Logic Learning for Multi Agent Systems ACAI-2019

Nikos Katzouris, Alexander Artikis and Georgios Paliouras

Institute of Informatics & Telecommunications, NCSR Demokritos

http://cer.iit.demokritos.gr

Presenter: Nikos Katzouris

Overview

Part I: Dealing with Interacting Entities in Dynamic Domains.

- Norm-governed systems.
- Complex Event Recognition systems.
- Logical specifications of domain dynamics.
- The Event Calculus.
- Part II: Learning logical specifications of domain dynamics.
 - Basics of Logical & Relational Learning.
 - Learning with the Event Calculus.
 - Abductive-Inductive learning.
 - Learning from relational data streams.
- Part IV: Statistical Relational Learning.
 - Markov Logic Networks.
 - Online structure & weight learning.

Overview

Part I: Dealing with Interacting Entities in Dynamic Domains.

- Norm-governed systems.
- Complex Event Recognition systems.
- Logical specifications of domain dynamics.
- The Event Calculus.
- Part II: Learning logical specifications of domain dynamics.
 - Basics of Logical & Relational Learning.
 - Learning with the Event Calculus.
 - Abductive-Inductive learning.
 - Learning from relational data streams.
- Part IV: Statistical Relational Learning.
 - Markov Logic Networks.
 - Online structure & weight learning.

Dealing with Interacting Entities in Dynamic Domains

kdnuggets.com

Electronic markets

www.bankofengland.co.uk

Agent-based modeling

cer.iit.demokritos.gr

Intelligent monitoring & complex event detection

Dealing with Interacting Entities in Dynamic Domains

Agent-based modeling

Requirements:

- Specifying & enforcing norms on entities' interactions.
- Handling time & change.
 - Dealing with the effects of agent actions/event occurrences.
- Verifying, tracing and explaining behavior.
- Preventing failure & undesired behavior.

Pick a network:

- individual people, forming online communities or social networks via computer-mediated communication
- computing devices, forming ad hoc networks, Sensor Networks, etc.
- business processes, forming virtual enterprises/organizations, computational economies, etc.

Open systems:

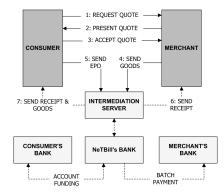
- autonomous components of heterogeneous provenance
- can assume that components can communicate (i.e. a common language)
- can not assume a common objective or central controller

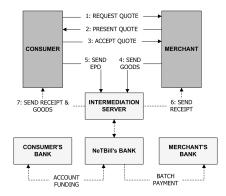
Common features of open systems:

- Dynamic and 'volatile': the environment, network topology and constituent nodes can vary rapidly and unpredictably
- 'Evolutionary': known nodes can come/go, but can also have new nodes and node 'death'
- Co-dependence and internal competition: nodes need others to satisfy their own requirements, but may also behave to maximise individual (rather than collective) utility
- Partial knowledge: no single source knowledge, union of knowledge may be inconsistent
- Sub-ideal operation: the nodes may fail to comply according to the system specification, by accident, necessity, or design.

Addressing the features:

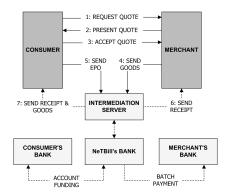
- Specify obligations and permissions, and describe agent behaviour as governed by norms, which may be violated, accidentally or on purpose.
- Predict, test, and verify the properties that hold if these norms are violated, and test the effectiveness of introducing proposed control, enforcement, and recovery mechanisms.
- Specify rules and procedures for adapting to changing environmental, financial and social conditions.





Effects of actions.

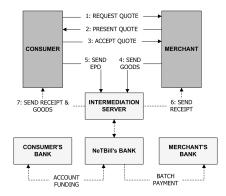
A request is pending for as long as it has been issued by the consumer and has not been presented by the merchant.



Effects of actions.

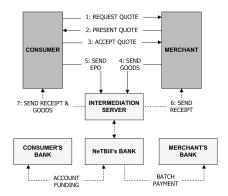
A request is pending for as long as it has been issued by a consumer and has not been presented by the merchant.

• $action_1 \rightarrow effect \xrightarrow{holds until} action_2$



Norms: Institutional power

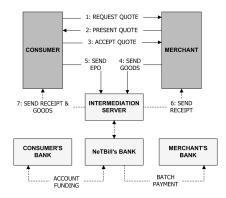
A consumer is empowered to accept a quote if that quote was issued by a merchant, and the quote has not expired.



Norms: Institutional power

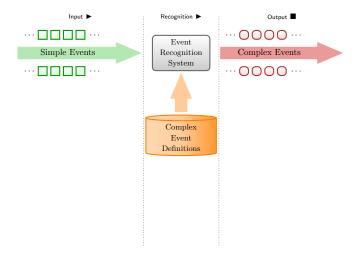
A consumer is empowered to accept a quote for as long as that quote has been issued by a merchant, and the quote has not expired.

• $action_1 \rightarrow effect \xrightarrow{holds until} event occurrence$

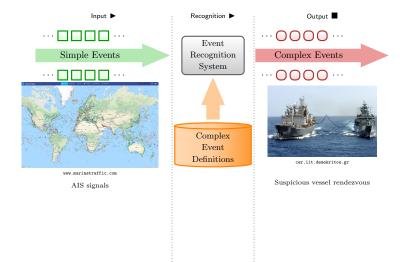


Norms: Obligation

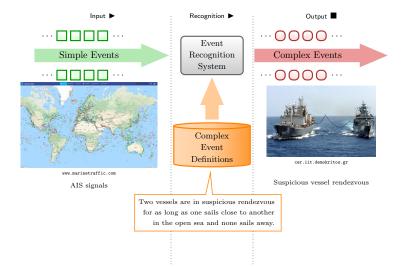
- A consumer is obliged to pay the agreed price to the contracting merchant by a specified deadline for as long as the consumer has accepted the quote, while being empowered to do so, and has not yet payed.
- Similar durative cause-effect structure as before.



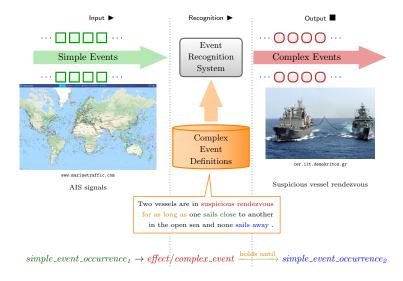
Maritime Surveillance



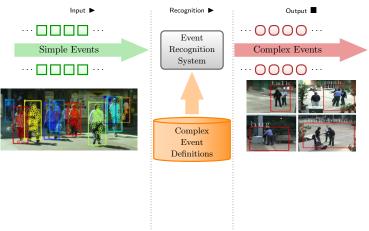
Maritime Surveillance



Maritime Surveillance



Maritime video



Actitivy recognition

Activity Recognition video.

Logical Specifications of Domain Dynamics

cer.iit.demokritos.gr

Intelligent monitoring & complex event detection

kdnuggets.com

Electronic markets

www.bankofengland.co.uk

Agent-based modeling

- First-Order Logic (FOL):
 - Connections to action languages
 - Handling time & change.
 - Relational representations
 - Useful for dealing with multiple interacting entities.
 - Formal semantics
 - Useful for verifying, tracing & explaining behavior.
 - Allows arbitrarily complex background knowledge
 - Declarative, focus on what should a system do, not on how to do it.

Handling Time & Change

Action languages:

- representation of the agents' actions and their effects
- exhibit a formal semantics
- exhibit a declarative semantics
- have direct routes to (efficient) implementation

Examples:

- Situation Calculus
- Event Calculus
- ► C+
- We will use the Event Calculus

The Event Calculus

- General purpose language for representing events, and for reasoning about effects of events.
- An action language with a logical semantics. Therefore, there are links to:
 - Implementation directly in Prolog.
 - Implementation in other programming languages.
- Prolog:
 - specification is its own implementation;
 - hence executable specification.
- We will use the Event Calculus for Run-Time reasoning (RTEC):
 - Highly efficient;
 - Sufficiently expressive.

Fluents and Events

 Focus on events rather than situations; local states rather than global states

- Fluents
 - A fluent is a proposition whose value changes over time
 - A local state is a period of time during which a fluent holds continuously
- Events
 - initiate and terminate ...
 - ... a period of time during which a fluent holds continuously

Example

- ▶ give(X, obj, Y) initiates has(Y, obj)
- ▶ give(X, obj, Y) terminates has(X, obj)

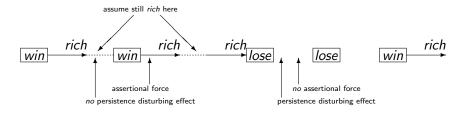
Fluents:

- Values are assigned initially
- Values are given when asserted (initiated)
- Values persist until disturbed (terminated)
- Otherwise we have 'missing information'
- A formula of the form
 - Event terminates fluent
 - Has persistence disturbing effect, but no assertional force
- A formula of the form
 - Event initiates fluent
 - Has assertional force, but no persistence disturbing effect

Example

win_lottery(X) initiates rich(X)

- Winning the lottery initiates rich (but you might be rich already)
- lose_wallet(X) terminates rich(X)
 - Losing your wallet terminates rich (but you might not be rich when you lose it)



Actual syntax:

initiatedAt(rich(X) = true, T) \leftarrow happensAt($win_lottery(X), T$) terminatedAt(rich(X) = true, T) \leftarrow happensAt($lose_wallet(X), T$)

Given rules of the above form, the Event Calculus computes the maximal intervals for which a fluent has some value continuously. Eg:

holdsFor(rich(X) = true, I)

where $I = [(S_1, E_1), ..., (S_n, E_n)]$

Also: holdsAt(rich(X) = true, T) iff T in the list I of maximal intervals.

Sometimes it is easier to write the conditions in which a fluent has some value:

holdsFor
$$(happy(X) = true, I) \leftarrow$$

holdsFor $(rich(X) = true, I_1),$
holdsFor $(loc(X) = pub, I_2),$
union_all $([I_1, I_2], I)$

How would you write the above rule in terms of initiatedAt and terminatedAt?

