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Abstract—Nonlinear manifold embedding has attracted consid-
erable attention due to its highly-desired property of efficiently
encoding local structure, i.e. intrinsic space properties, into
a low-dimensional space. The benefit of such an approach is
twofold: it leads to compact representations while addressing the
often-encountered curse of dimensionality. The latter plays an
important role in retrieval applications, such as keyword spotting,
where a sorted list of retrieved objects with respect to a distance
metric is required. In this work, we explore the efficiency of
the popular manifold embedding method t-distributed Stochastic
Neighbor Embedding (t-SNE) on the Query-by-Example keyword
spotting task. The main contribution of this work is the extension
of t-SNE in order to support out-of-sample (OOS) embedding
which is essential for mapping query images to the embedding
space. The experimental results demonstrate a significant increase
in keyword spotting performance when the word similarity is
calculated on the embedding space.

I. INTRODUCTION

Keyword spotting (KWS) is closely related to document

indexing and can be defined as the task of locating and

retrieving specific words of interest, referred as keywords or

queries, in a document collection. In this work, we focus

on the segmentation-based Query-by-Example (QbE) keyword

spotting category which falls under the content based image

retrieval paradigm. Approaches belonging to this category as-

sume as input a query image together with a set of (segmented)

word images and return a ranked list of the potentially relevant

word images.

Feature extraction is the most crucial step of a QbE KWS

method. QbE KWS methods can be categorized, with respect

to the extracted features, into (i) methods that extract a

feature vector (descriptor) of fixed dimensionality for each

word image and (ii) methods that extract a set of features

for each word image. Methods of the former category, also

called holistic word representations, attract a lot of interest

due to their simplicity at the retrieval step. Specifically, such

representations require a simple distance/similarity measure

for the retrieval step (e.g. Euclidean distance) contrary to

techniques belonging to the second category which require

more complex matching algorithms (e.g. DTW sequential

matching).

The majority of KWS methods that rely on holis-

tic word representations generate high-dimensional descrip-

tors ([1],[2],[3],[4]). However, Euclidean distance on high-

dimensional vectors is not a reliable metric for the generation

of the retrieval list. This observation leads to the realization

that a dimensionality reduction technique is essential in order

to fully utilize the descriptive power of holistic representations.

Preserving as much of the significant structure of the high-

dimensional data as possible in the low-dimensional map is

crucial and thus nonlinear dimensionality reduction techniques

are required. An interesting property, which has proven to be

effective, is to assume that the high-dimensional data lies on a

manifold of significant lower intrinsic dimensionality. Thus,

the computation of the low-dimensional map is equivalent

to learning the underlying manifold. The generated nonlinear

mapping is called manifold embedding ([5],[6],[7]).

This work relies on the well-known t-distributed Stochastic

Neighbor Embedding (t-SNE) [8] due to its success on the di-

mensionality reduction task for a large variety of real datasets.

The main hindrance for a t-SNE based KWS application is

the addition of a new descriptor on the previously learnt

embedding, i.e the embedding of the query representation.

The majority of manifold learning approaches, including t-

SNE, are non-parametric, meaning that no straightforward way

exists to add a new descriptor to the embedding. This is

referred as the out-of-sample problem. In order to overcome

this problem, we propose a novel out-of-sample extension to

the t-SNE embedding. This extension enables us to utilize the

t-SNE method and explore its efficiency for the KWS task.

The rest of this paper is organized as follows. In Section II

related work is highlighted, while in Section III a summariza-

tion of t-SNE is presented. Section IV describes in detail the

proposed out-of-sample extension. Comparative experimental

results are discussed in Section V. Finally, conclusions and

future directions are drawn in Section VI.

II. RELATED WORK

Several manifold embedding methods have been reported

in the literature aiming to generate a non-linear mapping

which encodes high-dimensional data to a low-dimensional

space without significantly affecting the local structure of

the initial space. Notable manifold embedding techniques are

Isomap [5], which creates an embedding based on geodesic
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distances, and Locally Linear Embedding (LLE) [6] as well

as Laplacian Eigenmaps [7], which both assume the same

local structure (linearity) for both the initial high-dimensional

and the resulting low-dimensional space. Such techniques

can be viewed as generalized eigenvector problems at adja-

cency matrices. The aforementioned techniques are sensitive

to outliers as well as to the predefined dimensionality of the

embedding space and consequently lead to the generation of

low quality embeddings for the case of challenging datasets.

