6738                            | 0,3333            |

Table 2: After noise reduction inter-class similarity

|            |            | Whole Frame Motion Representation | Symbolic Approach |
|------------|------------|-----------------------------------|-------------------|
| Category 1 | Category 2 | Similarity                        | Similarity        |
| run        | walk       | 0,4039                            | 0,4148            |
| run        | abrupt     | 0,4510                            | 0,0522            |
| walk       | run        | 0,2891                            | 0,4148            |
| walk       | abrupt     | 0,5494                            | 0,2073            |
| abrupt     | run        | 0,2829                            | 0,0522            |
| abrupt     | walk       | 0,3709                            | 0,2073            |

## Noise Removal Effect

Table 1: Before noise reduction inter-class similarity

|            |            | Whole Frame ! | Motion I  | Representation | Symbolic Approach |
|------------|------------|---------------|-----------|----------------|-------------------|
| Category 1 | Category 2 | S             | imilarity | 7              | Similarity        |
| run        | walk       | /             | 0,6644    | 1              | 0,4972            |
| · run      | abrupt     | /             | 0,6933    | 1              | 0,2001            |
| walk       | run        |               | 0,6644    |                | 0,4972            |
| walk       | abrupt     |               | 0,6738    | ]              | 0,3333            |
| abrupt     | run        |               | 0,6933    | /              | 0,2001            |
| abrupt     | walk       | / \           | 0,6738    | ,              | 0,3333            |
|            |            | " /           | $\smile$  |                |                   |

Table 2: After noise reduction inter-class similarity

| Category 1 | Category 2 | Wh |       | Motion R<br>Similarity | epresentation | Symbolic Approach<br>Similarity |
|------------|------------|----|-------|------------------------|---------------|---------------------------------|
| run        | walk       |    | \ . / | 0,4039                 | \             | 0,4148                          |
| run        | abrupt     |    | - 🚄 I | 0,4510                 | 1             | 0,0522                          |
| walk       | run        |    | _     | 0,2891                 |               | 0,4148                          |
| walk       | abrupt     |    | - \   | 0,5494                 | }             | 0,2073                          |
| abrupt     | run        |    |       | 0,2829                 | /             | 0,0522                          |
| abrupt     | walk       | ĺ  |       | 0,3709                 | <b>'</b>      | 0,2073                          |

# Experiments (Semveillance dataset)

| Behavior | Precision | Recall | F-measure |
|----------|-----------|--------|-----------|
| run      | 0.9656    | 0.7178 | 0.8231    |
| walk     | 0.6741    | 0.9287 | 0.7746    |
| abrupt   | 0.9522    | 0.9298 | 0.9408    |

# Experiments (PETS04 dataset [Fisher, 2004])

|          | Whole Frame Representation |        |           | With Frame Segmentation |        |           |
|----------|----------------------------|--------|-----------|-------------------------|--------|-----------|
| Behavior | Precision                  | Recall | F-measure | Precision               | Recall | F-measure |
| browser  | 0.2093                     | 0.3459 | 0.3273    | 0.8065                  | 0.7366 | 0.7377    |
| walker   | 0.9423                     | 0.9491 | 0.9456    | 0.9918                  | 0.8480 | 0.9129    |
| fighters | 0.1263                     | 0.9461 | 0.2223    | 0.5608                  | 0.8766 | 0.6437    |
| meeters  | 0.2934                     | 0.9810 | 0.4294    | 0.6685                  | 0.8537 | 0.7448    |

Table 6: Experimental results for video indexing.

|          | Whole Frame Representation | With Frame Segmentation |
|----------|----------------------------|-------------------------|
| Behavior | Specificity                | Specificity             |
| browser  | 0.3521                     | 0.8444                  |
| walker   | 0.1829                     | 0.8613                  |
| fighters | 0.5257                     | 0.8157                  |
| meeters  | 0.2605                     | 0.8077                  |

## Outline

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- Closing
  - Summary and the Future
  - Appendix

# Entity Name System (ENS) [Bouquet et al., 2008, Palpanas et al., 2008]



#### An ENS:

- Maps real world entities to Unique identifiers.
- Provides for the reuse of identifiers.
- Supports disambiguation to real world entities in the Web.

# Entity

## **Entity** in the ENS is a set of:

- Free-form attribute names
- Free-form attribute values

## **Entity Example**

```
title : Dr
```

firstName : Themis

family\_name : Palpanas

homepage : http://dit.unitn.it/~themis

affiliation: University of Trento

# **Entity Subscription Services**

## An Adaptive Entity Subscription System (AESS) provides for:

- management of subscription to specific entities.
- the update of subscribers over changes to entities.
- informing subscribers over changes they are mostly interested in.
- takes into account explicitly or implicitly declared user interests.