Short version:

holdsFor
$$(happy(X) = true, I) \leftarrow$$

holdsFor $(rich(X) = true, I_1),$
holdsFor $(loc(X) = pub, I_2),$
union_all $([I_1, I_2], I)$

Long version:

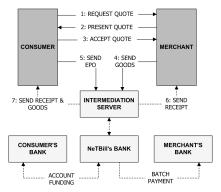
initiatedAt(happy(X) = true, T) \leftarrow initiatedAt(rich(X) = true, T) initiatedAt(happy(X) = true, T) \leftarrow initiatedAt(loc(X) = pub, T) terminatedAt(happy(X) = true, T) \leftarrow terminatedAt(rich(X) = true, T), not **holdsAt**(loc(X) = pub, T) terminatedAt(happy(X) = true, T) \leftarrow terminatedAt(loc(X) = pub, T), not **holdsAt**(rich(X) = true, T)

General Formulation

Predicate	Meaning
happensAt (E, T)	Event E is occurring at time T
initially(F = V)	The value of fluent F is V at time 0
initiatedAt $(F = V, T)$	At time T a period of time for which $F = V$ is initiated
terminatedAt($F = V, T$)	At time T a period of time for which $F = V$ is terminated
holdsFor $(F = V, I)$	I is the list of the maximal intervals for which $F = V$ holds continuously
holdsAt($F = V, T$)	The value of fluent F is V at time T

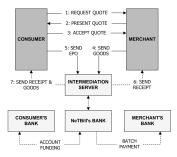
General Formulation (Interval Manipulation)

Predicate	Meaning
union_all(L, I)	I is the list of maximal intervals produced by the union of the lists of maximal intervals of list L
intersect_all(L , I)	I is the list of maximal intervals produced by the intersection of the lists of maximal intervals of list L
relative_complement_all(l', L, I)	<i>I</i> is the list of maximal intervals produced by the relative complement of the list of maximal intervals <i>I</i> ' with respect to every list of maximal intervals of list <i>L</i>



A consumer is empowered to accept a quote for as long as that quote has been issued by a merchant, and the quote has not expired.

> **holdsFor**($pow(C, accept_quote(C, M)$) = true, I) \leftarrow **holdsFor**($role_of(C, consumer$) = true, I_1), **holdsFor**($role_of(M, merchant$) = true, I_2), **holdsFor**(quote(M, C) = true, I_3), **intersect_all**($[I_1, I_2, I_3]$, I)



A consumer is obliged to pay the agreed price to the contracting merchant by a specified deadline for as long as the consumer has accepted the quote, while being empowered to do so, and has not yet payed.

```
initiatedAt(obl(C, send_EPO(C, IS)) = true, T ) 

happensAt(accept_quote(C, M), T),

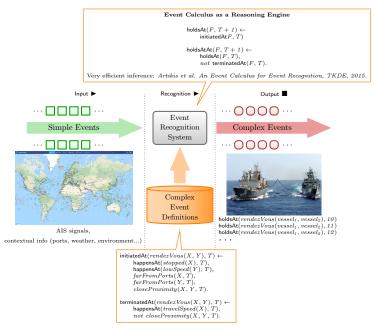
holdsAt(pow(C, accept_quote(C, M)) = true, T),

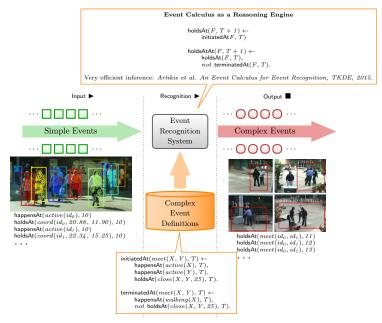
holdsAt(role_of(IS, iServer) = true, T)

terminatedAt(obl(C, send_EPO(C, IS)) = true, T) 

\leftarrow

happensAt(send_EPO(C, IS), T)
```





Summary: So far

Introduced the Event Calculus

- Events and Fluents.
- Fluent formulations.
- Formulating domain dynamics specifications in the Event Calculus.
- Next: Learning such specifications from data.

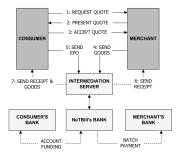
Overview

Part I: Dealing with Interacting Entities in Dynamic Domains.

- Norm-governed systems.
- Complex Event Recognition systems.
- Logical specifications of domain dynamics.
- The Event Calculus.
- Part II: Learning logical specifications of domain dynamics.
 - Basics of Logical & Relational Learning.
 - Learning with the Event Calculus.
 - Abductive-Inductive learning.
 - Learning from relational data streams.
- Part IV: Statistical Relational Learning.
 - Markov Logic Networks.
 - Online structure & weight learning.

Goal:

- Given traces of a system's/domain's execution/evolution in time.
- Learn the rules that govern the dynamics of the system/domain.



- Given past examples of transactions.
- Learn the underlying normative temporal rules.

```
initiatedAt(obl(C, send\_EPO(C, IS)) = true, T ) 

happensAt(accept\_quote(C, M), T),

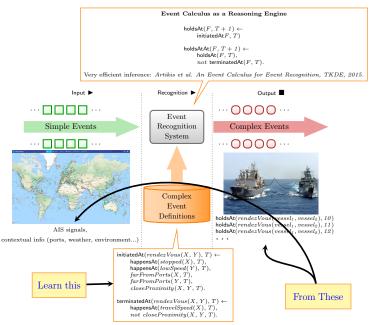
holdsAt(pow(C, accept\_quote(C, M)) = true, T),

holdsAt(role\_of(IS, iServer) = true, T)

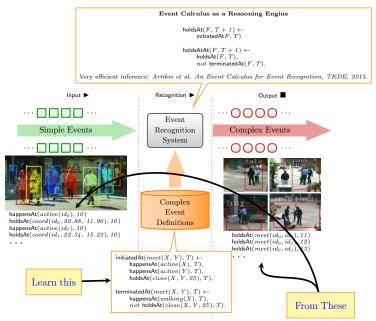
terminatedAt(obl(C, send\_EPO(C, IS)) = true, T) 

\leftarrow

happensAt(send\_EPO(C, IS), T)
```



38 / 132



Agent-based modeling

Why?

- The specifications may not always be known in advance.
- Even if they are, manual authoring is time-consuming & error-prone.
- The specifications are not static in principle.
 - They often change over time reflecting change in the domain.
 - Manual "tweaking" towards retaining performance is hard.
- A learnt model can fit data properties that a human cannot foresee.
 - It is therefore likely to be more robust.
 - An initial, hand-crafted set of specifications may be improved by learning.

► How?

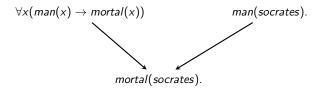
- Logic-based approaches offer direct connections to machine learning
 - Inductive Logic Programming (ILP).
 - Statistical Relational Learning.
- Arbitrarily complex background knowledge easy to incorporate into the learning task.
- Interpretable models.

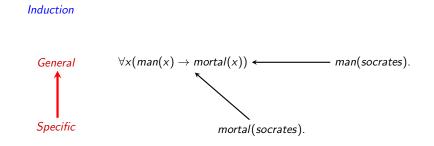
Overview

Part I: Dealing with Interacting Entities in Dynamic Domains.

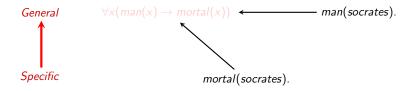
- Norm-governed systems.
- Complex Event Recognition systems.
- Logical specifications of domain dynamics.
- The Event Calculus.
- Part II: Learning logical specifications of domain dynamics.
 - Basics of Logical & Relational Learning (ILP).
 - Then: Learning with the Event Calculus.
 - Abductive-Inductive learning.
 - Learning from relational data streams.
- Part IV: Statistical Relational Learning.
 - Markov Logic Networks.
 - Online structure & weight learning.

Deduction

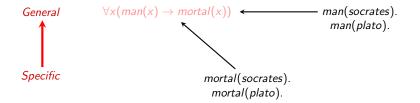




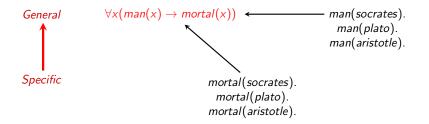
Induction = Generalization (logic) + Justification (statistics)



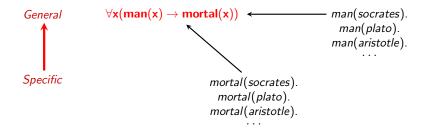
Induction = Generalization (logic) + Justification (statistics)



Induction = Generalization (logic) + Justification (statistics)



Induction = Generalization (logic) + Justification (statistics)



```
\begin{array}{l} \texttt{bird}(\texttt{sparrow}). \ \texttt{bird}(\texttt{eagle}).\\ \texttt{plane}(\texttt{boeing}). \ \texttt{plane}(\texttt{airbus}).\\ \texttt{penguin}(\texttt{joe}).\\ \texttt{flies}(\texttt{sparrow}). \ \texttt{flies}(\texttt{airbus}). \ \texttt{flies}(\texttt{boeing}). \ \texttt{flies}(\texttt{eagle}). \ \texttt{not} \ \texttt{flies}(\texttt{joe}).\\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}).\\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}).\\ \texttt{bird}(\texttt{X}) \leftarrow \texttt{penguin}(\texttt{X}). \end{array}
```

```
\begin{array}{l} \texttt{bird}(\texttt{sparrow}). \ \texttt{bird}(\texttt{eagle}).\\ \texttt{plane}(\texttt{boeing}). \ \texttt{plane}(\texttt{airbus}).\\ \texttt{penguin}(\texttt{joe}).\\ \texttt{flies}(\texttt{sparrow}). \ \texttt{flies}(\texttt{airbus}). \ \texttt{flies}(\texttt{boeing}). \ \texttt{flies}(\texttt{eagle}). \ \texttt{not} \ \texttt{flies}(\texttt{joe}).\\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}).\\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}).\\ \texttt{bird}(\texttt{X}) \leftarrow \texttt{penguin}(\texttt{X}). \end{array}
```

Find the simplest hypothesis consistent with the data, specifying when things fly.

```
bird(sparrow). bird(eagle).
plane(boeing). plane(airbus).
penguin(joe).
flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).
entity(X) 
obird(X).
entity(X) 
obird(X).
bird(X).
```

Find the simplest hypothesis consistent with the data, specifying when things fly.

```
\texttt{flies}(\texttt{X}) \gets \texttt{entity}(\texttt{X}).
```

```
\begin{array}{l} \texttt{bird(sparrow). bird(eagle).} \\ \texttt{plane(boeing). plane(airbus).} \\ \texttt{penguin(joe).} \\ \texttt{flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).} \\ \texttt{entity}(X) \leftarrow \texttt{bird}(X). \\ \texttt{entity}(X) \leftarrow \texttt{plane}(X). \\ \texttt{bird}(X) \leftarrow \texttt{penguin}(X). \end{array}
```

Find the simplest hypothesis consistent with the data, specifying when things fly.

```
flies(X) \leftarrow entity(X).
```

No good, entails all of the given facts for flying, but it also entails flies(joe) which is false.