On the contrary, t-SNE [8] has been extensively used on

real datasets, providing embeddings of high quality, even

when the embedding dimensionality is lower than the intrinsic

dimensionality of the underlying manifold.

The majority of the manifold embedding methods do not

support the addition of a new sample to the already learnt

embedding. This is referred as the out-of-sample problem for

which many approaches have been proposed in the literature.

Two main categories can be distinguished: parametric and non-

parametric out-of-sample extensions. Parametric approaches

assume that the learnt embedding can be modeled by a

(non-linear) combination of the initial data along with a set

of parameters [9], [10]. By estimating these parameters on

the already extracted embedding, the out-of-sample extension

is straightforward using the same model and the estimated

parameters. The main disadvantage of such approaches is

the assumption that the generated mapping can be efficiently

represented by a (non-linear) model of ideally few parameters.

On the other hand, non-parametric approaches usually exploit

the geometric intuition of the local structure and the nature

as well as specific characteristics of the selected manifold

learning algorithm [11], [12], [13].

To the best of our knowledge, the only approach that utilizes

manifold embedding for the task of KWS is the work of

Sudholt et al. [14]. The authors of [14] proposed a variation

of Isomap embedding for the case of Bag of Visual Words

(BoVW) features. Although one can become aware of the

efficiency of manifold embedding on the reduction of the

descriptor’s size without significantly affecting the retrieval

performance, the presented system has some notable short-

comings mainly derived from the Isomap embedding, such as

its sensitivity to the selection of the embedding dimensionality.

Furthermore, the Isomap embedding requires the computation

of geodesic distances, even for the out-of-sample scenario,

which is a computational overhead for the retrieval step.

In addition, although a significant reduction of the memory

requirements has been achieved no consistent gain in retrieval

performance was reported.

III. t-SNE

The goal of t-SNE is to minimize the divergence between

the pairwise similarity distributions of input points and the

low-dimensional embedded points. The input points are de-

noted as {xi} and their corresponding embeddings are denoted

as {yi}, where i = 1, . . . , N . The joint probability pij that

measures the pairwise similarity between two points xi and

xj is denoted as follows:

pj|i =
exp(−d(xi, xj)

2/2σ2
i )∑

k �=i exp(−d(xi, xk)2/2σ2
i )
, pi|i = 0 (1)

pij =
pj|i + pi|j

2N
(2)

For the rest of this work, the distance function d(· , ·) is

considered to be Euclidean as in [8]. The standard deviation

σi is computed according to a predefined perplexity which can

be considered as the effective number of neighbors for each

point xi.
The pairwise similarities in the embedding space are mod-

eled by a normalized Student’s-t distribution with a single

degree of freedom. The embedding similarity between two

points yi and yj is defined as:

qij =
(1 + ‖yi − yj‖2)−1

Z
, qii = 0 (3)

Z =
∑

k

∑

l �=k

(1 + ‖yk − yl‖2)−1 (4)

The choice of the Student’s-t kernel prevents the crowding

problem, as it is explained in [8], which favors embeddings

whose points are gathered in the center of the space. The

heavy-tailed Student’s-t maps sufficiently well points that are

far-apart even if the dimension of the embedding space is lower

than the (unknown) intrinsic dimensionality of the existing

manifold.
Given the definitions of pairwise similarity distributions for

both the initial and the embedding space, the embedding Y is

calculated by minimizing the Kullback-Leibler divergence:

C(Y) = KL(P ||Q(Y)) =
∑

i

∑

j

pij log
pij
qij

(5)

The aforementioned minimization problem does not have an

analytical solution. To this end, iterative methods are employed

in order to find an embedding Y that (locally) minimizes

the divergence. The problem is solved by a gradient descent

method, whereas the gradient of the divergence for each point

of the embedding space is computed as follows:

∂C

∂yi
= 4

∑

j �=i

(pij − qij)qijZ(yi − yj) (6)

IV. OUT-OF-SAMPLE (OOS) EXTENSION OF t-SNE

We assume a set of points xi, which correspond to the

descriptors of the word images for the KWS task, and their

embeddings yi as the result of the t-SNE optimization. Given

a new point x in the initial space, our goal is to estimate

its mapping y to the t-SNE embedding space. We define

the following auxiliary functions in accordance to the t-SNE

formulation:

p(x|xi) =
exp(−‖x− xi‖2/2σ2

i )∑
k �=i exp(−‖xk − xi‖2/2σ2

i )
(7)

p(x, xi) =
p(x|xi) + p(xi|x)

