DL Reasoning

Stasinos Konstantopoulos

IIT, NCSR ‘Demokritos’

10-3-2006
Overview

Description Logics
- Definitions
- Some Family Members

Reasoning Algorithms
- Introduction
- Resolution Calculus
- Tableau Calculus

Concluding Remarks
The DL Family

Definition

- A family of (mostly) First-Order Dyadic Logics with counting quantifiers, i.e. (mostly) fragments of C^2
- Some include features exceed C^2, e.g. relation composition.
Some Family Members

Some Simple DLs

The following are PSpace-complete with an acyclic TBox and ExpTime-complete with a general TBox:

- \mathcal{ALC}: all the usual connectives, both quantifiers
- \mathcal{ALCOR}^+ (a.k.a. SO): with nominals and transitivity axioms
- SON and SOQ: with unqualified ($\leq nR$) and qualified ($\leq nR.C$) cardinality restrictions, resp.
Some Family Members

Some more complex DLs

\textbf{ExpTime}-complete:

- \textit{SHOQ} adds role hierarchies
- \textit{SHIQ} takes away nominals and adds role inverse
- \textit{SHIF} takes away cardinality restrictions and only allows for functionality axioms, i.e. $\leq 1R$

Note, however, that:

- \textit{SHOIQ} is \textit{NExpTime}-complete
- in \textit{−Q} and \textit{−N} only simple roles (neither transitive nor have transitive subroles) are admitted; otherwise even \textit{SHN} is undecidable.
Some Family Members

Some Implemented DLs

- $SHIQ^-$ (RacerPro)
 - number restrictions only for roles without sub-roles
- $SHIQ$ (KAON2)
- $SHOIN$ (Pellet)
- $SHOIQ$ (FaCT++)
Some Family Members

Implemented DLs with datatype reasoning

- $SHIQ^-(D^-)$ (RacerPro)
 - Integers: min/max restrictions
 - Reals: linear polynomial (in-)equations over the reals or cardinals with order relations
 - Strings: equalities and inequalities
 - User-defined: none
 - no feature chains on concrete domains

- $SHOIN(D)$ (Pellet)

- $SHOIQ(D)$ (FaCT++)

OWL DL is $SHOIN(D)$ and OWL Lite is $SHIF(D)$
Deductive Inference

Entailment (semantics) is realised through (syntactic) inference operators.

Inference operators form a semantically empty logical calculus, which we want to be:

- Sound (yield correct results)
- Complete (yield all correct results)
- Decidable (yield results in finite time)
Open World vs. Closed World

Closed World

- binary predicates: either true or false;
- failure to prove is considered proof of falsity;
- negation-as-failure;
- model is presupposed;
- reasoner says: ‘Give me a model and I’ll give you an answer.’
Open World vs. Closed World

Open World

- ternary predicates: true, false, dunno;
- failure to prove is distinct from proof of falsity;
- explicit negation;
- results valid on all models;
- reasoner says: ‘Here’s your answer, you figure out what it means in your model.’
Robinson Rule

Definition

Robinson (1965):

\(R \) is resolved from clauses \(C_1 \) and \(C_2 \) iff there are literals \(l_1 \in C_1 \) and \(l_2 \in C_2 \) and substitution \(\theta \) such that:

\[
\begin{align*}
l_1 \theta &= \neg l_2 \theta \\
R &= (C_1 - \{l_1\}) \theta \cup (C_2 - \{l_2\}) \theta
\end{align*}
\]
Resolution Calculus

Robinson Rule
Characteristics and Application

- A general, sound and complete deduction rule.
- Non-deterministic AND non-deterministically applied.
- Linear resolution: restriction of the non-deterministic application of the rule. A fixed clause keeps being transformed by resolving it against other clauses in a given set.
Resolution Calculus

SLD Resolution

- Linear resolution over definite clauses, using a selection function:
 1. the fixed clause is the query
 2. clauses in the set are definite
- An oracular function selects which atom in the query to resolve on and which definite clause in the query set to resolve against.
Warren Abstract Machine

Top-Down Leftmost Resolution

WAM(Q) resolves query \(Q = \{ q_1, q_2 \ldots q_n \} \):

1. Get the left-most literal \(q \).
2. For each clause \(p_i \) of predicate \(P \) with head \(q \), starting with the one provided first:
 2.1 Unify with the head of the predicate:
 2.1.1 if unification fails, re-iterate.
 2.1.2 if unification succeeds, continue.
 2.2 Replace \(q \) with the body of \(p_i \) and perform all applicable unifications.
 2.2.1 if unification fails, re-iterate.
 2.2.2 if unification succeeds, continue.
3. Assign the result to \(Q' \).
4. If \(Q' \) is empty, succeed. Else WAM(\(Q' \)).
Warren Abstract Machine