Find the simplest hypothesis consistent with the data, specifying when things fly.

```
\texttt{flies}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}).
```

```
\begin{array}{l} \texttt{bird(sparrow). bird(eagle).} \\ \texttt{plane(boeing). plane(airbus).} \\ \texttt{penguin(joe).} \\ \texttt{flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).} \\ \texttt{entity}(X) \leftarrow \texttt{bird}(X). \\ \texttt{entity}(X) \leftarrow \texttt{plane}(X). \\ \texttt{bird}(X) \leftarrow \texttt{penguin}(X). \end{array}
```

Find the simplest hypothesis consistent with the data, specifying when things fly.

```
\texttt{flies}(X) \leftarrow \texttt{bird}(X).
```

No good, entails some, but not all of the given facts for flying, and it does entail flies(joe) which is false.

```
\begin{array}{l} \texttt{bird(sparrow). bird(eagle).} \\ \texttt{plane(boeing). plane(airbus).} \\ \texttt{penguin(joe).} \\ \texttt{flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).} \\ \texttt{entity}(X) \leftarrow \texttt{bird}(X). \\ \texttt{entity}(X) \leftarrow \texttt{plane}(X). \\ \texttt{bird}(X) \leftarrow \texttt{penguin}(X). \end{array}
```

Find the simplest hypothesis consistent with the data, specifying when things fly.

```
\begin{array}{l} \texttt{flies}(\texttt{X}) \gets \texttt{plane}(\texttt{X}).\\ \texttt{flies}(\texttt{X}) \gets \texttt{bird}(\texttt{X}) \land \texttt{not penguin}(\texttt{X}). \end{array}
```

```
\begin{array}{l} \texttt{bird}(\texttt{sparrow}). \ \texttt{bird}(\texttt{eagle}). \\ \texttt{plane}(\texttt{boeing}). \ \texttt{plane}(\texttt{airbus}). \\ \texttt{penguin}(\texttt{joe}). \\ \texttt{flies}(\texttt{sparrow}). \ \texttt{flies}(\texttt{airbus}). \ \texttt{flies}(\texttt{boeing}). \ \texttt{flies}(\texttt{eagle}). \ \texttt{not} \ \texttt{flies}(\texttt{joe}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}). \\ \texttt{bird}(\texttt{X}) \leftarrow \texttt{penguin}(\texttt{X}). \end{array}
```

Find the simplest hypothesis consistent with the data, specifying when things fly.

```
\begin{array}{l} \texttt{flies}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}).\\ \texttt{flies}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}) \land \texttt{not penguin}(\texttt{X}). \end{array}
```

Consistent with the data.Can it be simplified?

```
\begin{array}{l} \texttt{bird}(\texttt{sparrow}). \ \texttt{bird}(\texttt{eagle}). \\ \texttt{plane}(\texttt{boeing}). \ \texttt{plane}(\texttt{airbus}). \\ \texttt{penguin}(\texttt{joe}). \\ \texttt{flies}(\texttt{sparrow}). \ \texttt{flies}(\texttt{airbus}). \ \texttt{flies}(\texttt{boeing}). \ \texttt{flies}(\texttt{eagle}). \ \texttt{not} \ \texttt{flies}(\texttt{joe}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}). \\ \texttt{bird}(\texttt{X}) \leftarrow \texttt{penguin}(\texttt{X}). \end{array}
```

Find the simplest hypothesis consistent with the data, specifying when things fly.

```
\begin{array}{l} \texttt{flies}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}).\\ \texttt{flies}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}) \land \texttt{not penguin}(\texttt{X}). \end{array}
```

Consistent with the data.Can it be simplified?

 $\texttt{flies}(\texttt{X}) \leftarrow \texttt{entity}(\texttt{X}) \land \texttt{not penguin}(\texttt{X}).$

```
OK!
```

```
\begin{array}{l} \texttt{bird}(\texttt{sparrow}). \ \texttt{bird}(\texttt{eagle}). \\ \texttt{plane}(\texttt{boeing}). \ \texttt{plane}(\texttt{airbus}). \\ \texttt{penguin}(\texttt{joe}). \\ \texttt{flies}(\texttt{sparrow}). \ \texttt{flies}(\texttt{airbus}). \ \texttt{flies}(\texttt{boeing}). \ \texttt{flies}(\texttt{eagle}). \ \texttt{not} \ \texttt{flies}(\texttt{joe}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}). \\ \texttt{bird}(\texttt{X}) \leftarrow \texttt{penguin}(\texttt{X}). \end{array}
```

Find the simplest hypothesis consistent with the data, specifying when things fly.

```
\begin{array}{l} \texttt{flies}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}).\\ \texttt{flies}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}) \land \texttt{not penguin}(\texttt{X}). \end{array}
```

Consistent with the data.Can it be simplified?

 $\texttt{flies}(\texttt{X}) \leftarrow \texttt{entity}(\texttt{X}) \land \texttt{not penguin}(\texttt{X}).$

OK!

Simplicity ⇔ over-fitting avoidance ("Occam's razor")

Given:

▶ Training data, positive & negative examples E^+ , E^- .

 E.g. traces of system execution/domain evolution in time, in the form of sets of logical atoms.

Given:

- Training data, positive & negative examples E^+ , E^- .
 - E.g. traces of system execution/domain evolution in time, in the form of sets of logical atoms.
- Some background knowledge *B*.
 - Existing domain knowledge, Easily codified in logic.
 - Simplify learning, avoid learning known stuff from scratch.
 - May itself be revised/improved via learning.

Given:

- Training data, positive & negative examples E^+ , E^- .
 - E.g. traces of system execution/domain evolution in time, in the form of sets of logical atoms.
- Some background knowledge *B*.
 - Existing domain knowledge, Easily codified in logic.
 - Simplify learning, avoid learning known stuff from scratch.
 - May itself be revised/improved via learning.

A "covers" relation.

Logical entailment, *covers*(*hypothesis*, *example*) ⇔ *hypothesis* ⊨ *example*

Given:

- Training data, positive & negative examples E^+ , E^- .
 - E.g. traces of system execution/domain evolution in time, in the form of sets of logical atoms.
- Some background knowledge *B*.
 - Existing domain knowledge, Easily codified in logic.
 - Simplify learning, avoid learning known stuff from scratch.
 - May itself be revised/improved via learning.
- A "covers" relation.
 - Logical entailment, covers(hypothesis, example) ⇔ hypothesis ⊨ example
- A hypothesis quality criterion Q.
 - E.g. a hyp. should cover all positives, no negatives.
 - ...or, as many pos. & as few negs as possible (more realistic).
 - Penalize complexity, prefer simpler hypotheses.

Given:

- Training data, positive & negative examples E^+ , E^- .
 - E.g. traces of system execution/domain evolution in time, in the form of sets of logical atoms.
- Some background knowledge *B*.
 - Existing domain knowledge, Easily codified in logic.
 - Simplify learning, avoid learning known stuff from scratch.
 - May itself be revised/improved via learning.
- A "covers" relation.
 - Logical entailment, *covers*(*hypothesis*, *example*) ⇔ *hypothesis* ⊨ *example*
- A hypothesis quality criterion Q.
 - E.g. a hyp. should cover all positives, no negatives.
 - ...or, as many pos. & as few negs as possible (more realistic).
 - Penalize complexity, prefer simpler hypotheses.
- A hypothesis language L.
 - Simplify learning, avoid generating redundant hypotheses.

Given:

- Training data, positive & negative examples E^+ , E^- .
 - E.g. traces of system execution/domain evolution in time, in the form of sets of logical atoms.
- Some background knowledge *B*.
 - Existing domain knowledge, Easily codified in logic.
 - Simplify learning, avoid learning known stuff from scratch.
 - May itself be revised/improved via learning.
- A "covers" relation.
 - Logical entailment, *covers*(*hypothesis*, *example*) ⇔ *hypothesis* ⊨ *example*
- A hypothesis quality criterion Q.
 - E.g. a hyp. should cover all positives, no negatives.
 - ...or, as many pos. & as few negs as possible (more realistic).
 - Penalize complexity, prefer simpler hypotheses.
- A hypothesis language L.
 - Simplify learning, avoid generating redundant hypotheses.

Find:

• A hypothesis $H \in \mathcal{L}$ which H is optimal according to Q.

Given:

- Training data, positive & negative examples E^+ , E^- .
 - E.g. traces of system execution/domain evolution in time, in the form of sets of logical atoms.
- Some background knowledge *B*.
 - Existing domain knowledge, Easily codified in logic.
 - Simplify learning, avoid learning known stuff from scratch.
 - May itself be revised/improved via learning.
- A "covers" relation.
 - Logical entailment, *covers*(*hypothesis*, *example*) ⇔ *hypothesis* ⊨ *example*
- A hypothesis quality criterion Q.
 - E.g. a hyp. should cover all positives, no negatives.
 - ...or, as many pos. & as few negs as possible (more realistic).
 - Penalize complexity, prefer simpler hypotheses.
- ► A hypothesis language *L*.
 - Simplify learning, avoid generating redundant hypotheses.

Find:

- A hypothesis $H \in \mathcal{L}$ which H is optimal according to Q.
- ...or, at least a "good-enough" $H \in \mathcal{L}$.
 - (finding an optimal H is intractable in principle).

```
Examples & Background Knowledge
1st Set-up: Learning from Entailment
```

- Positive and negative examples are target concept instances.
- Everything else is background knowledge.
- This is the classical ILP setting.

Examples & Background Knowledge 2nd Set-up: Learning from Interpretations

```
\begin{split} l_1 &= \{\texttt{bird}(\texttt{sparrow}), \texttt{flies}(\texttt{sparrow})\}, \ l_2 &= \{\texttt{bird}(\texttt{eagle}), \texttt{flies}(\texttt{eagle})\}\\ l_3 &= \{\texttt{plane}(\texttt{boeing}), \texttt{flies}(\texttt{boeing})\}, \ l_4 &= \{\texttt{plane}(\texttt{airbus}), \texttt{flies}(\texttt{airbus})\},\\ l_5 &= \{\texttt{penguin}(\texttt{joe}), \texttt{not} \texttt{flies}(\texttt{joe})\}\\ \texttt{entity}(X) \leftarrow \texttt{bird}(X).\\ \texttt{entity}(X) \leftarrow \texttt{plane}(X).\\ \texttt{bird}(X) \leftarrow \texttt{penguin}(X). \end{split}
```

- Examples = interpretations = sets of true facts.
- Each interpretation contains a full description of the example.
 - CWA assumed within the interpretation.
 - So, e.g. *I*₅ is actually simply {penguin(joe)}.
- All information that intuitively belongs to the example, is represented in the example, not in the background knowledge.
- Background knowledge = domain knowledge.
 - General info concerning the domain, not specific examples.