2N
, p(xi, xi) = 0 (8)

s(y, yi) = (1 + ‖y − yi‖2)−1 (9)
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q(y, yi) = s(y, yi)/
∑

k

∑

l �=k

s(yk, yl) (10)

A straightforward solution to the out-of-sample problem is

to preserve the local structure of the initial space [6] which

can be formulated as the minimization of the cost:

Coos(y|x) =
∑

i

w(x, xi)‖y − yi‖2 (11)

All previously learnt embeddings yi are considered fixed, so

we minimize over the sought embedding y. The function

w(x, xi) is a pairwise similarity function (e.g. a Gaussian

kernel) and in correspondence to t-SNE, the previously defined

function p(x, xi) can be used. The above minimization has a

closed form solution:

y� =

∑
i p(x, xi)yi∑
i p(x, xi)

(12)

A drawback of this solution, as well as of the majority of the

existing OOS methods, is that it provides a general approach

for the OOS problem (i.e. locality preservation of the initial

space) while ignoring crucial aspects of t-SNE success, namely

the Student’s-t distribution and the locality of the embedding

space. Contrary to existing approaches, in order to address the

out-of-sample problem, we examine the initial equations of

t-SNE.

Proposed Gradient Descent Approach: The estimation of

the new embedding y is computed iteratively by minimizing

the t-SNE cost according to a gradient descent procedure:

yt+1 = yt − α
∂C(yt)

∂yt
(13)

∂C(y)

∂y
= 4

∑

i

[p(x, xi)− q(y, yi)]s(y, yi)(y − yi) (14)

The main shortcoming of a gradient descent estimation is

its convergence rate. If a fixed step size a is predefined, the

convergence may be extremely slow. In order to avoid a slow

convergence, we propose the use of the following adaptive

step size:

α(yt) =
[
4
∑

i

p(x, xi)s(y
t, yi)

]−1 ≥ 0 (15)

Therefore, the update equation for iteratively estimating the

embedding y is:

yt+1 = yt −
∑

i[p(x, xi)− q(yt, yi)]s(y
t, yi)(y

t − yi)∑
i p(x, xi)s(yt, yi)

(16)

It should be noted that the update equation (Eq. 16) can

be derived from the solution of ‖∂C(y)
∂y ‖ = 0 and thus it is

equivalent to a fixed point iteration approach.

Aiming to further promote the simplicity of the up-

date equation and the speed convergence, we choose to

omit the terms of Eq. 16 referring to q(yt, yi). The term∑
i q(y

t, yi)s(y
t, yi)(y − yi) corresponds to the derivative

of the normalizing term Z =
∑

k

∑
l �=k s(yk, yl) and it is

responsible for keeping the new embedding y sufficiently apart

from the embeddings yi, as a repulsive force. Concerning

retrieval applications, only the relative distances between the

new embedding and the already embedded points are of

interest and thus this repulsion property is not important.

Consequently, for the rest of this work, the proposed out-

of-sample embedding is approximated by minimizing the

cost Cr(y|x) =
∑

i p(x, xi)log
(
p(x, xi)/s(y, yi)

)
which is

performed by the following update equation:

yt+1 =

∑
i p(x, xi)s(y

t, yi)yi∑
i p(x, xi)s(yt, yi)

(17)

The adaptive step size a(y) for the latest update equation can

be easily proven to concede with the optimum step size for the

line search strategy over the gradient descent algorithm. This

means that the acquired step size of Eq. 15 at each iteration

is the solution to the minimization problem:

α(yt) = argmin
α>0

Cr

(
yt − α

∂Cr(y
t)

∂yt
)

(18)

The aforementioned observation ensures significantly faster

convergence compared to setting a predefined step size, which

was empirically verified through experimentation.

Implementation Issues: The computation of q(y, yi) is

straightforward at each iteration. However, p(x, xi) is calcu-

lated only once, before the iteration process, and involves

summations over all the pairwise Gaussian functions. To

overcome this problem, we store the standard deviations σi

and the partial sums Si =
∑

k �=i exp(−‖xk − xi‖2/2σ2
i ) as

auxiliary variables generated during the t-SNE embedding.