Characteristics

- Left-to-right approximates the non-deterministic selection function of SLD Resolution
- Non-deterministic disjunction is deterministicised by considering the order rules were provided in.
- Effectively, WAM implements a depth-first, left-to-right traversal of the SLD tree.
- Semi-complete: can get stuck in infinite recursions.
Warren Abstract Machine

PROLOG

- implements WAM: definite clauses, plus one Horn query.
- SLDNF-Resolution: Normal Programs (with neg literals) under Closed-World Assumption, after finitely many steps.
- Cardinality restrictions can be coded using extra-logical predicates:
 - findall/3 will retrieve all admissible instantiations
 - but, a very expensive way to impose cardinality restrictions.
 - i.d.b. can be used for more efficient solutions, but there is no general mechanism provided by the compiler.
- No concrete domains.
SLG Resolution

General bottom-up resolution

SLG Resolution: Selection Linear resolution for General LP, proposed by Chen and Warren (1996).

- Tabling: bottom-up resolution. Allows for infinite loop detection.
- Goal delaying: unground negative literals are delayed. If delay list cannot be closed, a conditional answer is returned (CWA not necessary).
- The mechanism behind DATALOG, DATALOG, and other deductive database languages.
SLG Resolution

LRD-stratified Resolution

LRD-stratified Resolution, proposed by Sagonas and Swift (1998):

- Left-to-right selection, allows delays.
- Restricted to stratified Normal-Clause Programmes (terminates).
- Implementation: SLG-WAM abstract machine, XSB compiler.
- Datalog systems:
 - SLG systems
 - complex terms are not supported, unification is strcmp() up to variable renaming
 - DES (Prolog), DATALOG++ (XSB)
- O-Telos:
 - derived from Datalog and Telos (CML-like, SLD language).
 - Implemented by CONCEPTBASE (Prolog/Java)
Resolution Calculus

SLG Resolution

KAON2

KAON2:
- Implements $SHIQ^-$
 - by reduction to $DATALOG^\lor$ (Hustadt et al., 2004)
 - $SHIQ^-\langle D\rangle$ coming soon
 - why $DATALOG^\lor$ and not $DATALOG^\land$?
- In: OWL and (a deviation from) SWRL
- Out: SPARQL
Analytic Tableaux

Definition

\[\alpha \quad X, A \land B \quad \frac{}{X, A, B} \]
\[\beta \quad X, A \lor B \quad \frac{}{X, A \quad X, B} \]
\[\gamma \quad X, \forall x A \quad \frac{}{X, A^a_x} \]
\[\delta \quad X, \exists x A \quad \frac{}{X, A^a_x} \]

- \[a \] in \(\delta \)-rules must be a new symbol.
- A branch is \textit{closed} if it contains \(F \) and \(\neg F \).
- A tableau is \textit{closed} if all its branches are closed.
Analytic Tableaux

Comments

- The ABox can be incorporated in X, but optimised reasoners will query some form of instance DB.
- Adaptations for typed variables modify the γ and δ rules.
- How to use them:
 - iff X is valid, then the tableau for $\neg X$ closes
 - why not construct the tableau for X?
Implementations

FACT++

- Implements $\mathcal{SHOIQ}(D)$
- Implemented in C++
- In: KRSS, DIG
- Out: DIG
Implementations

Pellet

- Implements $SHOIN(D)$:
 - $SHOIN$ with tableaux
 - datatypes with a separate XSD reasoner
- Implemented in Java
- In: OWL, DIG
- Out: SPARQL, DIG
Implementations

RacerPro

- Implements $ALCQHI_{R^+}(D^-)$
 - plus an incomplete bit of $-O$: ABox checking, but no TBox inference
- In: KRSS, RDF, OWL, DIG
- Out: nRQL, OWL-QL, DIG
Implementations

JENA

Not really a reasoner, more of an RDFS validator: no abstract inference, only instance-based.

- Almost implements FL^{-R+HIF}: $\forall R.C$ only checks membership, cannot infer membership.
- Implemented in Java
- In: RDFS, OWL, DAML+OIL
- Out: RDQL
Implementations

Other

▶ **HOOLET**: translates *SHIF* to first-order axioms and uses the *VAMPIRE* first-order prover.

▶ **Bell Labs CLASSIC** (Lisp) and **NEOCLASSIC** (C++): the *FL−ON* reasoners at the core of the **PROSE** and **QUESTAR** configurators for AT&T products.

▶ **BACK, LOOM**
Concluding Remarks

▶ Usual trade-off between expressivity and tractability
▶ Massive gains in expressive power:
 ▶ more than 2 variables
 ▶ cardinality restrictions
▶ Real-life problems not to be confused with theoretical complexity results
 ▶ we perform and complete NExpTime-complete and undecidable calculations every day
 ▶ implementations are heavily optimised and handle the hard bits extra-logically
 ▶ but might as well avoid them, if we can

Konstantinos Sagonas and Terrance Swift. An abstract machine for tabled execution of fixed-order stratified logic programs.