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Overview

I Part I: Dealing with Interacting Entities in Dynamic Domains.
I Norm-governed systems.
I Complex Event Recognition systems.
I Logical specifications of domain dynamics.
I The Event Calculus.

I Part II: Learning logical specifications of domain dynamics.
I Basics of Logical & Relational Learning.
I Learning with the Event Calculus.
I Abductive-Inductive learning.
I Learning from relational data streams.

I Part IV: Statistical Relational Learning.
I Markov Logic Networks.
I Online structure & weight learning.
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Dealing with Interacting Entities in Dynamic Domains

kdnuggets.com

Electronic markets
www.bankofengland.co.uk

Agent-based modeling

cer.iit.demokritos.gr

Intelligent monitoring &
complex event detection

I Requirements:
I Specifying & enforcing norms on entities’ interactions.
I Handling time & change.

I Dealing with the effects of agent actions/event occurrences.
I Verifying, tracing and explaining behavior.
I Preventing failure & undesired behavior.
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Example: Norm-governed Systems

I Pick a network:
I individual people, forming online communities or social

networks via computer-mediated communication
I computing devices, forming ad hoc networks, Sensor Networks,

etc.
I business processes, forming virtual enterprises/organizations,

computational economies, etc.

I Open systems:
I autonomous components of heterogeneous provenance
I can assume that components can communicate (i.e. a common

language)
I can not assume a common objective or central controller
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Example: Norm-governed Systems

I Common features of open systems:
I Dynamic and ‘volatile’: the environment, network topology

and constituent nodes can vary rapidly and unpredictably
I ‘Evolutionary’: known nodes can come/go, but can also have

new nodes and node ‘death’
I Co-dependence and internal competition: nodes need others to

satisfy their own requirements, but may also behave to
maximise individual (rather than collective) utility

I Partial knowledge: no single source knowledge, union of
knowledge may be inconsistent

I Sub-ideal operation: the nodes may fail to comply according to
the system specification, by accident, necessity, or design.
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Example: Norm-governed Systems

Addressing the features:

I Specify obligations and permissions, and describe agent
behaviour as governed by norms, which may be violated,
accidentally or on purpose.

I Predict, test, and verify the properties that hold if these
norms are violated, and test the effectiveness of introducing
proposed control, enforcement, and recovery mechanisms.

I Specify rules and procedures for adapting to changing
environmental, financial and social conditions.
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Example: Norm-governed Systems

I Effects of actions.
I A request is pending for as long as it has been issued by the consumer

and has not been presented by the merchant.
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Example: Norm-governed Systems

I Effects of actions.
I A request is pending for as long as it has been issued by a consumer and

has not been presented by the merchant.

I action1 → effect
holds until−−−−−−→ action2
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Example: Norm-governed Systems

I Norms: Institutional power
I A consumer is empowered to accept a quote if that quote was issued by a

merchant, and the quote has not expired.
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Example: Norm-governed Systems

I Norms: Institutional power
I A consumer is empowered to accept a quote for as long as that quote has

been issued by a merchant, and the quote has not expired .

I action1 → effect
holds until−−−−−−→ event occurrence
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Example: Norm-governed Systems

I Norms: Obligation
I A consumer is obliged to pay the agreed price to the contracting

merchant by a specified deadline for as long as the consumer has accepted
the quote, while being empowered to do so, and has not yet payed.

I Similar durative cause-effect structure as before.
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Example: Complex Event Recognition Systems
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Example: Complex Event Recognition Systems
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Example: Complex Event Recognition Systems

Maritime video
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Example: Complex Event Recognition Systems
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Example: Complex Event Recognition Systems

Activity Recognition video.
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Logical Specifications of Domain Dynamics

kdnuggets.com

Electronic markets
www.bankofengland.co.uk

Agent-based modeling

cer.iit.demokritos.gr

Intelligent monitoring &
complex event detection

I First-Order Logic (FOL):

I Connections to action languages
I Handling time & change.

I Relational representations
I Useful for dealing with multiple interacting entities.

I Formal semantics
I Useful for verifying, tracing & explaining behavior.

I Allows arbitrarily complex background knowledge
I Declarative, focus on what should a system do, not on how to do it.
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Handling Time & Change

I Action languages:
I representation of the agents’ actions and their effects
I exhibit a formal semantics
I exhibit a declarative semantics
I have direct routes to (efficient) implementation

I Examples:
I Situation Calculus
I Event Calculus
I C +

I We will use the Event Calculus
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The Event Calculus

I General purpose language for representing events, and for
reasoning about effects of events.

I An action language with a logical semantics. Therefore, there
are links to:
I Implementation directly in Prolog.
I Implementation in other programming languages.

I Prolog:
I specification is its own implementation;
I hence executable specification.

I We will use the Event Calculus for Run-Time reasoning
(RTEC):
I Highly efficient;
I Sufficiently expressive.
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Fluents and Events

I Focus on events rather than situations; local states rather
than global states

I Fluents
I A fluent is a proposition whose value changes over time
I A local state is a period of time during which a fluent holds

continuously

I Events
I initiate and terminate . . .
I . . . a period of time during which a fluent holds continuously

I Example
I give(X , obj ,Y ) initiates has(Y , obj)
I give(X , obj ,Y ) terminates has(X , obj)
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Event Calculus

I Fluents:
I Values are assigned initially
I Values are given when asserted (initiated)
I Values persist until disturbed (terminated)
I Otherwise we have ‘missing information’

I A formula of the form
I Event terminates fluent
I Has persistence disturbing effect, but no assertional force

I A formula of the form
I Event initiates fluent
I Has assertional force, but no persistence disturbing effect
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Example

I win lottery(X ) initiates rich(X )
I Winning the lottery initiates rich (but you might be rich

already)

I lose wallet(X ) terminates rich(X )
I Losing your wallet terminates rich (but you might not be rich

when you lose it)

win -rich
win -rich -rich

lose lose win -rich

assume still rich here

assertional force

no persistence disturbing effect

no assertional force

persistence disturbing effect

66 66

@
@
@R

�
�
�	
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Event Calculus

I Actual syntax:

initiatedAt(rich(X ) = true, T )←
happensAt(win lottery(X ), T )

terminatedAt(rich(X ) = true, T )←
happensAt(lose wallet(X ), T )

I Given rules of the above form, the Event Calculus computes
the maximal intervals for which a fluent has some value
continuously. Eg:

holdsFor(rich(X ) = true, I )

where I =[(S1,E1), . . . , (Sn,En)]

I Also: holdsAt(rich(X ) = true, T ) iff T in the list I of maximal
intervals.
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Event Calculus

I Sometimes it is easier to write the conditions in which a fluent
has some value:

holdsFor(happy(X ) = true, I )←
holdsFor(rich(X ) = true, I1),
holdsFor(loc(X ) = pub, I2),
union all([I1, I2], I )

I How would you write the above rule in terms of initiatedAt

and terminatedAt?
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Event Calculus
I Short version:

holdsFor(happy(X ) = true, I )←
holdsFor(rich(X ) = true, I1),
holdsFor(loc(X ) = pub, I2),
union all([I1, I2], I )