Having estimated the standard deviation σ for the unseen point

x (using the predefined perplexity), we redefine the equations

of p(x, xi) as follows:

p(xi|x) = exp(−‖x− xi‖2/2σ2)
∑N

k=1 exp(−‖x− xi‖2/2σ2)
(19)

p(x|xi) =
exp(−‖x− xi‖2/2σ2

i )

Si + exp(−‖x− xi‖2/2σ2
i )

(20)

p(x, xi) =
p(x|xi) + p(xi|x)

2N
, p(xi, xi) = 0 (21)

The above formulation requires only the distances of the new

point x from the existing points xi, i.e. O(N) computations.

Complexity: Given a set of N points {xi} of dx dimensions

and their embeddings {yi} of dy � dx dimensions, the

complexity of computing the embedding y of an out-of-sample

point x is estimated as follows:

• O(Ndx) for computing the p(x, xi) pairwise similarities.

• O(Ndy) for updating y in each iteration.

Assuming k as the total number of iterations for convergence,

the overall complexity is O(N(dx + kdy)). For small embed-

ding dimension dy and number of iterations (dy = 3& k =
10), the computation of the pairwise similarities in the initial

space, when dx is large enough which is usually the case,

governs the computation time (dx � kdy). This observation

hints that the proposed OOS extension is only sligthly slower

than the closed form solution approach of Eq. 12. It should

be noted that the OOS embedding procedure should be fast
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for KWS applications, because it is computed during query

(retrieval) time. Memory requirements correspond to storing

the initial data points and their embeddings, as well as the

standard deviations σi and sums Si, i.e. O(N(dx + dy + 2)),
which requires only N × (dy + 2) more memory space

compared to storing only the initial data points.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed OOS extension of t-SNE embedding method

is applied on QbE keyword spotting as a post-processing

step after the extraction of fixed-sized descriptors. In order

to highlight the efficiency of the manifold assumption and the

capability of the proposed method, its evaluation is performed

on three state-of-the-art descriptors. The performance of the

KWS task was recorded in terms of the Precision at Top 5

Retrieved words (P@5) as well as the Mean Average Precision

(MAP).

The workflow for the application of t-SNE embedding on

KWS includes the following steps: 1) Extract the descriptors

for each word image of the dataset. 2) Perform Principal

Component Analysis (PCA) on the dataset descriptors. This is

suggested before using t-SNE because it preserves the global

structure of the points/descriptors and reduces noise. For this

work, the feature vector dimension after PCA is set to dpca =
400 regardless the initial dimension of the descriptors (selected

descriptors have a dimensionality over 400). 3) Perform t-SNE

embedding on the descriptors. The accelerated version of t-

SNE is selected, which uses tree-based structures [15]. Due

to the fact that the t-SNE approach generates an embedding

which corresponds to a local minimum of the t-SNE cost

optimization problem, the process was repeated multiple (five)

times with different (random) initialization. The embedding

with the lowest cost was selected as the final embedding. 4)
Compute the auxiliary values σi and Si, which are required

in the proposed out-of-sample extension. 5) Given a query

image, compute the initial descriptor and perform PCA. The

resulting descriptor is used as input (along with descriptors of

the dataset, their corresponding embeddings and the auxiliary

variables) to the out-of-sample estimation method. 6) Generate

the retrieval list using Euclidean distance on the embedding

space.

B. Preprocessing and Descriptors

Before we proceed with feature extraction, we apply a

preprocessing step which consists of contrast and main-zone

normalization. Contrast normalization is performed by replac-

ing Sauvola’s binarization hard assignment with a soft one.

Main-zone normalization is based on detecting the main-zone

in a way similar to [1]. After the detection of the main-

zone, skew correction is performed using the slope of the

detected main-zone, as well as a vertical normalization of

the image by moving the main zone at the center of the

generated normalized image. An example of the effect of the

aforementioned preprocessing step is depicted in Figure 1.

(a) (b)

(c) (d)
Fig. 1. Different instances of the same word before (a),(b) and after (c),(d)
the preprocessing.

Three state-of-the-art holistic descriptors are selected, which

are briefly described below:

BoVW: A Bag of Visual Words (BoVW) approach or-

ganized in Spatial Pyramids was implemented due to the

established efficiency of such methods in keyword spotting [3].

Dense SIFT features at multiple scales were chosen as local

descriptors and a codebook of 1024 entries for the histogram

encoding. Spatial pyramids are employed to encode indirectly

the spatial information as in [3].

POG: An image is segmented in three (overlapping) parts

and each segment is encoded using the Projections of Oriented

Gradients (POG) descriptors, which have shown to perform

well in keyword spotting [1]. In this work, a slight modification

of POG descriptor is used in order to be applied to gray-scale

images.