Examples & Background Knowledge 2nd Set-up: Learning from Interpretations

```
\begin{split} l_1 &= \{\texttt{bird}(\texttt{sparrow}), \texttt{flies}(\texttt{sparrow})\}, \ l_2 &= \{\texttt{bird}(\texttt{eagle}), \texttt{flies}(\texttt{eagle})\}\\ l_3 &= \{\texttt{plane}(\texttt{boeing}), \texttt{flies}(\texttt{boeing})\}, \ l_4 &= \{\texttt{plane}(\texttt{airbus}), \texttt{flies}(\texttt{airbus})\},\\ l_5 &= \{\texttt{penguin}(\texttt{joe}), \texttt{not} \texttt{flies}(\texttt{joe})\}\\ \texttt{entity}(X) \leftarrow \texttt{bird}(X).\\ \texttt{entity}(X) \leftarrow \texttt{plane}(X).\\ \texttt{bird}(X) \leftarrow \texttt{penguin}(X). \end{split}
```

- Examples = interpretations = sets of true facts.
- Each interpretation contains a full description of the example.
 - CWA assumed within the interpretation.
 - ▶ So, e.g. *I*₅ is actually simply {penguin(joe)}.
- All information that intuitively belongs to the example, is represented in the example, not in the background knowledge.
- Background knowledge = domain knowledge.
 - General info concerning the domain, not specific examples.
- More efficient than Learning from Entailment.
- But also weaker, cannot learn recursive concepts, nor relations between examples.

Hypothesis Language

```
\begin{array}{l} \texttt{bird}(\texttt{sparrow}). \ \texttt{bird}(\texttt{eagle}). \\ \texttt{plane}(\texttt{boeing}). \ \texttt{plane}(\texttt{airbus}). \\ \texttt{penguin}(\texttt{joe}). \\ \texttt{flies}(\texttt{sparrow}). \ \texttt{flies}(\texttt{airbus}). \ \texttt{flies}(\texttt{boeing}). \ \texttt{flies}(\texttt{eagle}). \ \texttt{not} \ \texttt{flies}(\texttt{joe}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}). \\ \texttt{bird}(\texttt{X}) \leftarrow \texttt{penguin}(\texttt{X}). \end{array}
```

Syntactic constraints on the acceptable hypotheses.

Avoid constructing hypotheses that we know are useless for the current task.

- ▶ flies(X) ← bird(X). potentially useful.
- ▶ plane(X) \leftarrow bird(X). useless.

Hypothesis Language

```
\begin{array}{l} \texttt{bird}(\texttt{sparrow}). \ \texttt{bird}(\texttt{eagle}). \\ \texttt{plane}(\texttt{boeing}). \ \texttt{plane}(\texttt{airbus}). \\ \texttt{penguin}(\texttt{joe}). \\ \texttt{flies}(\texttt{sparrow}). \ \texttt{flies}(\texttt{airbus}). \ \texttt{flies}(\texttt{boeing}). \ \texttt{flies}(\texttt{eagle}). \ \texttt{not} \ \texttt{flies}(\texttt{joe}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}). \\ \texttt{entity}(\texttt{X}) \leftarrow \texttt{plane}(\texttt{X}). \\ \texttt{bird}(\texttt{X}) \leftarrow \texttt{penguin}(\texttt{X}). \end{array}
```

Syntactic constraints on the acceptable hypotheses.

Avoid constructing hypotheses that we know are useless for the current task.

- ▶ flies(X) ← bird(X). potentially useful.
- ▶ plane(X) \leftarrow bird(X). useless.

Mode declarations: Declarative directives for rule generation.

- E.g. head(flies(entity)). body(not penguin(entity)).
- ▶ Can be used to generate e.g. $flies(X) \leftarrow not penguin(X) \land entity(X)$.
- Also, directives on how to variabilize rules, variable chaining, types of variables etc.

Learning & Search

▶ Ideal: Find the simplest theory in the given language *L* that along with the background knowledge *B* covers as many positives and as few negatives as possible.

Learning & Search

- Ideal: Find the simplest theory in the given language L that along with the background knowledge B covers as many positives and as few negatives as possible.
- ▶ Intractable: full search in space of theories generated by *L*.
 - Doubly exponential in the size of \mathcal{L} .

Learning & Search

- Ideal: Find the simplest theory in the given language L that along with the background knowledge B covers as many positives and as few negatives as possible.
- ▶ Intractable: full search in space of theories generated by *L*.
 - Doubly exponential in the size of L.
- Typical ILP approaches:
 - Incremental rule learning strategies.
 - iteratively learn one "good" rule at a time until stopping criterion met.
 - Collection of such good rules approximates the learning objective.
 - Heuristic search strategies for learning a single rule.
 - Learning "the best possible" rule is also intractable.
 - Exponential search space (subsets of possible attributes).

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
{plane(boeing),flies(boeing)}
{plane(airbus),flies(airbus)}
{penguin(joe),not flies(joe)}
```

Learnt Theory:

1. Select positive example.

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
{plane(boeing),flies(boeing)}
{plane(airbus),flies(airbus)}
{penguin(joe),not flies(joe)}
```

Learnt Theory:

- 1. Select positive example.
- 2. Generate rule that covers the example.

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
{plane(boeing),flies(boeing)}
{plane(airbus),flies(airbus)}
{penguin(joe),not flies(joe)}
```

Learnt Theory: flies(boeing) \leftarrow plane(boeing).

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
{plane(boeing),flies(boeing)}
{plane(airbus),flies(airbus)}
{penguin(joe),not flies(joe)}
```

```
Learnt Theory: flies(X) \leftarrow plane(X).
```

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.
- 4. Remove covered positives.

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
{plane(boeing),flies(boeing)}
{plane(airbus),flies(airbus)}
{penguin(joe),not flies(joe)}
```

Learnt Theory: $flies(X) \leftarrow plane(X)$.

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.
- 4. Remove covered positives.

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
```

```
Learnt Theory: flies(X) \leftarrow plane(X).
```

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.
- 4. Remove covered positives.
- 5. Repeat until no positives left (or other stopping criterion).

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
```

```
Learnt Theory: flies(X) \leftarrow plane(X).
```

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.
- 4. Remove covered positives.
- 5. Repeat until no positives left (or other stopping criterion).

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
```

```
Learnt Theory: flies(X) \leftarrow plane(X).
```

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.
- 4. Remove covered positives.
- 5. Repeat until no positives left (or other stopping criterion).

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
```

```
Learnt Theory:
flies(X) \leftarrow plane(X).
flies(sparrow) \leftarrow bird(sparrow) \land not penguin(sparrow).
```

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.
- 4. Remove covered positives.
- 5. Repeat until no positives left (or other stopping criterion).

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
```

```
Learnt Theory:

flies(X) \leftarrow plane(X).

flies(X) \leftarrow bird(X) \land not penguin(X).
```

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.
- 4. Remove covered positives.
- 5. Repeat until no positives left (or other stopping criterion).

```
{bird(sparrow),flies(sparrow)}
{bird(eagle),flies(eagle)}
```

```
Learnt Theory:

flies(X) \leftarrow plane(X).

flies(X) \leftarrow bird(X) \land not penguin(X).
```

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.
- 4. Remove covered positives.
- 5. Repeat until no positives left (or other stopping criterion).

```
{penguin(joe), not flies(joe)}
```

```
Learnt Theory:

flies(X) \leftarrow plane(X).

flies(X) \leftarrow bird(X) \land not penguin(X).
```

- 1. Select positive example.
- 2. Generate rule that covers the example.
- 3. Generalize.
- 4. Remove covered positives.
- 5. Repeat until no positives left (or other stopping criterion).

Stop!

```
Learnt Theory:

flies(X) \leftarrow plane(X).

flies(X) \leftarrow bird(X) \land not penguin(X).
```

Learning a Rule

Heuristic search in a space ordered by generality.

Generality

Generality relation

• A rule r_1 is more general that a rule r_2 if

• {examples covered by r_2 } \subseteq {examples covered by r_1 }.

Rule of thumb: "less constraint" rules are more general

Therefore they cover more examples.

Generality

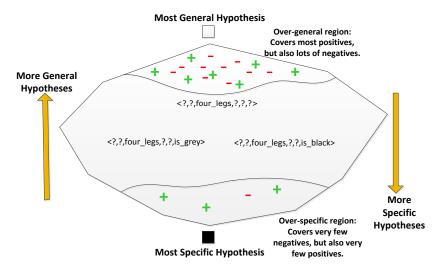
Generality relation

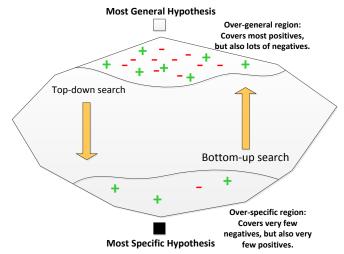
A rule r₁ is more general that a rule r₂ if
{examples covered by r₂} ⊆ {examples covered by r₁}.
Rule of thumb: "less constraint" rules are more general
Therefore they cover more examples.

For example, which one is more general?

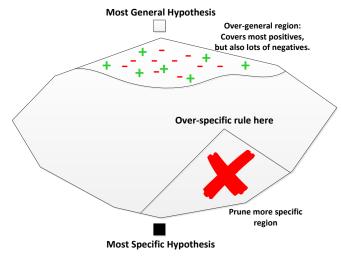
IF has_four_legs & has_whiskers THEN class = cat IF has_four_legs & has_whiskers & is_grey THEN class = cat

Space ordered by generality.



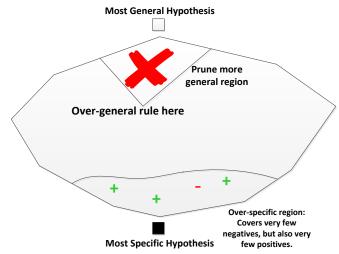


- Top-down search: Start from over-general, gradually specialize to exclude negatives.
- Bottom-up search: Start from over-specific, gradually generalize to cover positives.



Pruning heuristics

If a rule is already over-specific (covers too few positives), there is no need to look into its more specific region.



Pruning heuristics

If a rule is over-general (covers too many negatives), there is no need to look into its more general region.

- The version space model has some nice properties.
- Can we "upgrade" it to First-Order Logic?
- What do we need?

- The version space model has some nice properties.
- Can we "upgrade" it to First-Order Logic?
- What do we need?
 - A "covers" relation (logical entailment).
 - A generality notion based on that.

- The version space model has some nice properties.
- Can we "upgrade" it to First-Order Logic?
- What do we need?
 - A "covers" relation (logical entailment).
 - A generality notion based on that.
 - We have that:
 - A rule r_1 is more general than a rule r_2 is $covers(r_2) \subseteq covers(r_1) \Leftrightarrow r_1 \vDash r_2$.