I Long version:

initiatedAt(happy(X ) = true, T )←
initiatedAt(rich(X ) = true, T )

initiatedAt(happy(X ) = true, T )←
initiatedAt(loc(X ) = pub, T )

terminatedAt(happy(X ) = true, T )←
terminatedAt(rich(X ) = true, T ),
not holdsAt(loc(X ) = pub, T )

terminatedAt(happy(X ) = true, T )←
terminatedAt(loc(X ) = pub, T ),
not holdsAt(rich(X ) = true, T )
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General Formulation

Predicate Meaning

happensAt(E , T ) Event E is occurring at time T

initially(F = V ) The value of fluent F is V at time 0

initiatedAt(F = V , T ) At time T a period of time
for which F = V is initiated

terminatedAt(F = V ,T ) At time T a period of time
for which F = V is terminated

holdsFor(F = V , I ) I is the list of the maximal
intervals for which F = V
holds continuously

holdsAt(F = V , T ) The value of fluent F is V at time T
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General Formulation (Interval Manipulation)

Predicate Meaning

union all(L, I ) I is the list of maximal intervals
produced by the union of the lists
of maximal intervals of list L

intersect all(L, I ) I is the list of maximal intervals
produced by the intersection
of the lists of maximal intervals
of list L

relative complement all(I ′, L, I ) I is the list of maximal intervals
produced by the relative complement
of the list of maximal intervals I ′

with respect to every list
of maximal intervals of list L
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Examples Revisited

I A consumer is empowered to accept a quote for as long as that quote has been
issued by a merchant, and the quote has not expired .

holdsFor(pow(C , accept quote(C ,M)) = true, I )←
holdsFor(role of (C , consumer) = true, I1),
holdsFor(role of (M,merchant) = true, I2),
holdsFor(quote(M,C) = true, I3),
intersect all([I1, I2, I3], I )
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Examples Revisited

I A consumer is obliged to pay the agreed price to the contracting merchant by a
specified deadline for as long as the consumer has accepted the quote, while
being empowered to do so, and has not yet payed.

initiatedAt(obl(C , send EPO(C , IS)) = true, T )←
happensAt(accept quote(C ,M), T ),
holdsAt(pow(C , accept quote(C ,M)) = true, T ),
holdsAt(role of (IS , iServer) = true, T )

terminatedAt(obl(C , send EPO(C , IS)) = true, T )←
happensAt(send EPO(C , IS), T )
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Examples Revisited

Input I Recognition I Output �

Event

Recognition

System

Complex

Event

Definitions

Simple Events

. . .. . .

. . .. . .

initiatedAt(rendezVous(X ,Y ),T)←
happensAt(stopped(X ),T),
happensAt(lowSpeed(Y ),T),
farFromPorts(X ,T),
farFromPorts(Y ,T),
closeProximity(X ,Y ,T).

terminatedAt(rendezVous(X ,Y ),T)←
happensAt(travelSpeed(X ),T),
not closeProximity(X ,Y ,T).

Event Calculus as a Reasoning Engine

holdsAt(F ,T + 1)←
initiatedAtF ,T)

holdsAtAt(F ,T + 1)←
holdsAt(F ,T),
not terminatedAt(F ,T).

Very efficient inference: Artikis et al. An Event Calculus for Event Recognition, TKDE, 2015.

AIS signals,

contextual info (ports, weather, environment...)

Complex Events

. . . . . .

. . . . . .

holdsAt(rendezVous(vessel1 , vessel2 ), 10)
holdsAt(rendezVous(vessel1 , vessel2 ), 11)
holdsAt(rendezVous(vessel1 , vessel2 ), 12)
. . .
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Examples Revisited
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Event

Recognition
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initiatedAt(meet(X ,Y ),T)←
happensAt(active(X ),T),
happensAt(active(Y ),T),
holdsAt(close(X ,Y , 25),T).

terminatedAt(meet(X ,Y ),T)←
happensAt(walking(X ),T),
not holdsAt(close(X ,Y , 25),T).

Event Calculus as a Reasoning Engine

holdsAt(F ,T + 1)←
initiatedAtF ,T)

holdsAtAt(F ,T + 1)←
holdsAt(F ,T),
not terminatedAt(F ,T).

Very efficient inference: Artikis et al. An Event Calculus for Event Recognition, TKDE, 2015.

happensAt(active(id0 ), 10)
holdsAt(coord(id0 , 20 .88 , 11 .90), 10)
happensAt(active(id1 ), 10)
holdsAt(coord(id1 , 22 .34 , 15 .23), 10)
. . .

Complex Events

. . . . . .

. . . . . .

holdsAt(meet(id0 , id1 ), 11)
holdsAt(meet(id0 , id1 ), 12)
holdsAt(meet(id0 , id1 ), 13)
. . .

Learn this

From These

33 / 132



Summary: So far

I Introduced the Event Calculus
I Events and Fluents.
I Fluent formulations.

I Formulating domain dynamics specifications in the Event
Calculus.

I Next: Learning such specifications from data.
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Overview

I Part I: Dealing with Interacting Entities in Dynamic Domains.
I Norm-governed systems.
I Complex Event Recognition systems.
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Learning Logical Specifications of Domain Dynamics
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Agent-based modeling
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Intelligent monitoring &
complex event detection

I Goal:
I Given traces of a system’s/domain’s execution/evolution in

time.
I Learn the rules that govern the dynamics of the

system/domain.
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Learning Logical Specifications of Domain Dynamics

I Given past examples of transactions.
I Learn the underlying normative temporal rules.

initiatedAt(obl(C , send EPO(C , IS)) = true, T )←
happensAt(accept quote(C ,M), T ),
holdsAt(pow(C , accept quote(C ,M)) = true, T ),
holdsAt(role of (IS , iServer) = true, T )

terminatedAt(obl(C , send EPO(C , IS)) = true, T )←
happensAt(send EPO(C , IS), T )
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Learning Logical Specifications of Domain Dynamics
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Learning Logical Specifications of Domain Dynamics
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Agent-based modeling
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Intelligent monitoring &
complex event detection

I Why?
I The specifications may not always be known in advance.
I Even if they are, manual authoring is time-consuming & error-prone.
I The specifications are not static in principle.

I They often change over time reflecting change in the domain.
I Manual “tweaking” towards retaining performance is hard.

I A learnt model can fit data properties that a human cannot foresee.
I It is therefore likely to be more robust.
I An initial, hand-crafted set of specifications may be improved by

learning.
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Learning Logical Specifications of Domain Dynamics

kdnuggets.com

Electronic markets
www.bankofengland.co.uk

Agent-based modeling

cer.iit.demokritos.gr

Intelligent monitoring &
complex event detection

I How?

I Logic-based approaches offer direct connections to machine learning
I Inductive Logic Programming (ILP).
I Statistical Relational Learning.

I Arbitrarily complex background knowledge easy to incorporate into the
learning task.

I Interpretable models.
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Overview

I Part I: Dealing with Interacting Entities in Dynamic Domains.
I Norm-governed systems.
I Complex Event Recognition systems.
I Logical specifications of domain dynamics.
I The Event Calculus.

I Part II: Learning logical specifications of domain dynamics.
I Basics of Logical & Relational Learning (ILP).
I Then: Learning with the Event Calculus.
I Abductive-Inductive learning.
I Learning from relational data streams.

I Part IV: Statistical Relational Learning.
I Markov Logic Networks.
I Online structure & weight learning.
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Inductive Logic Programming (ILP)

∀x(man(x)→ mortal(x)) man(socrates).
Plato is a man.

Aristotle is a man.
. . .

mortal(socrates).
Plato is mortal.