ZAH: Zoning Aggregating Hypercolumns (ZAH) features

are based on a pre-trained Deep Convolutional Network

(DCN) [2]. The features are extracted from the output of

the convolutional layers of a DCN, which was trained on an

independent set of typewritten characters. The final descriptor

is produced by the concatenation of the aggregated convolution

responses over (six) image segments.

C. Out-of-Sample Approaches

Concerning the efficiency of the proposed OOS method, the

following OOS embedding methods have been considered for

comparison:

CFS: Out-of-sample extension using Eq. 12. This approach

assumes that the local structure of the embedding space is

defined only by pairwise similarities of the initial points [6].

Parametric: A parametrization between the initial data

and the produced embeddings is introduced according to

[9], where the parametric form y(x) = fa(x) is as-

sumed and a are the sought parameters. Non-linearity is

introduced by Gaussian kernels of the form k(x, xi) =
exp(−‖x − xi‖2/2σ2

i ). Thus, the parametrization is defined

as y(x) =
∑

i aik(x, xi)/
∑

l k(x, xl). The parameters are

estimated in a least square manner: A = K+Y , where

[K]ij = k(xi, xj)/
∑

l k(xi, xl). The parametric approach of

[9] suggests using only a set of landmark points, i.e. a subset

of the initial points, which alleviates the computation overhead
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TABLE I
MAP AND P@5 EVALUATION ON ALL DATASETS FOR dy = 3

GW20 Bentham14 Modern14
Descriptor OOS approach MAP P@5 MAP P@5 MAP P@5

BoVW No Embedding 72.30 91.59 55.29 74.50 28.93 50.60
CFS 80.10 82.22 48.42 49.50 19.67 23.00

Parametric-90 82.59 88.58 35.93 32.25 12.81 13.00
Parametric-100 85.13 92.30 38.13 35.12 13.62 15.33

Proposed 85.18 92.42 63.57 78.00 33.93 53.87

POG No Embedding 62.49 85.85 66.01 82.25 36.83 61.80
CFS 68.63 74.51 56.09 53.69 29.81 28.60

Parametric-90 70.38 79.82 55.67 57.12 35.21 47.73
Parametric-100 74.15 85.04 60.77 64.31 43.64 57.13

Proposed 74.19 85.14 70.43 80.94 48.21 65.80

ZAH No Embedding 61.19 86.40 53.49 75.69 33.29 56.33
CFS 70.69 76.45 37.41 44.06 24.65 30.07

Parametric-90 74.10 84.44 28.51 33.56 30.30 43.33
Parametric-100 76.77 89.13 34.95 42.62 33.08 47.87

Proposed 76.82 89.23 53.17 76.75 38.84 59.93

of inverting a matrix of size N ×N . However, in practice, se-

lecting a subset of the initial space leads to poor performance.

To highlight this behavior, 90% of the points are randomly

selected in order to estimate the parameter matrix A. It should

be stressed that 90% is a very high percentage of points kept,

which yields no significant computational acceleration. As

a result, we distinguish two variations, parametric-100 and

parametric-90, where 100% (all) and 90% of the points are

used as landmark points, respectively.
Proposed: Out-of-sample extension using gradient descent

(Eq. 17) based on the initial t-SNE cost function. The proposed

step size is adaptive and optimal according to the line search

strategy, which guarantees fast convergence. The maximum

number of iterations is set to Nmax = 15, since the majority

of the out-of-sample experiments achieve convergence under

10 iterations.

D. Datasets
The evaluation is performed on the widely used George

Washington Dataset [16] as well as on the more challenging

datasets of ICFHR 2014 KWS Competition [17]. The datasets

are summarized below:
GW20: This dataset is the well-known collection of writ-

ings of George Washington, consisting of 20 pages segmented

into 4860 words. Words with ten or more instances and three

or more characters are selected as queries as in [3], resulting

in 1844 image queries.
Bentham14: This dataset was part of the ICFHR 2014

H-KWS competition and includes manuscripts in English

written by Jeremy Bentham himself as well as by Bentham’s

secretarial staff. It consists of 10370 segmented word images

from 50 document images and 320 image queries.
Modern14: This dataset was also part of the ICFHR

2014 H-KWS competition and includes handwritten docu-

ments written in four languages (English, French, German and

Greek). It consists of 14754 segmented word images from

100 document images (25 for each language) and 300 image

queries.