- The version space model has some nice properties.
- Can we "upgrade" it to First-Order Logic?
- What do we need?
 - A "covers" relation (logical entailment).
 - A generality notion based on that.
 - We have that:
 - A rule r_1 is more general than a rule r_2 is $covers(r_2) \subseteq covers(r_1) \Leftrightarrow r_1 \vDash r_2$.

Problem: r₁ ⊨_? r₂ for arbitrary r₁, r₂ is undecidable (even for Horn logic).

- The version space model has some nice properties.
- Can we "upgrade" it to First-Order Logic?
- What do we need?
 - A "covers" relation (logical entailment).
 - A generality notion based on that.
 - We have that:
 - A rule r_1 is more general than a rule r_2 is $covers(r_2) \subseteq covers(r_1) \Leftrightarrow r_1 \vDash r_2$.
- Problem: r₁ ⊨_? r₂ for arbitrary r₁, r₂ is undecidable (even for Horn logic).
- Use θ -subsumption as surrogate.

- Substitution $\theta = [X_1/t_1, \dots, X_n/t_n]$: an assignment of terms t_i to variables X_i .
- A rule $r_1 \theta$ -subsumes a rule $r_2 (r_1 \leq r_2)$ iff $\exists \theta : [head(r_1)\theta = head(r_2) \& body(r_1)\theta \subseteq body(r_2)].$

- Substitution $\theta = [X_1/t_1, \dots, X_n/t_n]$: an assignment of terms t_i to variables X_i .
- A rule $r_1 \theta$ -subsumes a rule r_2 $(r_1 \leq r_2)$ iff $\exists \theta : [head(r_1)\theta = head(r_2) \& body(r_1)\theta \subseteq body(r_2)].$

```
\begin{array}{l} r_1 = \texttt{flies}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}) \\ r_2 = \texttt{flies}(\texttt{Y}) \leftarrow \texttt{bird}(\texttt{Y}) \land \texttt{not penguin}(\texttt{Y}) \\ r_3 = \texttt{flies}(\texttt{tweety}) \leftarrow \texttt{bird}(\texttt{tweety}) \land \texttt{not penguin}(\texttt{tweety}) \\ \text{Then:} \end{array}
```

```
r_1 \leq r_2 with \theta = [X/Y].
r_1 \leq r_3 with \theta = [X/tweety].
```

- Substitution $\theta = [X_1/t_1, \dots, X_n/t_n]$: an assignment of terms t_i to variables X_i .
- A rule $r_1 \theta$ -subsumes a rule $r_2 (r_1 \leq r_2)$ iff $\exists \theta : [head(r_1)\theta = head(r_2) \& body(r_1)\theta \subseteq body(r_2)].$

```
\begin{array}{l} r_1 = \texttt{flies}(\texttt{X}) \leftarrow \texttt{bird}(\texttt{X}) \\ r_2 = \texttt{flies}(\texttt{Y}) \leftarrow \texttt{bird}(\texttt{Y}) \land \texttt{not} \texttt{ penguin}(\texttt{Y}) \\ r_3 = \texttt{flies}(\texttt{tweety}) \leftarrow \texttt{bird}(\texttt{tweety}) \land \texttt{not} \texttt{ penguin}(\texttt{tweety}) \\ \texttt{Then:} \end{array}
```

- $r_1 \leq r_2$ with $\theta = [X/Y]$. $r_1 \leq r_3$ with $\theta = [X/tweety]$.
 - A theory $H_1 \theta$ -subsumes a theory H_2 iff $\forall r_1 \in H_1, \exists r_2 \in H_2 : r_1 \preceq r_2.$

Properties of θ -subsumption:

- ▶ If $r_1 \preceq r_2$ then $r_1 \vDash r_2$.
 - the inverse does not hold.
- If $r_1 \leq r_2$ then $covers(r_2) \subseteq covers(r_1)$.
- θ -subsumption is decidable (but still, NP-complete).

Properties of θ -subsumption:

- ▶ If $r_1 \preceq r_2$ then $r_1 \vDash r_2$.
 - the inverse does not hold.
- If $r_1 \leq r_2$ then $covers(r_2) \subseteq covers(r_1)$.
- θ -subsumption is decidable (but still, NP-complete).

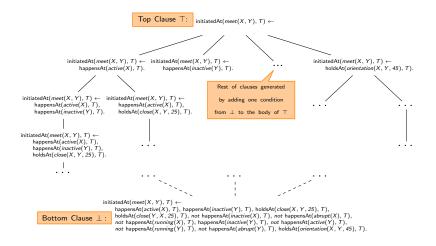
Therefore:

- θ -subsumption can be used as a surrogate for logical entailment.
- ► Version space (propositional) ↔ subsumption lattice (relational).
- We essentially have the same search and pruning heuristics.

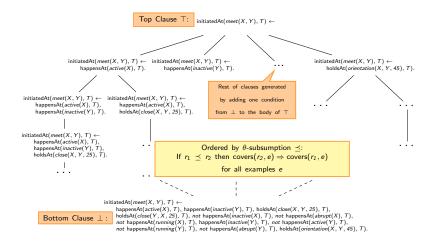
Learning a Rule

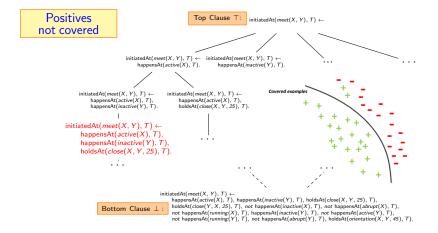
- Construct a search space (subsumption lattice).
 - Upper-bound: Most-general rule (rule with an empty body)
 - Lower-bound: Most-specific rule that covers a single example.
- Use search and pruning heuristics, along with a quality criterion (e.g. precision, recall, compression, info gain...) to find a "good" rule.

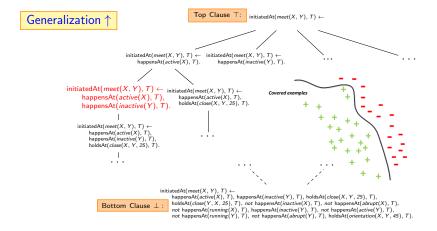
Learning a Rule: The subsumption Lattice

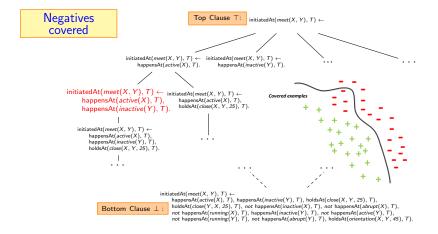


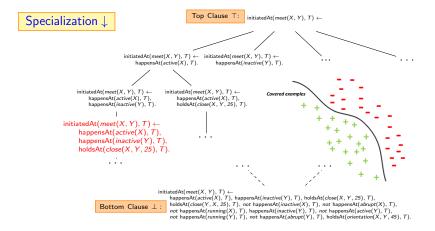
Learning a Rule: The subsumption Lattice



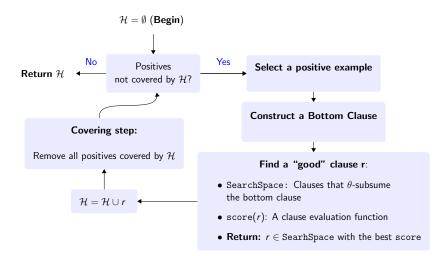








Putting it All Together



ILP Basics: Summary

- We are given training examples representing true/false "snapshots" of the target concept.
- Some BK encoding things we know about the domain.
- Some hypothesis language.
- ▶ We use a "covers" relation based on logical entailment.
- and θ -subsumption as a notion of generality.
- Based on generality we build search spaces.
- Using a rule quality criterion, in addition to search and pruning heuristics we look for "good" rules within the search spaces.
- We learn one rule at a time until some stopping criterion is met.
 - For example, until we cover all positives, until we reach a maximum theory size etc.

Overview

Part I: Dealing with Interacting Entities in Dynamic Domains.

- Norm-governed systems.
- Complex Event Recognition systems.
- Logical specifications of domain dynamics.
- The Event Calculus.
- Part II: Learning logical specifications of domain dynamics.
 - Basics of Logical & Relational Learning.
 - Learning with the Event Calculus.
 - Abductive-Inductive learning.
 - Learning from relational data streams.
- Part IV: Statistical Relational Learning.
 - Markov Logic Networks.
 - Online structure & weight learning.

The classical ILP strategy works for

- Learning a single concept.
- Learning multiple independent concepts.
- This is not the case with the Event Calculus.
 - We want to learn theories of temporal specifications.
 - In the form of initiation & termination rules.
 - Which are **not** independent from each other.

- Given: initiatedAt(event₁, 10).
- > ? holdsAt(event₁, 20).

Inferences are non-monotonic:

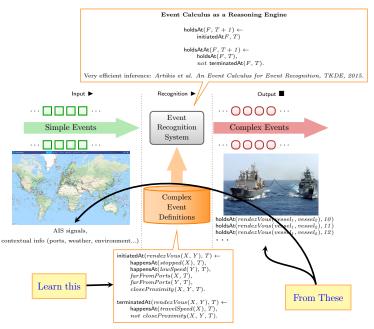
- Given: initiatedAt(event₁, 10).
- > ? holdsAt(event₁, 20).
 - yes.

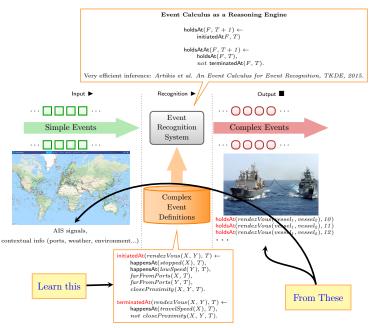
Later we're also told that terminatedAt(event₁, 15).

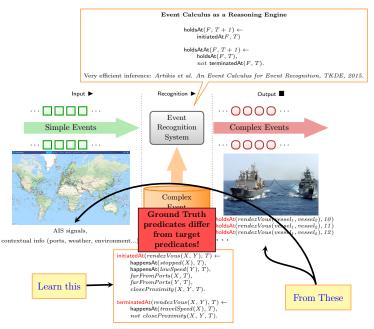
- Given: initiatedAt(event₁, 10).
- > ? holdsAt(event₁, 20).
 - yes.
- Later we're also told that terminatedAt(event₁, 15).
- As a result, we need to retract our previous answer.

- Given: initiatedAt(event₁, 10).
- > ? holdsAt(event₁, 20).
 - yes.
- Later we're also told that terminatedAt(event₁, 15).
- As a result, we need to retract our previous answer.
- As a result of non-monotonicity
 - Iterative (covering) rule learning techniques do not work.