Aristotle is mortal.
. . .

General

Specific

Deduction = Generalization (logic) + Justification (statistics)

Slide adapted from Zelezny et al., Taming the Complexity of Inductive Logic Programming, SOFSEM 2010.
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Inductive Logic Programming (ILP)

∀x(man(x)→ mortal(x)) man(socrates).
man(plato).

man(aristotle).
. . .

mortal(socrates).
mortal(plato).

mortal(aristotle).
. . .

General

Specific

Induction = Generalization (logic) + Justification (statistics)

Slide adapted from Zelezny et al., Taming the Complexity of Inductive Logic Programming, SOFSEM 2010.

48 / 132



ILP: A Very Simple Example

bird(sparrow). bird(eagle).
plane(boeing). plane(airbus).
penguin(joe).
flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).
entity(X)← bird(X).
entity(X)← plane(X).
bird(X)← penguin(X).

Find the simplest hypothesis consistent with the data, specifying when things fly.
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ILP: A Very Simple Example

bird(sparrow). bird(eagle).
plane(boeing). plane(airbus).
penguin(joe).
flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).
entity(X)← bird(X).
entity(X)← plane(X).
bird(X)← penguin(X).

Find the simplest hypothesis consistent with the data, specifying when things fly.

flies(X)← entity(X).
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ILP: A Very Simple Example

bird(sparrow). bird(eagle).
plane(boeing). plane(airbus).
penguin(joe).
flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).
entity(X)← bird(X).
entity(X)← plane(X).
bird(X)← penguin(X).

Find the simplest hypothesis consistent with the data, specifying when things fly.

flies(X)← entity(X).

I No good, entails all of the given facts for flying, but it also entails flies(joe)
which is false.
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plane(boeing). plane(airbus).
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flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).
entity(X)← bird(X).
entity(X)← plane(X).
bird(X)← penguin(X).
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ILP: A Very Simple Example

bird(sparrow). bird(eagle).
plane(boeing). plane(airbus).
penguin(joe).
flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).
entity(X)← bird(X).
entity(X)← plane(X).
bird(X)← penguin(X).

Find the simplest hypothesis consistent with the data, specifying when things fly.

flies(X)← bird(X).

I No good, entails some, but not all of the given facts for flying, and it does entail
flies(joe) which is false.
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ILP: A Very Simple Example

bird(sparrow). bird(eagle).
plane(boeing). plane(airbus).
penguin(joe).
flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).
entity(X)← bird(X).
entity(X)← plane(X).
bird(X)← penguin(X).

Find the simplest hypothesis consistent with the data, specifying when things fly.

flies(X)← plane(X).
flies(X)← bird(X) ∧ not penguin(X).
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I OK!

I Simplicity ⇔ over-fitting avoidance (”Occam’s razor”)
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ILP
Given:
I Training data, positive & negative examples E+, E−.

I E.g. traces of system execution/domain evolution in time, in the form of
sets of logical atoms.

I Some background knowledge B.
I Existing domain knowledge, Easily codified in logic.
I Simplify learning, avoid learning known stuff from scratch.
I May itself be revised/improved via learning.

I A “covers” relation.
I Logical entailment, covers(hypothesis, example)⇔ hypothesis � example

I A hypothesis quality criterion Q.
I E.g. a hyp. should cover all positives, no negatives.
I ...or, as many pos. & as few negs as possible (more realistic).
I Penalize complexity, prefer simpler hypotheses.

I A hypothesis language L.
I Simplify learning, avoid generating redundant hypotheses.

Find:
I A hypothesis H ∈ L which H is optimal according to Q.

I ...or, at least a “good-enough” H ∈ L.
I (finding an optimal H is intractable in principle).
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Examples & Background Knowledge
1st Set-up: Learning from Entailment

bird(sparrow). bird(eagle).
plane(boeing). plane(airbus).
penguin(joe).
flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).
entity(X)← bird(X).
entity(X)← plane(X).
bird(X)← penguin(X).

I Positive and negative examples are target concept instances.

I Everything else is background knowledge.

I This is the classical ILP setting.
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Examples & Background Knowledge
2nd Set-up: Learning from Interpretations

I1 = {bird(sparrow), flies(sparrow)}, I2 = {bird(eagle), flies(eagle)}
I3 = {plane(boeing), flies(boeing)}, I4 = {plane(airbus), flies(airbus)},
I5 = {penguin(joe), not flies(joe)}
entity(X)← bird(X).
entity(X)← plane(X).
bird(X)← penguin(X).

I Examples = interpretations = sets of true facts.

I Each interpretation contains a full description of the example.

I CWA assumed within the interpretation.
I So, e.g. I5 is actually simply {penguin(joe)}.

I All information that intuitively belongs to the example, is represented in the
example, not in the background knowledge.

I Background knowledge = domain knowledge.
I General info concerning the domain, not specific examples.

I More efficient than Learning from Entailment.

I But also weaker, cannot learn recursive concepts, nor relations between
examples.
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Hypothesis Language

bird(sparrow). bird(eagle).
plane(boeing). plane(airbus).
penguin(joe).
flies(sparrow). flies(airbus). flies(boeing). flies(eagle). not flies(joe).
entity(X)← bird(X).
entity(X)← plane(X).
bird(X)← penguin(X).

I Syntactic constraints on the acceptable hypotheses.

I Avoid constructing hypotheses that we know are useless for the current task.
I flies(X)← bird(X). potentially useful.
I plane(X)← bird(X). useless.

I Mode declarations: Declarative directives for rule generation.
I E.g. head(flies(entity)). body(not penguin(entity)).
I Can be used to generate e.g. flies(X)← not penguin(X) ∧ entity(X).
I Also, directives on how to variabilize rules, variable chaining, types of

variables etc.
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Learning & Search

I Ideal: Find the simplest theory in the given language L that
along with the background knowledge B covers as many
positives and as few negatives as possible.

I Intractable: full search in space of theories generated by L.
I Doubly exponential in the size of L.

I Typical ILP approaches:
I Incremental rule learning strategies.

I iteratively learn one “good” rule at a time until stopping
criterion met.

I Collection of such good rules approximates the learning
objective.

I Heuristic search strategies for learning a single rule.
I Learning “the best possible” rule is also intractable.
I Exponential search space (subsets of possible attributes).
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The Set-Cover Loop

1. Select positive example.
2. Generate rule that covers the example.
3. Generalize.
4. Remove covered positives.
5. Repeat until no positives left (or other stopping criterion).

{bird(sparrow), flies(sparrow)}
{bird(eagle), flies(eagle)}
{plane(boeing), flies(boeing)}
{plane(airbus), flies(airbus)}
{penguin(joe), not flies(joe)}

Learnt Theory:
flies(X)← plane(X).
flies(X)← bird(X) ∧ not penguin(X).
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The Set-Cover Loop

1. Select positive example.
2. Generate rule that covers the example.
3. Generalize.
4. Remove covered positives.
5. Repeat until no positives left (or other stopping criterion).

{bird(sparrow), flies(sparrow)}
{bird(eagle), flies(eagle)}
{plane(boeing), flies(boeing)}
{plane(airbus), flies(airbus)}
{penguin(joe), not flies(joe)}

Learnt Theory:
flies(boeing)← plane(boeing).
flies(X)← bird(X) ∧ not penguin(X).