# Change Examples - Type and Content

```
Type: Deletion (of entity)
```

Content:(N/A)

or

Type: Entity Update, Attribute Update

*Content:* title→Prof

or

*Type:* Entity Update, Attribute Insertion *Content:* affiliation→University of Trento

- expects user feedback for interest indication.
- expresses interest as a real value.
- defines predefined values for interest levels.

#### We need to

create an architecture for the system.

- expects user feedback for interest indication.
- expresses interest as a real value.
- defines predefined values for interest levels.

#### We need to

- create an architecture for the system.
- represent efficiently the type and content (i.e. free form strings) info of a change.

- expects user feedback for interest indication.
- expresses interest as a real value.
- defines predefined values for interest levels.

#### We need to

- create an architecture for the system.
- represent efficiently the type and content (i.e. free form strings) info of a change.
- create a user model, from user feedback, that can use this representation.

- expects user feedback for interest indication.
- expresses interest as a real value.
- defines predefined values for interest levels.

#### We need to

- create an architecture for the system.
- represent efficiently the type and content (i.e. free form strings) info of a change.
- create a user model, from user feedback, that can use this representation.
- take into account both simple and complex scenarios of preference.





Change Queue



- Change Queue
- User Profile DB



- Change Queue
- User Profile DB
- Adaptive Information Control



- Change Queue
- User Profile DB
- Adaptive Information Control
- Subscription Information Broker

## Outline

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- 4 Closing
  - Summary and the Future
  - Appendix

# Representing Changes — Type

## The **type of a change**:

- deletion, splitting, merging or update
- updates can involve: attribute deletion, attribute insertion or attribute update
- given graded indication of normality of the change, e.g. 0 (abnormal) to 1 (normal)

#### Feature Space

A dimension indicative of each type/subtype of change.

But what about *Content*?



# Representing Changes — Content

### The **content of a change**:

- Instances of attribute names
- Instances of attribute values

## Problems and requirements

- Free form strings
- Other types (numeric, date, etc.)
- Fuzzy string matching
- Updatable model if possible
- Graded similarity from comparison of instance to model

## We use Character N-gram Graphs



# Content as a graph

A character n-gram graph is a string model based on the coexistence of character n-grams in a string.

first\_name:Basil

Graph Size: 39 bidirectional edges



# Content as a graph: Updating

first\_name:Basil first\_name:George

Graph Size: 42 bidirectional edges



i.e., not bad scaling for normal user requirements.



## Text Size to Graph Size — Actual vs Random





Actual Text

Random Text



# Mapping Content to the Feature Space

Given

a set of labeled changes and a new change.

We want

dimensions indicative of content similarity.

## N-gram Graph Normalized Value Similarity (NVS)

- Create a graph representing labeled instances for each level.
- We have one similarity-based feature for each interest level.

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
    - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- Closing
  - Summary and the Future
  - Appendix

### From Change to Feature Space: Workflow Overview

To map a change instance to the feature space:

- Apply values to *Type* dimensions.
- Calculate *Content* graph similarities for every interest level.
- Add dimensions for Content graph similarity.

### Update Model with New Data

To update the user model with a new instance:

- Merge Content-based graph into corresponding interest level graph.
- Initialize new vector.
- Calculate an  $\epsilon$ -SVR [Chang and Lin, 2001, Vapnik, 1998] regression model to estimate interest.

How does this model perform?

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- Closing
  - Summary and the Future
  - Appendix

# **Experimental Setting**

- Synthetic data for data changes
- 10-fold validation
- 1000 changes per fold
- Each iteration is mapped to a set of 10 changes

#### We judge

- if learning occurs and its rate.
- if the use of content (graphs) is useful.

# **Determining Learning Ability**

Table: Correlation between Emission-Iteration Number and Regression Mean Absolute Error per Subscriber Profile and Method

| Subscriber                      | Graphs   | Correlation (p-value)                     |
|---------------------------------|----------|-------------------------------------------|
| Type-based                      | <b>√</b> | - <b>0.3398559</b> (< 10 <sup>-2</sup> )  |
|                                 |          | $-0.2993715 \ (< 10^{-2})$                |
| Attribute name-based            | <b>√</b> | - <b>0.3734062</b> (< 10 <sup>-2</sup> )  |
|                                 |          | -0.03564642 (0.2601)                      |
| Attribute name-value pair-based | <b>√</b> | - <b>0.08581718</b> (< 10 <sup>-2</sup> ) |
|                                 |          | -0.02968072 (0.3484)                      |
| Complex                         | <b>√</b> | - <b>0.5989662</b> (< 10 <sup>-2</sup> )  |
|                                 |          | -0.03393356 (0.2837)                      |

# Determining Speed and Stability of Learning (1)

Rate of Acceptable Errors (RAE): Percentage of errors in estimation that cannot cause ranking error.