- Given: initiatedAt(event₁, 10).
- > ? holdsAt(event₁, 20).
 - yes.
- Later we're also told that terminatedAt(event₁, 15).
- As a result, we need to retract our previous answer.
- As a result of non-monotonicity
 - Iterative (covering) rule learning techniques do not work.
 - They are based on the monotonicity assumption that adding new rules to a theory increases the example coverage of the theory.
 - Which is not the case, E.g. adding a termination rules reduces the example coverage of the theory.







Abductive Logic Programming (ALP)

Abduction:

 Hypothetical reasoning to the best explanation under incomplete information.

- ALP
 - Given:
 - A logic program H.
 - A set of observations O (logical facts).
 - A set of integrity constraints IC.
 - A set of predicate symbols A.
 - Find:
 - A set of *abductive explanations* $\Delta \subseteq A$ s.t. $H \cup \Delta \vDash O$ and $H \cup \Delta \cup IC$ is consistent.
 - Formal correspondence between NAF semantics and ALP.

ALP: A Simple Example

```
\label{eq:observations:} Observations: \\ \texttt{holdsAt}(\texttt{meeting}(\texttt{id}_1,\texttt{id}_2),\texttt{10}). \\ \texttt{holdsAt}(\texttt{meeting}(\texttt{id}_1,\texttt{id}_2),\texttt{11}). \\ \texttt{not holdsAt}(\texttt{meeting}(\texttt{id}_1,\texttt{id}_2),\texttt{12}). \\ \texttt{time}(\texttt{1..20}). \\ \end{cases}
```

H : The axioms of inertia (Event Calculus).

 $A = \{ \texttt{initiatedAt}/2, \texttt{terminatedAt}/2 \}.$

 $IC = \texttt{false} \leftarrow \texttt{initiatedAt}(F, T) \land \texttt{terminatedAt}(F, T).$

ALP: A Simple Example

```
\label{eq:observations:} Observations: \\ \texttt{holdsAt}(\texttt{meeting}(\texttt{id}_1,\texttt{id}_2),\texttt{10}). \\ \texttt{holdsAt}(\texttt{meeting}(\texttt{id}_1,\texttt{id}_2),\texttt{11}). \\ \texttt{not holdsAt}(\texttt{meeting}(\texttt{id}_1,\texttt{id}_2),\texttt{12}). \\ \texttt{time}(\texttt{1..20}). \\ \end{cases}
```

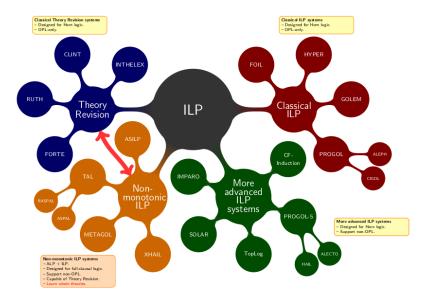
H : The axioms of inertia (Event Calculus).

 $A = \{ \texttt{initiatedAt}/2, \texttt{terminatedAt}/2 \}.$

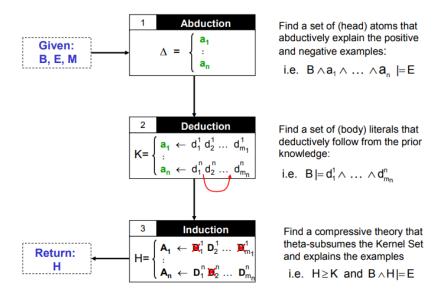
 $IC = \texttt{false} \leftarrow \texttt{initiatedAt}(F, T) \land \texttt{terminatedAt}(F, T).$

 $\Delta = \{\texttt{initiatedAt}(\texttt{meeting}(\texttt{id}_1,\texttt{id}_2),9),\texttt{terminatedAt}(\texttt{meeting}(\texttt{id}_1,\texttt{id}_2),\texttt{11})\}.$

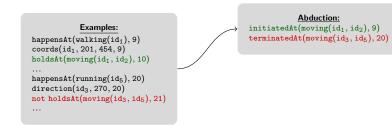
Non-monotonic Learning

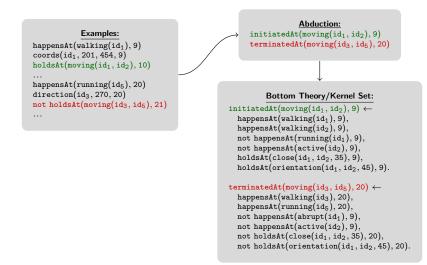


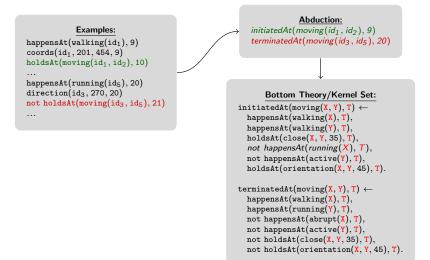
Non-monotonic Learning (The XHAIL Algorithm)

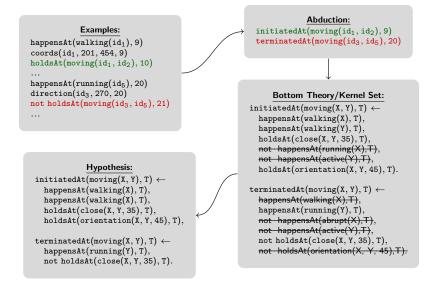


Slide from Ray O., Using Abduction for Induction of Normal Logic Programs, AIAI-2006.









Induction as Abductive Search

 $\label{eq:boundary_states} \hline \\ \hline Bottom Theory/Kernel Set: \\ \mbox{initiatedAt(moving(X,Y),T)} \leftarrow \\ \mbox{happensAt(walking(Y),T), } \\ \mbox{happensAt(walking(Y),T), } \\ \mbox{holdsAt(close(X,Y,35),T), } \\ \mbox{not happensAt(toxing(X,Y),T), } \\ \mbox{holdsAt(orientation(X,Y,45),T), } \\ \mbox{holdsAt(orientation(X,Y,45),T), } \\ \mbox{happensAt(walking(X),T), } \\ \mbox{happensAt(walking(Y),T), } \\ \mbox{happensAt(close(Y),T), } \\ \mbox{not happensAt(close(X,Y,35),T), } \\ \mbox{not happensAt(close(X,Y,35),T), } \\ \mbox{haphensAt(close(X,Y,35),T), } \\ \mbox{haphensAt(X,Y,X,Y), } \\ \mbox{haphensAt(X,Y,Y,Y), } \\ \mbox{haphensAt(X,Y,Y,Y), } \\ \mbox{haphensAt(X,Y,Y,Y), } \\ \mbox{haphensAt(X,Y,Y,Y), } \\ \mbox{haphensAt(X,Y,$

not holdsAt(orientation(X, Y, 45),T).

Hypothesis:

```
\begin{array}{ll} \mbox{initiatedAt(moving(X, Y), T)} \leftarrow & \mbox{happensAt(walking(X), T)}, \\ \mbox{happensAt(walking(X), T)}, \\ \mbox{holdsAt(close(X, Y, 35), T)}, \\ \mbox{holdsAt(orientation(X, Y, 45), T)}, \\ \end{array}
```

```
\begin{array}{l} \texttt{terminatedAt}(\texttt{moving}(X, Y), T) \leftarrow \\ \texttt{happensAt}(\texttt{running}(Y), T), \\ \texttt{not holdsAt}(\texttt{close}(X, Y, 35), T). \end{array}
```

Induction as Abductive Search

Bottom Theory/Kernel Set: $initiatedAt(moving(X, Y), T) \leftarrow$ happensAt(walking(X), T), Hypothesis: happensAt(walking(Y), T), holdsAt(close(X, Y, 35), T). initiatedAt(moving(X, Y), T) \leftarrow not happensAt(running(X),T). happensAt(walking(X), T), not happensAt(active(Y),T). happensAt(walking(X), T), holdsAt(close(X, Y, 35), T), holdsAt(orientation(X, Y, 45), T). X, Y, 45), T), Replace the i-th rule $\alpha^i \leftarrow \delta_1^i, \ldots, \delta_n^i$ in the Kernel Set with the following program: ′), T) ← Ť), $\alpha^{i} \leftarrow use(i, 0), try(i, 1, \delta^{i}_{t}),$. 35), T). $try(i, 1, \delta_1^i) \leftarrow not use(i, 1).$ $try(i, 1, \delta_1^{\overline{i}}) \leftarrow use(i, 1), \delta_1^{\overline{i}}.$ $\alpha^{i} \leftarrow use(i, 0), try(i, n, \delta^{i}),$ $try(i, n, \delta_n^i) \leftarrow not use(i, n).$ $try(i, n, \delta_1^{\overline{i}}) \leftarrow use(i, n), \delta_n^{\overline{i}}$ Specify goal & solve (directly, with an Answer Set Solver!): $truePos(E) \leftarrow holdsAt(E, T), positiveExmpl(E).$ $falsePos(E) \leftarrow holdsAt(E, T), not positiveExmpl(E).$ $\{use(I, J)\} \leftarrow ruleId(I), literalId(J).$ (Abduction via choice rule.) maximize{truePos/1}. minimize{falsePos/1, use/2}. H is obtained from the Kernel Set by removing every body atom δ_i^{J} for which the abducible use(i, j) is not in Δ , and removing every rule whose head atom a_i does not have a corresponding atom use(0, i) in Δ .

101 / 132

Theory Revision

XHAIL:

- Formal semantics.
- Capable of learning multi-concept theories, recursive concepts etc.
- Does not scale.

Theory Revision

XHAIL:

- Formal semantics.
- Capable of learning multi-concept theories, recursive concepts etc.
- Does not scale.
- > The basic ideas behind XHAIL can be used for Theory Revision (TR).
 - Possible remedy for scalability issues.
- Data are presented in batches/chunks.
- A theory is constructed from the first batch.
- As new batches arrive the theory is continuously revised to account for the new observations.
 - Add new rules.
 - Remove existing (redundant) rules.
 - Specialize rules.
 - The TR process is guided by optimizing (locally, current batch only) example coverage + theory complexity.

Theory Revision

XHAIL:

- Formal semantics.
- Capable of learning multi-concept theories, recursive concepts etc.
- Does not scale.
- > The basic ideas behind XHAIL can be used for Theory Revision (TR).
 - Possible remedy for scalability issues.
- Data are presented in batches/chunks.
- A theory is constructed from the first batch.
- As new batches arrive the theory is continuously revised to account for the new observations.
 - Add new rules.
 - Remove existing (redundant) rules.
 - Specialize rules.
 - The TR process is guided by optimizing (locally, current batch only) example coverage + theory complexity.
- How large should the batches be?
 - Larger batches mean more "globally-good" revisions, but also, harder to process.