63 / 132



The Set-Cover Loop

1. Select positive example.
2. Generate rule that covers the example.
3. Generalize.
4. Remove covered positives.
5. Repeat until no positives left (or other stopping criterion).

{bird(sparrow), flies(sparrow)}
{bird(eagle), flies(eagle)}
{plane(boeing), flies(boeing)}
{plane(airbus), flies(airbus)}
{penguin(joe), not flies(joe)}

Learnt Theory:
flies(X)← plane(X).
flies(X)← bird(X) ∧ not penguin(X).

64 / 132



The Set-Cover Loop

1. Select positive example.
2. Generate rule that covers the example.
3. Generalize.
4. Remove covered positives.
5. Repeat until no positives left (or other stopping criterion).

{bird(sparrow), flies(sparrow)}
{bird(eagle), flies(eagle)}
{plane(boeing), flies(boeing)}
{plane(airbus), flies(airbus)}
{penguin(joe), not flies(joe)}

Learnt Theory:
flies(X)← plane(X).
flies(X)← bird(X) ∧ not penguin(X).

65 / 132



The Set-Cover Loop

1. Select positive example.
2. Generate rule that covers the example.
3. Generalize.
4. Remove covered positives.
5. Repeat until no positives left (or other stopping criterion).

{bird(sparrow), flies(sparrow)}
{bird(eagle), flies(eagle)}
{plane(boeing), flies(boeing)}
{plane(airbus), flies(airbus)}
{penguin(joe), not flies(joe)}

Learnt Theory:
flies(X)← plane(X).
flies(X)← bird(X) ∧ not penguin(X).

66 / 132



The Set-Cover Loop

1. Select positive example.
2. Generate rule that covers the example.
3. Generalize.
4. Remove covered positives.
5. Repeat until no positives left (or other stopping criterion).

{bird(sparrow), flies(sparrow)}
{bird(eagle), flies(eagle)}
{plane(boeing), flies(boeing)}
{plane(airbus), flies(airbus)}
{penguin(joe), not flies(joe)}

Learnt Theory:
flies(X)← plane(X).
flies(X)← bird(X) ∧ not penguin(X).

67 / 132



The Set-Cover Loop

1. Select positive example.
2. Generate rule that covers the example.
3. Generalize.
4. Remove covered positives.
5. Repeat until no positives left (or other stopping criterion).

{bird(sparrow), flies(sparrow)}
{bird(eagle), flies(eagle)}
{plane(boeing), flies(boeing)}
{plane(airbus), flies(airbus)}
{penguin(joe), not flies(joe)}

Learnt Theory:
flies(X)← plane(X).
flies(X)← bird(X) ∧ not penguin(X).

68 / 132



The Set-Cover Loop

1. Select positive example.
2. Generate rule that covers the example.
3. Generalize.
4. Remove covered positives.
5. Repeat until no positives left (or other stopping criterion).

{bird(sparrow), flies(sparrow)}
{bird(eagle), flies(eagle)}
{plane(boeing), flies(boeing)}
{plane(airbus), flies(airbus)}
{penguin(joe), not flies(joe)}

Learnt Theory:
flies(X)← plane(X).
flies(sparrow)← bird(sparrow) ∧ not penguin(sparrow).
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3. Generalize.
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The Set-Cover Loop
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The Set-Cover Loop

1. Select positive example.
2. Generate rule that covers the example.
3. Generalize.
4. Remove covered positives.
5. Repeat until no positives left (or other stopping criterion).

{bird(sparrow), flies(sparrow)}
{bird(eagle), flies(eagle)}
{plane(boeing), flies(boeing)}
{plane(airbus), flies(airbus)} Stop!

Learnt Theory:
flies(X)← plane(X).
flies(X)← bird(X) ∧ not penguin(X).

73 / 132



Learning a Rule

I Heuristic search in a space ordered by generality.
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Generality

I Generality relation
I A rule r1 is more general that a rule r2 if

I {examples covered by r2} ⊆ {examples covered by r1}.
I Rule of thumb: “less constraint” rules are more general

I Therefore they cover more examples.

I For example, which one is more general?

IF has four legs & has whiskers THEN class = cat

IF has four legs & has whiskers & is grey THEN class = cat
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Version Spaces

I Space ordered by generality.

Most General Hypothesis

Most Specific Hypothesis

-- - -
- -- -

- -

Over-general region: 
Covers most positives, 

but also lots of negatives.

Over-specific region: 
Covers very few 

negatives, but also very 
few positives.

+

+
+

+

+

+

+
+

+ +

-

<?,?,four_legs,?,?,?>

<?,?,four_legs,?,?,is_grey> <?,?,four_legs,?,?,is_black>

More General 
Hypotheses

More 
Specific 

Hypotheses
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Version Spaces
Most General Hypothesis

Most Specific Hypothesis

-- - -
- -- -

- -

Over-general region: 
Covers most positives, 

but also lots of negatives.

Over-specific region: 
Covers very few 

negatives, but also very 
few positives.

+

+
+

+

+

+

+
+

+ +

-

Top-down search

Bottom-up search

I Top-down search: Start from over-general, gradually specialize to exclude
negatives.

I Bottom-up search: Start from over-specific, gradually generalize to cover
positives.
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Version Spaces

Most General Hypothesis

Most Specific Hypothesis

-- - -
- -- -

- -

Over-general region: 
Covers most positives, 

but also lots of negatives.

Prune more specific 
region

+
++ +

+
+ +

Over-specific rule here

I Pruning heuristics

I If a rule is already over-specific (covers too few positives), there is no
need to look into its more specific region.
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Version Spaces
Most General Hypothesis

Most Specific Hypothesis

Over-specific region: 
Covers very few 

negatives, but also very 
few positives.

+ +
+

-

Over-general rule here

Prune more 
general region

I Pruning heuristics

I If a rule is over-general (covers too many negatives), there is no need to
look into its more general region.
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ILP Basics: Learning & Search

I The version space model has some nice properties.

I Can we “upgrade” it to First-Order Logic?
I What do we need?

I A “covers” relation (logical entailment).
I A generality notion based on that.

I We have that:
I A rule r1 is more general than a rule r2 is

covers(r2 ) ⊆ covers(r1 )⇔ r1 � r2.

I Problem: r1 �? r2 for arbitrary r1, r2 is undecidable (even for
Horn logic).

I Use θ-subsumption as surrogate.
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θ-subsumption

I Substitution θ = [X1/t1, . . . ,Xn/tn]: an assignment of terms ti to variables Xi .

I A rule r1 θ-subsumes a rule r2 (r1 � r2) iff
∃θ : [head(r1 )θ = head(r2 ) & body(r1 )θ ⊆ body(r2 )].

r1 = flies(X)← bird(X)
r2 = flies(Y)← bird(Y) ∧ not penguin(Y)
r3 = flies(tweety)← bird(tweety) ∧ not penguin(tweety)
Then:
r1 � r2 with θ = [X/Y ].
r1 � r3 with θ = [X/tweety ].

I A theory H1 θ-subsumes a theory H2 iff
∀r1 ∈ H1,∃r2 ∈ H2 : r1 � r2.
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θ-subsumption

Properties of θ-subsumption:
I If r1 � r2 then r1 � r2.

I the inverse does not hold.

I If r1 � r2 then covers(r2 ) ⊆ covers(r1 ).

I θ-subsumption is decidable (but still, NP-complete).

Therefore:

I θ-subsumption can be used as a surrogate for logical
entailment.

