A Parallel Algorithm for Tracking Dynamic Communities based on Apache Flink

Georgios Kechagias \(^1\) Grigoris Tzortzis \(^2\) Dimitrios Vogiatzis \(^{2,3}\)
George Paliouras \(^2\)

\(^1\) School of Electrical and Computer Engineering
Technical University of Crete
Chania, Greece

\(^2\) Institute of Informatics and Telecommunications
NCSR “Demokritos”
Athens, Greece

\(^3\) The American College of Greece
Deree
Athens, Greece
Social Networks and Community Tracking

- Real life social networks are inherently highly dynamic

- Community tracking is the problem of locating the instances (i.e. counterparts) of a community in the different timeframes

- Common approach e.g. GED Method \(^1\):
 - Compare communities using some similarity measure
 - Find their counterparts between consecutive timeframes

\(^1\)Bródka et al. GED: the method for group evolution discovery in social networks.
Key Challenges - Our Objective

- Community Tracking algorithms have time complexity quadratic to the number of communities

- Contemporary real world social networks, contain thousands or even millions of users and communities

- Speed up the community tracking by parallelizing the community comparisons
 - Measure: Jaccard Similarity
 - Parallelizing framework: Apache Flink

- Evaluate the scalability of the algorithm using real world SN datasets
A Parallel Algorithm for Community Tracking

- Apache Flink tasks: *GroupReduce, Filter, Cross*
- **Parallelism** in Apache Flink is a configuration which defines the splitting of a task into subtasks
- Apache Flink assigns these subtasks to threads for execution
Crimea Dataset Characteristics

- 208,841 tweets
- Crimea crisis on the 18th of March 2014
- 20 timeframes
- 32-120 communities per timeframe
- on average, 15-160 vertices per community
WorldCup Dataset Characteristics

- 1,112,875 tweets
- 2014 FIFA World Cup, Between June and July 2014
- 20 timeframes
- 175-327 communities per timeframe
- on average, 132-250 vertices per community
MathExchange Dataset Characteristics

▷ 376,030 posts

▷ Mathematics Stack Exchange Q&A website, Between 2009 and 2013

▷ 10 timeframes

▷ 479-940 communities per timeframe

▷ on average, 45-58 vertices per community
The machine used for our experiments has:
- CPU: 12 cores at 2.5GHz each
- RAM: 30GB

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Exec. Time (sec)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GED</td>
</tr>
<tr>
<td>Crimea 20</td>
<td>21.67</td>
<td>2.53</td>
</tr>
<tr>
<td>WorldCup 20</td>
<td>810.45</td>
<td>29.93</td>
</tr>
<tr>
<td>MathExchange 10</td>
<td>1670.69</td>
<td>53.0</td>
</tr>
</tbody>
</table>
Apache Flink’s Parallelism Impact

- We artificially enlarged the initial datasets $\times 2$ and $\times 3$ times in order to further evaluate the scalability of our algorithm.

- Reminder: Apache Flink Parallelism defines the task splitting.

- High Parallelism is only effective when we have sufficiently large datasets.

- The performance is increased when we tune appropriately Apache Flink for each individual dataset.
Conclusion

- Our parallel method can exploit all available CPUs without any effort due to Apache Flink.

- An alternative similarity measure can be easily incorporated.

- Community evolutionary events can be calculated at a post-processing step using the output of our algorithm.
Future Work

▷ Evolution categorization using event labels proposed in the literature

▷ Evaluation of more sophisticated similarity measures

▷ Extend to streaming using Apache Flink
Thank you for your attention

Questions?