Black line: Content aware method. Gray line: Simple method.



Figure: Type Based



Figure: Attribute Name-based

# Determining Speed and Stability of Learning (2)

Rate of Acceptable Errors (RAE): Percentage of errors in estimation that cannot cause ranking error.

Black line: Content aware method. Gray line: Simple method.



Figure: Attribute Name-Value-based



Figure: Complex

### Importance of Representation

Rate of Acceptable Errors (RAE): Percentage of errors in estimation that cannot cause ranking error.



Figure: Name, Value in One Graph



Figure: Name, Value in Separate Graphs

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- 4 Closing
  - Summary and the Future
  - Appendix

### Application suite

- AutoSummENG (plus new version)
- MUDOS-NG
- Document Classifier
- Spam filter
- Grammaticality Estimator
- Entropy-based Chunk Splitter

### Library

- Character and Word N-gram Graphs
- N-Gram Distribution Graphs
- Operators
- Serializability
- Distributed Processing Examples (JADE)
- Multi-threading
- Utilities (file to string, Distribution class, etc.)
- Interoperability (R, thesauri, etc.)

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- 4 Closing
  - Summary and the Future
  - Appendix

### Open Source

- LGPL
- Extendable
- Reusable
- Lots of examples
- Non-trivial implementations

# Easy to Apply

- Find what the vertices should be
- Define the neighborhood relation
- Use them

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- 4 Closing
  - Summary and the Future
  - Appendix

#### Almost there...

#### Flashback

- Optical Flow Proximity Graphs
- Proximity Graphs in a Hierarchy
- Combining Graphs with Vector Space
- JINSECT Toolkit and Library

### Into the future...

- Indexing graphs
- Hierarchy and granularity criteria
- Expressiveness of proximity graph
- Recognition of n-gram graphs

#### Into the future...

- Indexing graphs
- Hierarchy and granularity criteria
- Expressiveness of proximity graph
- Recognition of n-gram graphs
- ...and whatever you plan to make out of them.

### N-gram Graphs: A New Perspective

# Thank you

George Giannakopoulos (ggianna@disi.unitn.it)

Please provide your thoughts on the feedback form<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>See http://tinyurl.com/2fna572

- Evolution of N-gram Graphs to Video Analysis
  - The Optical Flow Proximity Graph
  - Whole Frame
  - Operators Revisited: Complexity
  - Hierarchy in Graphs
- 2 Modeling User Preferences
  - Overview of Senses
  - Representation
  - Overview of Solution
  - Data and Experiments
- 3 JINSECT: A Toolkit for All
  - Overview
  - Why use it?
- 4 Closing
  - Summary and the Future
  - Appendix

### Change Data Generation: User Simulation

| User type (Prob.) | Change type                 | Probability |
|-------------------|-----------------------------|-------------|
| Benevolent (0.95) | Attribute change (normal)   | 0.60        |
|                   | Attribute insertion         | 0.30        |
|                   | Attribute deletion          | 0.10        |
| Sys.admin.(0.03)  | Entity merge                | 0.45        |
|                   | Entity split                | 0.45        |
|                   | Entity deletion             | 0.10        |
| Malevolent (0.02) | Attribute change (abnormal) | 0.70        |
|                   | Attribute deletion          | 0.30        |

# Subscription User Simulation

| Subscriber | Importance  | Description                                  |
|------------|-------------|----------------------------------------------|
| Type-based | Critical    | Attribute deletion.                          |
|            | Interesting | Entity deletion.                             |
| Attribute  | Critical    | Any change concerning an attribute that      |
| name-based |             | contains the string "name".                  |
|            | Interesting | (None)                                       |
| Attribute  | Critical    | Attribute change or insertion on "isDe-      |
| name-value |             | ceased" attribute, with a new value of       |
| pair-based |             | "true".                                      |
|            | Interesting | Attribute change or insertion on "isDe-      |
|            |             | ceased" attribute, with a new value of       |
|            |             | "false".                                     |
| Complex    | Critical    | Default attribute (some attributes in the    |
|            |             | ENS are considered default — e.g., the       |
|            |             | name of a person entity — while all the oth- |
|            |             | ers non-default) update or insertion with an |
|            |             | abnormal value.                              |
|            | Interesting | Default attribute deletion or normal update. |



Chang, C.-C. and Lin, C.-J. (2001).

LIBSVM: a library for support vector machines.

Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Fisher, R. (2004).

The PETS04 surveillance ground-truth data sets. In *Proc. 6th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance*, pages 1–5.

Palpanas, T., Chaudhry, J. A., Andritsos, P., and Velegrakis, Y. (2008).

Entity data management in OKKAM.

In DEXA Workshops, pages 729-733.