I Version space (propositional) ↔ subsumption lattice
(relational).

I We essentially have the same search and pruning heuristics.
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Learning a Rule

I Construct a search space (subsumption lattice).
I Upper-bound: Most-general rule (rule with an empty body)
I Lower-bound: Most-specific rule that covers a single example.

I Use search and pruning heuristics, along with a quality
criterion (e.g. precision, recall, compression, info gain...) to
find a “good” rule.
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Learning a Rule: The subsumption Lattice

initiatedAt(meet(X , Y ),T )←

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(inactive(Y ),T ).

... initiatedAt(meet(X , Y ),T )←
holdsAt(orientation(X , Y , 45),T ).

. . . . . .

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ), happensAt(inactive(Y ),T ), holdsAt(close(X , Y , 25),T ),
holdsAt(close(Y , X , 25),T ), not happensAt(inactive(X ),T ), not happensAt(abrupt(X ),T ),
not happensAt(running(X ),T ), happensAt(inactive(Y ),T ), not happensAt(active(Y ),T ),
not happensAt(running(Y ),T ), not happensAt(abrupt(Y ),T ), holdsAt(orientation(X , Y , 45),T ).

. . .. . .. . .

Rest of clauses generated

by adding one condition

from ⊥ to the body of >

Bottom Clause ⊥ :

Top Clause >:

Ordered by θ-subsumption �:
If r1 � r2 then covers(r2 , e)⇒ covers(r1 , e)

for all examples e
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Learning a Rule: Search
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Putting it All Together

H = ∅ (Begin)

Positives
not covered by H?Return H Select a positive example

Construct a Bottom Clause

Find a “good” clause r:

• SearchSpace: Clauses that θ-subsume
the bottom clause

• score(r): A clause evaluation function

• Return: r ∈ SearhSpace with the best score

H = H ∪ r

Covering step:

Remove all positives covered by H

No Yes
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ILP Basics: Summary

I We are given training examples representing true/false
“snapshots” of the target concept.

I Some BK encoding things we know about the domain.

I Some hypothesis language.

I We use a “covers” relation based on logical entailment.

I and θ-subsumption as a notion of generality.

I Based on generality we build search spaces.

I Using a rule quality criterion, in addition to search and pruning
heuristics we look for “good” rules within the search spaces.

I We learn one rule at a time until some stopping criterion is
met.
I For example, until we cover all positives, until we reach a

maximum theory size etc.
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Overview

I Part I: Dealing with Interacting Entities in Dynamic Domains.
I Norm-governed systems.
I Complex Event Recognition systems.
I Logical specifications of domain dynamics.
I The Event Calculus.

I Part II: Learning logical specifications of domain dynamics.
I Basics of Logical & Relational Learning.
I Learning with the Event Calculus.
I Abductive-Inductive learning.
I Learning from relational data streams.

I Part IV: Statistical Relational Learning.
I Markov Logic Networks.
I Online structure & weight learning.
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Learning with the Event Calculus

I The classical ILP strategy works for
I Learning a single concept.
I Learning multiple independent concepts.

I This is not the case with the Event Calculus.
I We want to learn theories of temporal specifications.
I In the form of initiation & termination rules.
I Which are not independent from each other.
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Learning with the Event Calculus

I Inferences are non-monotonic:
I Given: initiatedAt(event1, 10).
I ? holdsAt(event1, 20).

I yes.

I Later we’re also told that terminatedAt(event1, 15).
I As a result, we need to retract our previous answer.

I As a result of non-monotonicity
I Iterative (covering) rule learning techniques do not work.
I They are based on the monotonicity assumption that adding

new rules to a theory increases the example coverage of the
theory.

I Which is not the case, E.g. adding a termination rules reduces
the example coverage of the theory.
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Learning with the Event Calculus

Input I Recognition I Output �

Event

Recognition

System

Complex

Event

Definitions

Simple Events

. . .. . .

. . .. . .

initiatedAt(rendezVous(X ,Y ),T)←
happensAt(stopped(X ),T),
happensAt(lowSpeed(Y ),T),
farFromPorts(X ,T),
farFromPorts(Y ,T),
closeProximity(X ,Y ,T).

terminatedAt(rendezVous(X ,Y ),T)←
happensAt(travelSpeed(X ),T),
not closeProximity(X ,Y ,T).

Event Calculus as a Reasoning Engine

holdsAt(F ,T + 1)←
initiatedAtF ,T)

holdsAtAt(F ,T + 1)←
holdsAt(F ,T),
not terminatedAt(F ,T).

Very efficient inference: Artikis et al. An Event Calculus for Event Recognition, TKDE, 2015.

AIS signals,

contextual info (ports, weather, environment...)

Complex Events

. . . . . .

. . . . . .

holdsAt(rendezVous(vessel1 , vessel2 ), 10)
holdsAt(rendezVous(vessel1 , vessel2 ), 11)
holdsAt(rendezVous(vessel1 , vessel2 ), 12)
. . .

Learn this
From These
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Abductive Logic Programming (ALP)

I Abduction:
I Hypothetical reasoning to the best explanation under incomplete

information.

I ALP

I Given:
I A logic program H.
I A set of observations O (logical facts).
I A set of integrity constraints IC .
I A set of predicate symbols A.

I Find:
I A set of abductive explanations ∆ ⊆ A s.t. H ∪∆ � O and

H ∪∆ ∪ IC is consistent.
I Formal correspondence between NAF semantics and ALP.
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ALP: A Simple Example

Observations:
holdsAt(meeting(id1, id2), 10).
holdsAt(meeting(id1, id2), 11).
not holdsAt(meeting(id1, id2), 12).
time(1..20).

H : The axioms of inertia (Event Calculus).

A = {initiatedAt/2, terminatedAt/2}.

IC = false← initiatedAt(F, T) ∧ terminatedAt(F, T).

∆ = {initiatedAt(meeting(id1, id2), 9), terminatedAt(meeting(id1, id2), 11)}.
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Non-monotonic Learning
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Non-monotonic Learning (The XHAIL Algorithm)

Slide from Ray O., Using Abduction for Induction of Normal Logic Programs, AIAI-2006.

97 / 132



The XHAIL Algorithm (Example)

Examples:

happensAt(walking(id1), 9)
coords(id1, 201, 454, 9)
holdsAt(moving(id1, id2), 10)
...
happensAt(running(id5), 20)
direction(id3, 270, 20)
not holdsAt(moving(id3, id5), 21)
...

Abduction:
initiatedAt(moving(id1, id2), 9)
terminatedAt(moving(id3, id5), 20)

Bottom Theory/Kernel Set:

initiatedAt(moving(id1, id2), 9)←
happensAt(walking(id1), 9),
happensAt(walking(id2), 9),
not happensAt(running(id1), 9),
not happensAt(active(id2), 9),
holdsAt(close(id1, id2, 35), 9),
holdsAt(orientation(id1, id2, 45), 9).

terminatedAt(moving(id3, id5), 20)←
happensAt(walking(id3), 20),
happensAt(running(id5), 20),
not happensAt(abrupt(id1), 9),
not happensAt(active(id2), 9),
not holdsAt(close(id1, id2, 35), 20),
not holdsAt(orientation(id1, id2, 45), 20).
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Induction as Abductive Search

Bottom Theory/Kernel Set:

initiatedAt(moving(X, Y), T)←
happensAt(walking(X), T),
happensAt(walking(Y), T),
holdsAt(close(X, Y, 35), T),
not happensAt(running(X),T),
not happensAt(active(Y),T),
holdsAt(orientation(X, Y, 45), T).

terminatedAt(moving(X, Y), T)←
happensAt(walking(X),T),
happensAt(running(Y), T),
not happensAt(abrupt(X),T),
not happensAt(active(Y),T),
not holdsAt(close(X, Y, 35), T),
not holdsAt(orientation(X, Y, 45),T).