Overview

Part I: Dealing with Interacting Entities in Dynamic Domains.

- Norm-governed systems.
- Complex Event Recognition systems.
- Logical specifications of domain dynamics.
- The Event Calculus.

▶ Part II: Learning logical specifications of domain dynamics.

- Basics of Logical & Relational Learning.
- Learning with the Event Calculus.
- Abductive-Inductive learning.
- Part III: Scalable learning.
 - Non-monotonic Theory Revision.
 - Learning from relational data streams.
- Part IV: Statistical Relational Learning.
 - Markov Logic Networks.
 - Online structure & weight learning.

Online Inductive Logic Programming

Challenge:

- Inductive Logic Programming algorithms are batch learners.
 - Each candidate in the search space is evaluated on the entire dataset.

Goal:

- Online learning:
 - Examples arrive in a stream.
 - Each example is "seen" once.

Approach:

- Make decisions from subsets of the stream:
 - Decisions are optimal "locally".
 - Decisions are optimal "globally"...
 - within an error margin ϵ ,
 - with probability $1-\delta$.

The Hoeffding Bound

- X is a random variable.
- ▶ $X_1, ..., X_N$ are N independent observations of X's values.
- Let \overline{X} be the known, observed mean of X.
- Let \hat{X} be the unknown, true mean of X.

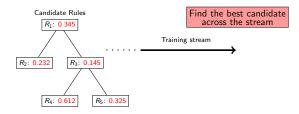
The Hoeffding Bound

- X is a random variable.
- ▶ $X_1, ..., X_N$ are N independent observations of X's values.
- Let \overline{X} be the known, observed mean of X.
- Let \hat{X} be the unknown, true mean of X.
- Then:

 $\bar{X} - \epsilon \leq \hat{X} \leq \bar{X} + \epsilon$, with probability $1 - \delta$, where $\epsilon = \sqrt{\frac{\ln(1/\delta)}{2N}}$

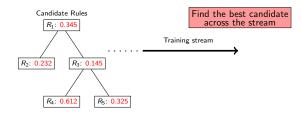
Online Rule Learning

Online Rule Learning



As examples stream in... Monitor $\bar{X} = \overline{score}_{BestRule} - \overline{score}_{SecondBestRule}$

Online Rule Learning



As examples stream in... Monitor $\bar{X} = \overline{score}_{BestRule} - \overline{score}_{SecondBestRule}$

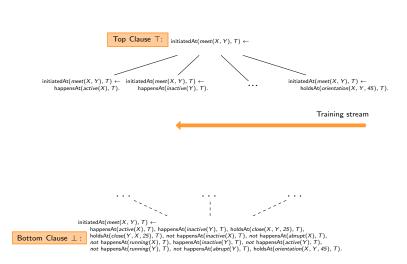
Continue until the number N of examples makes $ar{X} > \epsilon = \sqrt{rac{ln(1/\delta)}{2N}}$

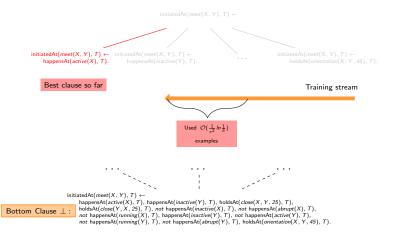
Online Rule Learning

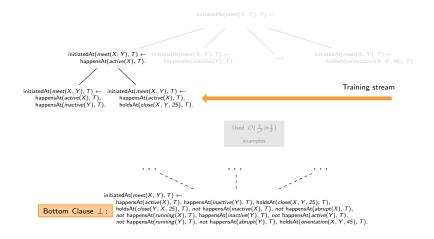
As examples stream in... Monitor $\bar{X} = \overline{score}_{BestRule} - \overline{score}_{SecondBestRule}$

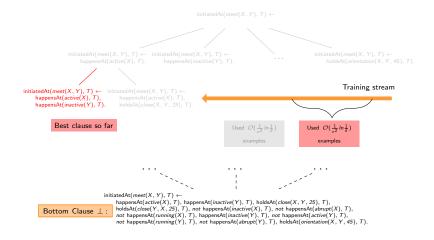
Continue until the number N of examples makes $ar{X} > \epsilon = \sqrt{rac{\ln(1/\delta)}{2N}}$

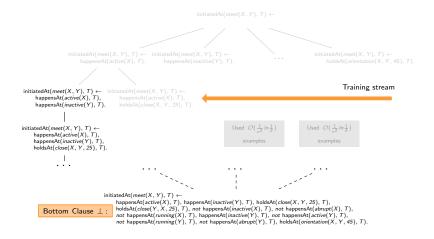
Then			
Ā	$-\epsilon > 0 \Rightarrow$		
Â	$> 0 \Rightarrow$		
Be	stRule is indeed the best rule,		
wit	with probability $1-\delta$.		











Features

Clause pruning:

- Often, "bad" clauses are constructed (e.g. from noisy examples).
- These are discarded when:
 - they do not "change" (get specialized) for sufficiently enough time
 - and their score is below a threshold.

Features

Clause pruning:

- Often, "bad" clauses are constructed (e.g. from noisy examples).
- These are discarded when:
 - they do not "change" (get specialized) for sufficiently enough time
 - and their score is below a threshold.

Warm-up period:

- Any-time algorithm
- In practice an output clause must have been evaluated on N_{min} examples.

Features

Clause pruning:

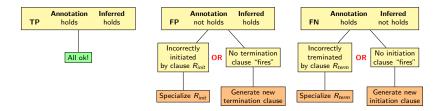
- Often, "bad" clauses are constructed (e.g. from noisy examples).
- These are discarded when:
 - they do not "change" (get specialized) for sufficiently enough time
 - and their score is below a threshold.

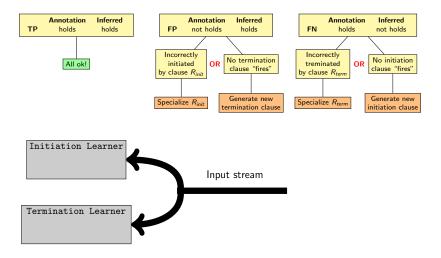
Warm-up period:

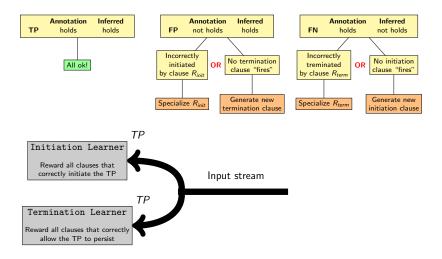
- Any-time algorithm
- In practice an output clause must have been evaluated on N_{min} examples.

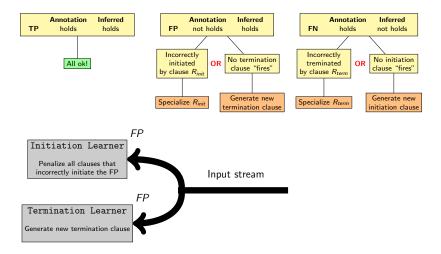
Tie breaking:

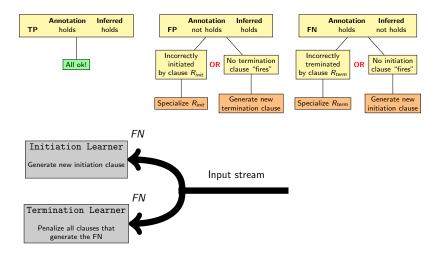
- When the best & the second-best clause have very similar scores...
- Break ties based on a pre-defined threshold, instead of waiting until the Hoeffding bound test succeeds.



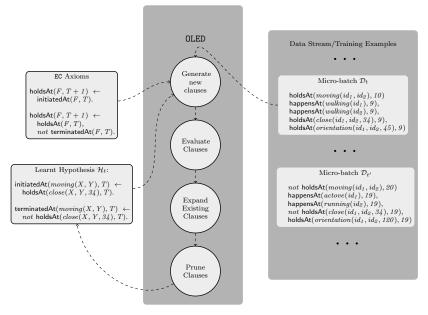








OLED



Comparison

	Method	F ₁ -score	Theory size	Time (sec)
Moving	EC_{crisp}	0.751	28	_
	ECMM	0.890	28	1692
	XHAIL	0.841	14	7836
	OLED	0.812	34	12
Meeting	EC _{crisp}	0.762	23	_
	ECMM	0.863	23	1133
	XHAIL	0.861	15	7248
	OLED	0.836	29	23

Overview

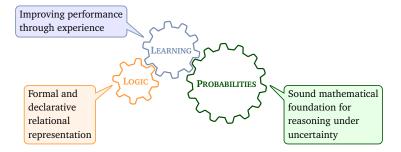
Part I: Dealing with Interacting Entities in Dynamic Domains.

- Norm-governed systems.
- Complex Event Recognition systems.
- Logical specifications of domain dynamics.
- The Event Calculus.

Part II: Learning logical specifications of domain dynamics.

- Basics of Logical & Relational Learning.
- Learning with the Event Calculus.
- Abductive-Inductive learning.
- Part III: Scalable learning.
 - Non-monotonic Theory Revision.
 - Learning from relational data streams.
- Part IV: Statistical Relational Learning.
 - Markov Logic Networks.
 - Online structure & weight learning.

Statistical Relational Learning



ProbLog

- A probabilistic logic programming language.
- Allows for independent probabilistic facts prob::fact.
 - prob indicates the probability that fact is part of a possible world.
 - Facts are random variables.

ProbLog

- A probabilistic logic programming language.
- Allows for independent probabilistic facts prob::fact.
 - prob indicates the probability that fact is part of a possible world.
 - Facts are random variables.
- Rules are written as in classic Prolog.