E. Performance Evaluation

To verify the efficiency of the proposed OOS extension, we

apply the aforementioned OOS methods on all the descriptors

and datasets for the case of dy = 3 (embedding dimension).

The results, in terms of MAP and P@5, are presented in Table

I. The No Embedding case corresponds to the absence of a

manifold embedding step, i.e. the PCA generated descriptors

are used. The main observations are summarized below:

- The proposed OOS extension performs significantly better

compared to the other OOS methods, especially in the chal-

lenging Betham14 and Modern14 datasets.

- The parametric method shows similar performance only on

the GW20 dataset, which is smaller and less challenging,

while in the other two datasets its performance deteriorates

significantly. This leads to the conclusion that the parametric

approach of [9] cannot model the t-SNE embedding suffi-

ciently well. Specifically, the parametric-90 variation reports

a considerable drop in performance, even though 90% of

all points are used. This observation hints that the use of

landmark points yields unreliable parameters for parametric

OOS extension.

- Another important observation is that the performance may

drop after the use of manifold embedding compared to the case

of using the initial descriptors (No Embedding case). This drop

in performance is mainly credited to t-SNE embedding of the

word descriptors, rather than the OOS methods. It is possible

that the selected embedding dimensionality is much lower

than the intrinsic dimensionality of the underlying manifold

and thus the generated embedding is not suitable. It should

be noted that the intrinsic dimensionality depends on the

descriptor and the dataset selection, since both define the initial

space.

Furthermore, we investigate the importance of the em-

bedding dimension dy . Tables II, III and IV summarize the

results for different embedding dimensions concerning the

GW20, Bentham14 and Modern14 datasets, respectively. The

proposed OOS extension is used to obtain the low-dimensional
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embedding of the query image. In addition, the performance

of state-of-the-art KWS methods are provided for comparison.

The main observations are summarized below:
- A significant gain in performance, more than 10% in some

cases, is observed for the majority of the datasets and the

descriptors, when using the t-SNE embedding.
- It can be observed that only in few cases the overall gain

is small. In addition, the efficiency increases along with the

embedding dimension. This behavior hints towards a higher

intrinsic manifold dimensionality.
- The presented KWS approach provides results that outper-

form the majority of state-of-the-art techniques without any

fine-tuning (Aldavert et al. [3] performed fine-tuning on the

GW20 dataset). A noteworthy observation is that these results

have been reported using a very low embedding dimensionality

(dy = 2, 3, 4, 5), which highlights the efficiency of the t-SNE

method.

TABLE II
MAP EVALUATION ON GW20 DATASET

dy

Method No Embedding 2 3 4 5

Kovalchuk [4] 66.30 - - - -
Aldavert [3] 76.50 - - - -

BoVW 72.30 84.12 85.35 85.62 86.23
POG 62.49 70.76 74.01 74.79 74.96
ZAH 61.19 74.85 78.51 78.43 79.54

TABLE III
MAP EVALUATION ON BENTHAM14 DATASET

dy

Method No Embedding 2 3 4 5

Kovalchuk [17] 52.40 - - - -
Almazan [17] 51.30 - - - -

Howe [17] 46.20 - - - -

fPOG [1] 57.70 - - - -
Aldavert [3] 46.50 - - - -

BoVW 55.29 61.02 62.38 64.82 64.81
POG 66.01 67.95 70.68 70.66 71.54
ZAH 53.49 53.30 54.46 53.83 54.07

TABLE IV
MAP EVALUATION ON MODERN14 DATASET

dy

Method No Embedding 2 3 4 5

Kovalchuk [17] 33.80 - - - -
Almazan [17] 52.30 - - - -

Howe [17] 27.80 - - - -

fPOG [1] 35.50 - - - -
Aldavert [3] 38.90 - - - -

BoVW 28.93 34.09 34.56 35.64 36.29
POG 36.83 48.82 50.51 49.39 51.61
ZAH 33.29 39.30 40.02 39.50 40.65

VI. CONCLUSIONS

A novel out-of-sample extension of t-SNE has been pro-

posed, which displays superior performance compared to other

out-of-sample extension methods. The proposed extension is

applied on the keyword spotting task, where word descriptors

are embedded using t-SNE and query retrieval corresponds to

an out-of-sample problem. The experimental results demon-

strate a significant gain in KWS retrieval performance while

using Euclidean distance on the embedding space. As a future

direction, the estimation of the intrinsic manifold dimensional-

ity as well as an efficient way of generating higher dimensional

t-SNE embeddings could be further explored.
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