Hypothesis:

initiatedAt(moving(X, Y), T)←
happensAt(walking(X), T),
happensAt(walking(X), T),
holdsAt(close(X, Y, 35), T),
holdsAt(orientation(X, Y, 45), T),

terminatedAt(moving(X, Y), T)←
happensAt(running(Y), T),
not holdsAt(close(X, Y, 35), T).

Replace the i-th rule αi ← δi1, . . . , δ
i
n in the Kernel Set with the following program:

αi ← use(i, 0), try(i, 1, δi1).

try(i, 1, δi1)← not use(i, 1).

try(i, 1, δi1)← use(i, 1), δi1 .
. . .

αi ← use(i, 0), try(i, n, δi
n).

try(i, n, δin)← not use(i, n).

try(i, n, δi1)← use(i, n), δin .

Specify goal & solve (directly, with an Answer Set Solver!):

truePos(E)← holdsAt(E, T), positiveExmpl(E).
falsePos(E)← holdsAt(E, T), not positiveExmpl(E).
{use(I, J)} ← ruleId(I), literalId(J). (Abduction via choice rule.)
maximize{truePos/1}.
minimize{falsePos/1, use/2}.

H is obtained from the Kernel Set by removing every body atom δ
j
i for which the abducible

use(i, j) is not in ∆, and removing every rule whose head atom ai
does not have a corresponding atom use(0, i) in ∆.
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Theory Revision

I XHAIL:
I Formal semantics.
I Capable of learning multi-concept theories, recursive concepts etc.
I Does not scale.

I The basic ideas behind XHAIL can be used for Theory Revision (TR).
I Possible remedy for scalability issues.

I Data are presented in batches/chunks.

I A theory is constructed from the first batch.

I As new batches arrive the theory is continuously revised to account for the new

observations.
I Add new rules.
I Remove existing (redundant) rules.
I Specialize rules.
I The TR process is guided by optimizing (locally, current batch only )

example coverage + theory complexity.

I How large should the batches be?
I Larger batches mean more “globally-good” revisions, but also, harder to

process.
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Overview

I Part I: Dealing with Interacting Entities in Dynamic Domains.
I Norm-governed systems.
I Complex Event Recognition systems.
I Logical specifications of domain dynamics.
I The Event Calculus.

I Part II: Learning logical specifications of domain dynamics.
I Basics of Logical & Relational Learning.
I Learning with the Event Calculus.
I Abductive-Inductive learning.

I Part III: Scalable learning.
I Non-monotonic Theory Revision.
I Learning from relational data streams.

I Part IV: Statistical Relational Learning.
I Markov Logic Networks.
I Online structure & weight learning.
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Online Inductive Logic Programming

Challenge:
I Inductive Logic Programming algorithms are batch learners.

I Each candidate in the search space is evaluated on the entire
dataset.

Goal:
I Online learning:

I Examples arrive in a stream.
I Each example is “seen” once.

Approach:
I Make decisions from subsets of the stream:

I Decisions are optimal “locally”.
I Decisions are optimal “globally”...

I within an error margin ε,
I with probability 1−δ.
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The Hoeffding Bound

I X is a random variable.

I X1, . . . ,XN are N independent observations of X ’s values.

I Let X̄ be the known, observed mean of X .

I Let X̂ be the unknown, true mean of X .

I Then:

X̄−ε ≤ X̂ ≤ X̄+ε, with probability 1−δ, where ε =

√
ln(1/δ)

2N
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Online Rule Learning

R1: 0.345

R2: 0.232 R3: 0.145

R4: 0.612 R5: 0.325

Candidate Rules

X̄ − ε ≤ X̂ ≤ X̄ + ε, where ε =
√

ln(1/δ)
2N

Training stream
. . . . . .

Find the best candidate
across the stream

As examples stream in...

Monitor X̄ = scoreBestRule − scoreSecondBestRule

Continue until the number N of examples

makes X̄ > ε =
√

ln(1/δ)
2N

Then

X̄ − ε > 0⇒

X̂ > 0⇒

BestRule is indeed the best rule,

with probability 1−δ.
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Online Hill-Climbing

initiatedAt(meet(X , Y ),T )←

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(inactive(Y ),T ).

... initiatedAt(meet(X , Y ),T )←
holdsAt(orientation(X , Y , 45),T ).

. . . . . .

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ), happensAt(inactive(Y ),T ), holdsAt(close(X , Y , 25),T ),
holdsAt(close(Y , X , 25),T ), not happensAt(inactive(X ),T ), not happensAt(abrupt(X ),T ),
not happensAt(running(X ),T ), happensAt(inactive(Y ),T ), not happensAt(active(Y ),T ),
not happensAt(running(Y ),T ), not happensAt(abrupt(Y ),T ), holdsAt(orientation(X , Y , 45),T ).

. . .. . .. . .

Bottom Clause ⊥ :

Top Clause >:

Training stream

Used O( 1
ε2 ln 1

δ
)

examples

Used O( 1
ε2 ln 1

δ
)

examples
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Used O( 1
ε2 ln 1

δ
)

examples

Used O( 1
ε2 ln 1

δ
)

examples

Best clause so far

108 / 132



Online Hill-Climbing

initiatedAt(meet(X , Y ),T )←

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(inactive(Y ),T ).

... initiatedAt(meet(X , Y ),T )←
holdsAt(orientation(X , Y , 45),T ).

. . . . . .

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ), happensAt(inactive(Y ),T ), holdsAt(close(X , Y , 25),T ),
holdsAt(close(Y , X , 25),T ), not happensAt(inactive(X ),T ), not happensAt(abrupt(X ),T ),
not happensAt(running(X ),T ), happensAt(inactive(Y ),T ), not happensAt(active(Y ),T ),
not happensAt(running(Y ),T ), not happensAt(abrupt(Y ),T ), holdsAt(orientation(X , Y , 45),T ).

. . .. . .. . .

Bottom Clause ⊥ :

Top Clause >:

Training stream

Used O( 1
ε2 ln 1

δ
)

examples

Used O( 1
ε2 ln 1

δ
)

examples

109 / 132



Online Hill-Climbing

initiatedAt(meet(X , Y ),T )←

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(inactive(Y ),T ).

... initiatedAt(meet(X , Y ),T )←
holdsAt(orientation(X , Y , 45),T ).

. . . . . .

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ), happensAt(inactive(Y ),T ), holdsAt(close(X , Y , 25),T ),
holdsAt(close(Y , X , 25),T ), not happensAt(inactive(X ),T ), not happensAt(abrupt(X ),T ),
not happensAt(running(X ),T ), happensAt(inactive(Y ),T ), not happensAt(active(Y ),T ),
not happensAt(running(Y ),T ), not happensAt(abrupt(Y ),T ), holdsAt(orientation(X , Y , 45),T ).

. . .. . .. . .