ProbLog

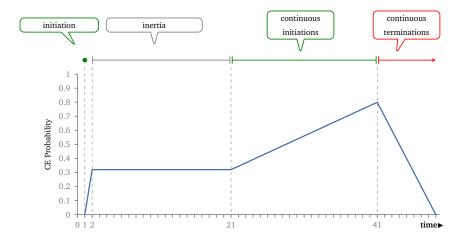
- A probabilistic logic programming language.
- Allows for independent probabilistic facts prob::fact.
 - prob indicates the probability that fact is part of a possible world.
 - Facts are random variables.
- Rules are written as in classic Prolog.
- The probability of a query q imposed on a ProbLog database (success probability) is computed by the following formula:

$$P_s(q) = P(\bigvee_{e \in Proofs(q)} \bigwedge_{f_i \in e} f_i)$$

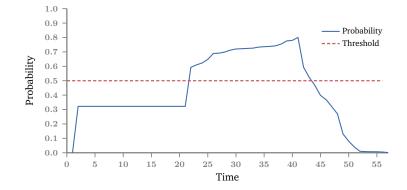
Event Recognition using ProbLog

Input	Output
340 0.45 :: inactive(id ₀)	340 0.41 :: <i>left_object(id</i> 1, <i>id</i> 0)
$340\ 0.80 :: p(id_0) = (20.88, -11.90)$	$340 \ 0.55 :: moving(id_2, id_3)$
340 0.55 :: <i>appear(id</i> 0)	
340 0.15 :: <i>walking(id</i> ₂)	
340 0.80 :: $p(id_2) = (25.88, -19.80)$	
340 0.25 :: <i>active</i> (<i>id</i> ₁)	
340 0.66 :: $p(id_1) = (20.88, -11.90)$	
340 0.70 :: <i>walking(id</i> ₃)	
340 0.46 :: $p(id_3) = (24.78, -18.77)$	

Event Calculus in ProbLog



Event Calculus in ProbLog

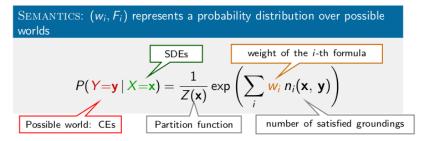


Markov Logic Networks (MLN)

SYNTAX: weighted first-order logic formulas (w_i, F_i)

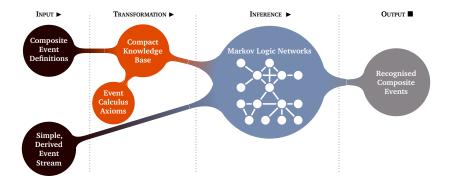
When input events SDE_A and SDE_B occur at T, then the output event *CE* is initiated:

3.18 happensAt(SDE_A, T) \land happensAt(SDE_B, T) \Rightarrow initiatedAt(CE, T)



A world violating formulas becomes less probable, but not impossible!

Event Calculus in Markov Logic Networks (MLN-EC)



Marginal Inference:

 For all time points T, calculate the probability of each CE being true (recognised), given all input SDEs (evidence)

P(holdsAt(CE, T) = true|SDEs)

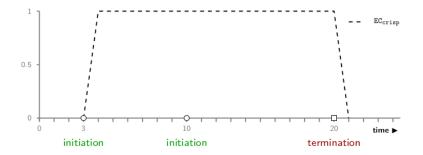
- ▶ Marginal inference is #P-complete \rightarrow approximate inference
- MC-SAT algorithm (Markov Chain Monte Carlo techniques with SAT solver)

Maximum a Posteriori (MAP) Inference:

- Find the world with the highest probability
- Input: truth values for all input SDEs (evidence)
- Output: truth values of the output CEs that maximise the probability (recognition)

$$\operatorname{argmax}_{\operatorname{holdsAt}(CE, T)} \left(P(\operatorname{holdsAt}(CE, T)|SDEs) \right)$$

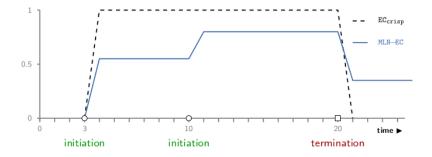
- ▶ MAP Inference is NP-hard \rightarrow approximate inference
- Various methods: local search, linear programming, etc.



∞ ¬holdsAt(CE, T+1)
$$\Leftarrow$$

¬holdsAt(CE, T) \land
¬[Initiation Conditions]

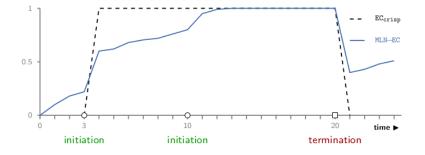
 ∞ ¬holdsAt(CE, T+1) ← [Termination Conditions]



1.2 holdsAt(CE, T+1) \Leftarrow [Initiation Conditions]

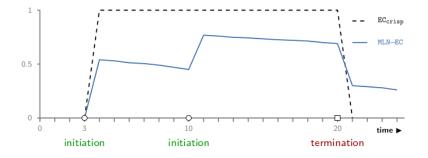
∞ ¬holdsAt(CE, T+1)
$$\Leftarrow$$

¬holdsAt(CE, T) ∧
¬[Initiation Conditions]



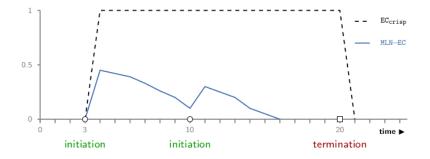
- 1.2 holdsAt(CE, T+1)⇐
 [Initiation Conditions]
- 2.3 \neg holdsAt(CE, T+1) \Leftarrow \neg holdsAt(CE, T) \land \neg [Initiation Conditions]

- ∞ holdsAt(CE, T+1) \Leftarrow holdsAt(CE, T) \land \neg [Termination Conditions]



- 1.2 holdsAt(CE, T+1)⇐
 [Initiation Conditions]
- ∞ ¬holdsAt(CE, T+1) \Leftarrow ¬holdsAt(CE, T) \land ¬[Initiation Conditions]

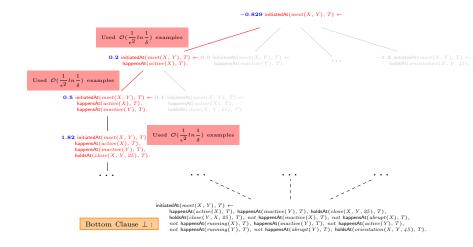
- 2.3 holdsAt(CE, T+1) \leftarrow holdsAt(CE, T) \land \neg [Termination Conditions]



- 1.2 holdsAt(CE, T+1)⇐
 [Initiation Conditions]
- ∞ ¬holdsAt(CE, T+1) \Leftarrow ¬holdsAt(CE, T) \land ¬[Initiation Conditions]

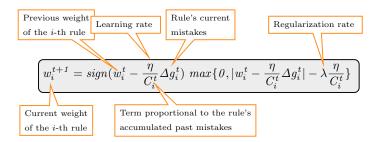
- 0.6 holdsAt(CE, T+1) \Leftarrow holdsAt(CE, T) \land \neg [Termination Conditions]

Online Structure & Weight Learning in MLN



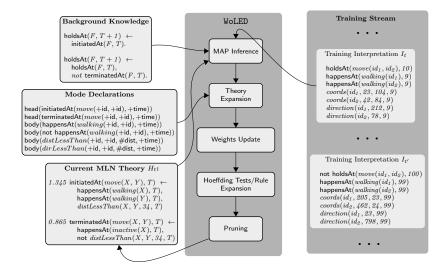
- Simultaneous structure & weight learning.
- Weight learning with AdaGrad.

The AdaGrad Weight Update Rule

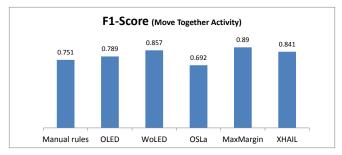


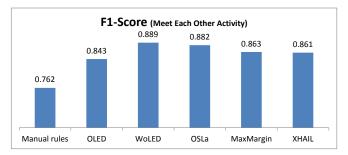
• Δg_i^t (*i*-th rule's mistakes at time *t*): difference in rule's true groundings in the true state and the MAP-inferred state.

OLED-MLN

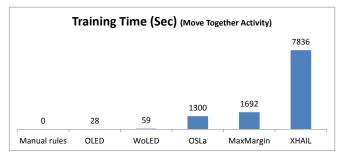


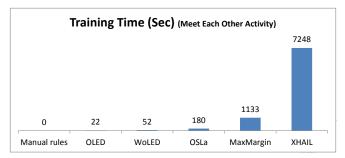
OLED-MLN Evaluation on the CAVIAR Dataset





OLED-MLN Evaluation on the CAVIAR Dataset





Some Useful Reading Readings

- Logic, Reasoning & Logic Programming:
 - Sergot M. Knowledge Representation. Course 491, Department of Computing, Imperial College London
 - https://www.doc.ic.ac.uk/~mjs/teaching/491.html
 - Mueller, Erik T.: Event calculus and temporal action logics compared. Artif. Intell. 170(11): 1017-1029 (2006).
 - Mueller, Erik T. Commonsense reasoning: an event calculus based approach. Morgan Kaufmann, 2014.
- Relational Learning/Inductive Logic Programming:
 - De Raedt, Luc. Logical and relational learning. Springer Science & Business Media, 2008.
- Statistical Relational Learning:
 - Koller D, Friedman N, Dzeroski S, Sutton C, McCallum A, Pfeffer A, Abbeel P, Wong MF, Heckerman D, Meek C, Neville J. Introduction to Statistical Relational Learning. MIT press; 2007.
- Rule learning:
 - Frnkranz, J., Gamberger, D., & Lavra, N. (2012). Foundations of rule learning. Springer Science & Business Media.

References I

Event Calculus for Normative Specifications:

- A. Artikis, M. Sergot, and J. Pitt, An Executable Specification of a Formal Argumentation Protocol, Artificial Intelligence Journal, 171(10-15):776-804, 2007.
- A. Artikis, M. Sergot, and J. Pitt, Specifying Norm-Governed Computational Societies, ACM Transactions on Computational Logic, to appear in 2008.

Event Calculus for Complex Event Recognition (RTEC paper):

 Artikis A., Sergot M. and Paliouras G. An Event Calculus for Event Recognition. IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(4):895-908, 2015.

Event Calculus in ProbLog:

- Skarlatidis A., Artikis A., Filippou J. and Paliouras G. A Probabilistic Logic Programming Event Calculus, Journal of Theory and Practice of Logic Programming (TPLP), 15(2):213-245, 2015.
- Event Calculus in Markov Logic Networks:
 - Skarlatidis A., Paliouras G., Artikis A., and Vouros G. Probabilistic Event Calculus for Event Recognition, ACM Transactions on Computational Logic, 16(2):1-37, 2015.

References II

XHAIL paper:

Ray O. Nonmonotonic abductive inductive learning. Journal of Applied Logic. 2009 Sep 1;7(3):329-40.

Learning with the Event Calculus papers:

- Katzouris, N., Artikis, A. and Paliouras, G., 2015. Incremental learning of event definitions with inductive logic programming. Machine Learning, 100(2-3), pp.555-585.
- Katzouris, N., Artikis, A. and Paliouras, G., 2016. Online learning of event definitions. Theory and Practice of Logic Programming, 16(5-6), pp.817-833.
- Katzouris, N., Michelioudakis, E., Artikis, A. and Paliouras, G., Online learning of weighted relational rules for complex event recognition. In ECML-PKDD (pp. 396-413). Springer, Cham, 2018.