Bottom Clause ⊥ :

Top Clause >:

Training stream

Used O( 1
ε2 ln 1

δ
)

examples

Used O( 1
ε2 ln 1

δ
)

examples

Best clause so far

110 / 132



Online Hill-Climbing

initiatedAt(meet(X , Y ),T )←

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ).

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
happensAt(inactive(Y ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ),
holdsAt(close(X , Y , 25),T ).

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(inactive(Y ),T ).

... initiatedAt(meet(X , Y ),T )←
holdsAt(orientation(X , Y , 45),T ).

. . . . . .

. . .

initiatedAt(meet(X , Y ),T )←
happensAt(active(X ),T ), happensAt(inactive(Y ),T ), holdsAt(close(X , Y , 25),T ),
holdsAt(close(Y , X , 25),T ), not happensAt(inactive(X ),T ), not happensAt(abrupt(X ),T ),
not happensAt(running(X ),T ), happensAt(inactive(Y ),T ), not happensAt(active(Y ),T ),
not happensAt(running(Y ),T ), not happensAt(abrupt(Y ),T ), holdsAt(orientation(X , Y , 45),T ).

. . .. . .. . .

Bottom Clause ⊥ :

Top Clause >:

Training stream

Used O( 1
ε2 ln 1

δ
)

examples

Used O( 1
ε2 ln 1

δ
)

examples
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Features
Clause pruning:

I Often, “bad” clauses are constructed (e.g. from noisy
examples).

I These are discarded when:
I they do not “change” (get specialized) for sufficiently enough

time
I and their score is below a threshold.

Warm-up period:

I Any-time algorithm

I In practice an output clause must have been evaluated on
Nmin examples.

Tie breaking:

I When the best & the second-best clause have very similar
scores...

I Break ties based on a pre-defined threshold, instead of waiting
until the Hoeffding bound test succeeds.
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Learning Sets of Clauses

Annotation Inferred
TP holds holds

All ok!

Annotation Inferred
FP not holds holds

Incorrectly
initiated

by clause Rinit

Specialize Rinit

No termination
clause “fires”

Generate new
termination clause

Annotation Inferred
FN holds not holds

Incorrectly
treminated

by clause Rterm

Specialize Rterm

No initiation
clause “fires”

Generate new
initiation clause

OR OR

Initiation Learner

Reward all clauses that
correctly initiate the TP

Termination Learner

Reward all clauses that correctly
allow the TP to persist

TP

TP

113 / 132



Learning Sets of Clauses

Annotation Inferred
TP holds holds

All ok!

Annotation Inferred
FP not holds holds

Incorrectly
initiated

by clause Rinit

Specialize Rinit

No termination
clause “fires”

Generate new
termination clause

Annotation Inferred
FN holds not holds

Incorrectly
treminated

by clause Rterm

Specialize Rterm

No initiation
clause “fires”

Generate new
initiation clause

OR OR

Initiation Learner

Reward all clauses that
correctly initiate the TP

Termination Learner

Reward all clauses that correctly
allow the TP to persist

Input stream

TP

TP

113 / 132



Learning Sets of Clauses

Annotation Inferred
TP holds holds

All ok!

Annotation Inferred
FP not holds holds

Incorrectly
initiated

by clause Rinit

Specialize Rinit

No termination
clause “fires”

Generate new
termination clause

Annotation Inferred
FN holds not holds

Incorrectly
treminated

by clause Rterm

Specialize Rterm

No initiation
clause “fires”

Generate new
initiation clause

OR OR

Initiation Learner

Reward all clauses that
correctly initiate the TP

Termination Learner

Reward all clauses that correctly
allow the TP to persist

Input stream

TP

TP

113 / 132



Learning Sets of Clauses

Annotation Inferred
TP holds holds

All ok!

Annotation Inferred
FP not holds holds

Incorrectly
initiated

by clause Rinit

Specialize Rinit

No termination
clause “fires”

Generate new
termination clause

Annotation Inferred
FN holds not holds

Incorrectly
treminated

by clause Rterm

Specialize Rterm

No initiation
clause “fires”

Generate new
initiation clause

OR OR

Initiation Learner

Penalize all clauses that
incorrectly initiate the FP

Termination Learner

Generate new termination clause

Input stream

FP

FP

113 / 132



Learning Sets of Clauses

Annotation Inferred
TP holds holds

All ok!

Annotation Inferred
FP not holds holds

Incorrectly
initiated

by clause Rinit

Specialize Rinit

No termination
clause “fires”

Generate new
termination clause

Annotation Inferred
FN holds not holds

Incorrectly
treminated

by clause Rterm

Specialize Rterm

No initiation
clause “fires”

Generate new
initiation clause

OR OR

Initiation Learner

Generate new initiation clause

Termination Learner

Penalize all clauses that
generate the FN

Input stream

FN

FN

113 / 132



OLED

OLED

Generate
new

clauses

Evaluate
Clauses

Expand
Existing
Clauses

Prune
Clauses

EC Axioms

holdsAt(F ,T + 1 ) ←
initiatedAt(F ,T ).

holdsAt(F ,T + 1 ) ←
holdsAt(F ,T ),
not terminatedAt(F ,T ).

Learnt Hypothesis Ht:

initiatedAt(moving(X ,Y ),T ) ←
holdsAt(close(X ,Y , 34 ),T ).

terminatedAt(moving(X ,Y ),T ) ←
not holdsAt(close(X ,Y , 34 ),T ).

Micro-batch Dt

holdsAt(moving(id1 , id2 ), 10 )
happensAt(walking(id1 ), 9 ),
happensAt(walking(id2 ), 9 ),
holdsAt(close(id1 , id2 , 34 ), 9 ),
holdsAt(orientation(id1 , id2 , 45 ), 9 )

Data Stream/Training Examples

. . .

. . .
Micro-batch Dt′

not holdsAt(moving(id1 , id2 ), 20 )
happensAt(actove(id1 ), 19 ),
happensAt(running(id2 ), 19 ),
not holdsAt(close(id1 , id2 , 34 ), 19 ),
holdsAt(orientation(id1 , id2 , 120 ), 19 )

. . .
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Comparison

Method F1-score Theory size Time (sec)
Moving ECcrisp 0.751 28 –

ECMM 0.890 28 1692
XHAIL 0.841 14 7836
OLED 0.812 34 12

Meeting ECcrisp 0.762 23 –
ECMM 0.863 23 1133
XHAIL 0.861 15 7248
OLED 0.836 29 23
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Overview

I Part I: Dealing with Interacting Entities in Dynamic Domains.
I Norm-governed systems.
I Complex Event Recognition systems.
I Logical specifications of domain dynamics.
I The Event Calculus.

I Part II: Learning logical specifications of domain dynamics.
I Basics of Logical & Relational Learning.
I Learning with the Event Calculus.
I Abductive-Inductive learning.

I Part III: Scalable learning.
I Non-monotonic Theory Revision.
I Learning from relational data streams.

I Part IV: Statistical Relational Learning.
I Markov Logic Networks.
I Online structure & weight learning.
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Statistical Relational Learning

LOGIC

Formal and
declarative
relational
representation

LEARNING

Improving performance
through experience

PROBABILITIES
Sound mathematical
foundation for
reasoning under
uncertainty
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ProbLog

I A probabilistic logic programming language.
I Allows for independent probabilistic facts prob::fact.

I prob indicates the probability that fact is part of a possible
world.

I Facts are random variables.

I Rules are written as in classic Prolog.

I The probability of a query q imposed on a ProbLog database
(success probability) is computed by the following formula:

Ps(q) = P(
∨

e∈Proofs(q)

∧
fi∈e

fi )
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Event Recognition using ProbLog

Input Output

340 0.45 :: inactive(id0) 340 0.41 :: left object(id1, id0)

340 0.80 :: p(id0) =(20.88,−11.90) 340 0.55 :: moving(id2, id3)

340 0.55 :: appear(id0)

340 0.15 :: walking(id2)

340 0.80 :: p(id2) =(25.88,−19.80)

340 0.25 :: active(id1)

340 0.66 :: p(id1) =(20.88,−11.90)

340 0.70 :: walking(id3)

340 0.46 :: p(id3) =(24.78,−18.77)
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Event Calculus in ProbLog
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Event Calculus in ProbLog
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Markov Logic Networks (MLN)
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Event Calculus in Markov Logic Networks (MLN-EC)

INPUT I TRANSFORMATION I INFERENCE I OUTPUT �

Compact
Knowledge

Base

Composite
Event

Definitions

Event
Calculus
Axioms

Simple,
Derived
Event

Stream

Recognised
Composite

Events

Markov Logic Networks
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MLN-EC: Inertia
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MLN-EC: Inertia
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MLN-EC: Inertia
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Online Structure & Weight Learning in MLN

−0.829 initiatedAt(meet(X ,Y ),T) ←

0.2 initiatedAt(meet(X ,Y ),T) ←
happensAt(active(X),T).

0.5 initiatedAt(meet(X ,Y ),T) ←
happensAt(active(X),T),
happensAt(inactive(Y ),T).

1.82 initiatedAt(meet(X ,Y ),T) ←
happensAt(active(X),T),
happensAt(inactive(Y ),T),
holdsAt(close(X ,Y , 25),T).

. . .

0.1 initiatedAt(meet(X ,Y ),T) ←
happensAt(active(X),T),
holdsAt(close(X ,Y , 25),T).

0.0 initiatedAt(meet(X ,Y ),T) ←
happensAt(inactive(Y ),T).

... −1.3 initiatedAt(meet(X ,Y ),T) ←
holdsAt(orientation(X ,Y , 45),T).

initiatedAt(meet(X ,Y ),T) ←
happensAt(active(X),T), happensAt(inactive(Y ),T), holdsAt(close(X ,Y , 25),T),
holdsAt(close(Y ,X , 25),T), not happensAt(inactive(X),T), not happensAt(abrupt(X),T),
not happensAt(running(X),T), happensAt(inactive(Y ),T), not happensAt(active(Y ),T),
not happensAt(running(Y ),T), not happensAt(abrupt(Y ),T), holdsAt(orientation(X ,Y , 45),T).

. . .. . .. . .

Bottom Clause ⊥ :

Used O(
1

ε2
ln

1

δ
) examples

Used O(
1

ε2
ln

1

δ
) examples

Used O(
1

ε2
ln

1

δ
) examples

I Simultaneous structure & weight learning.
I Weight learning with AdaGrad.
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The AdaGrad Weight Update Rule

w t+1
i = sign(w t

i −
η

C t
i

∆g t
i ) max{0 , |w t

i −
η

C t
i

∆g t
i | − λ

η

C t
i

}

Current weight

of the i-th rule

Previous weight

of the i-th rule
Learning rate

Rule’s current

mistakes

Term proportional to the rule’s

accumulated past mistakes

Regularization rate

• ∆gti (i-th rule’s mistakes at time t): difference in rule’s true groundings
in the true state and the MAP-inferred state.

132 / 132



OLED-MLN

WoLED

MAP Inference

Theory
Expansion

Weights Update

Hoeffding Tests/Rule
Expansion

Pruning

Background Knowledge

holdsAt(F ,T + 1 ) ←
initiatedAt(F ,T ).

holdsAt(F ,T + 1 ) ←
holdsAt(F ,T ),
not terminatedAt(F ,T ).

Mode Declarations

head(initiatedAt(move(+id,+id),+time))
head(terminatedAt(move(+id,+id),+time))
body(happensAt(walking(+id,+id),+time))
body(not happensAt(walking(+id,+id),+time))
body(distLessThan(+id,+id,#dist,+time))
body(dirLessThan(+id,+id,#dist,+time))

Current MLN Theory Ht:

1 .345 initiatedAt(move(X ,Y ),T ) ←
happensAt(walking(X ),T ),
happensAt(walking(Y ),T ),
distLessThan(X ,Y , 34 ,T )

0 .865 terminatedAt(move(X ,Y ),T ) ←
happensAt(inactive(X ),T ),
not distLessThan(X ,Y , 34 ,T )

Training Interpretation It

holdsAt(move(id1 , id2 ), 10 )
happensAt(walking(id1 ), 9 )
happensAt(walking(id2 ), 9 )
coords(id1 , 23 , 104 , 9 )
coords(id2 , 42 , 84 , 9 )
direction(id1 , 212 , 9 )
direction(id2 , 78 , 9 )

Training Stream

. . .

. . .
Training Interpretation It′

not holdsAt(move(id1 , id2 ), 100 )
happensAt(walking(id1 ), 99 )
happensAt(walking(id2 ), 99 )
coords(id1 , 205 , 23 , 99 )
coords(id2 , 462 , 24 , 99 )
direction(id1 , 23 , 99 )
direction(id2 , 798 , 99 )

. . .
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OLED-MLN Evaluation on the CAVIAR Dataset

0.751 0.789 
0.857 

0.692 

0.89 
0.841 

Manual rules OLED WoLED OSLa MaxMargin XHAIL

F1-Score (Move Together Activity) 

0.762 

0.843 

0.889 0.882 
0.863 0.861 

Manual rules OLED WoLED OSLa MaxMargin XHAIL

F1-Score (Meet Each Other Activity) 
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OLED-MLN Evaluation on the CAVIAR Dataset

0 28 59 

1300 1692 

7836 

Manual rules OLED WoLED OSLa MaxMargin XHAIL

Training Time (Sec) (Move Together Activity) 

0.857 0.89 

F1-Score (Move Together Activity) 

0 22 52 180 
1133 

7248 

Manual rules OLED WoLED OSLa MaxMargin XHAIL

Training Time (Sec) (Meet Each Other Activity) 
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Some Useful Reading Readings

I Logic, Reasoning & Logic Programming:
I Sergot M. Knowledge Representation. Course 491, Department of

Computing, Imperial College London
I https://www.doc.ic.ac.uk/~mjs/teaching/491.html
I Mueller, Erik T.: Event calculus and temporal action logics compared.

Artif. Intell. 170(11): 1017-1029 (2006).
I Mueller, Erik T. Commonsense reasoning: an event calculus based

approach. Morgan Kaufmann, 2014.

I Relational Learning/Inductive Logic Programming:
I De Raedt, Luc. Logical and relational learning. Springer Science &

Business Media, 2008.

I Statistical Relational Learning:
I Koller D, Friedman N, Dzeroski S, Sutton C, McCallum A, Pfeffer A,

Abbeel P, Wong MF, Heckerman D, Meek C, Neville J. Introduction to
Statistical Relational Learning. MIT press; 2007.

I Rule learning:
I Frnkranz, J., Gamberger, D., & Lavra, N. (2012). Foundations of rule

learning. Springer Science & Business Media.
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