
Using the Ellogon Natural Language Engineering Infrastructure

Georgios Petasis, Vangelis Karkaletsis, Georgios Paliouras,
and Constantine D. Spyropoulos

Software and Knowledge Engineering Laboratory,
Institute of Informatics and Telecommunications,

National Centre for Scientific Research (N.C.S.R.) “Demokritos”,
P.O. BOX 60228, Aghia Paraskevi,

GR-153 10, Athens, Greece.
e-mail: {petasis, vangelis, paliourg, costass}@iit.demokritos.gr

Abstract
Ellogon is a multi-lingual, cross-operating system, general-purpose natural language engineering infrastructure. Ellogon
has been used extensively in various NLP applications. It is currently provided for free for research use to research and
academic organisations. In this paper, we outline its architecture and data model, present Ellogon features as used by dif-
ferent types of users and discuss its functionalities against other infrastructures for language engineering.

1. Introduction
Ellogon was developed by the Software and Knowl-
edge Engineering Laboratory of the Institute of In-
formatics and Telecommunications, N.C.S.R. “De-
mokritos”, Greece1. Its development started in 1998.
The motivation for its development, at that time, was
the inadequacy of existing platforms to support
important features for the NLP applications of the
SKEL laboratory. Being in constant development
since 1998, Ellogon is now a mature and well tested
infrastructure, as it has been used in many national
and European projects either by SKEL or its partners
in some of these projects. Ellogon facilities have
been used for creating a wide range of NLP applica-
tions, such as various linguistic tools, information
filtering and extraction systems in several European
languages, controlled language checkers. Since 2002,
Ellogon is provided for free, for research use, to re-
search and academic organisations.

Ellogon as a text engineering platform offers an
extensive set of facilities, including tools for process-
ing and visualising textual/HTML/XML data and
associated linguistic information, support for lexical
resources (like creating and embedding lexicons),
tools for creating annotated corpora, accessing data-
bases, comparing annotated data, or transforming
linguistic information into vectors for use with vari-
ous machine learning algorithms.

The rest of the paper is organised as follows: In
section 2 Ellogon architecture, data model and some
important features are briefly described. Section 3
presents some features that facilitate its use by dif-
ferent types of users, whereas section 4 gives exam-
ples of certain NLP applications where Ellogon was
employed. Section 5 discusses Ellogon functional-

1 http://www.iit.demokritos.gr/skel/Ellogon

ities against existing infrastructures. Finally, section
6 presents some concluding remarks and future
plans.

2. Ellogon Architecture and Data Model
During the last decade, a large number of software
infrastructures aiming at facilitating R&D in the field
of natural language processing have been presented.
Some of these infrastructures, such as LT-NSL/LT-
XML tools (McKelvie et. al. 1997) or GATE2, have
become extremely popular as they have been applied
to a wide range of tasks by many institutions around
the world.

Ellogon belongs to the category of referential or
annotation based platforms, where the linguistic in-
formation is stored separately from the textual data,
having references back to the original text. Based on
the TIPSTER data model (Grishman, 1997), Ellogon
provides infrastructure for:
• Managing, storing and exchanging textual data as

well as the associated linguistic information.
• Creating, embedding and managing linguistic

processing components.
• Facilitating communication among different lin-

guistic components by defining a suitable pro-
gramming interface (API).

• Visualising textual data and associated linguistic
information.

The architecture of Ellogon, the utilised data model
and the linguistic processing components as well as
some key features of Ellogon are presented in the
following sub-sections.

2.1. Ellogon Architecture
Ellogon can be used either as an NLP integrated de-
velopment environment (IDE) or as a library that can

2 Information about GATE can be found at http://gate.ac.uk

be embedded to foreign applications. To achieve
this, Ellogon proposes and implements a modular
architecture with four independent subsystems:
• A highly efficient core developed in C, which

implements an extended version of the TIPSTER
data model. Its main responsibility is to manage
the storage of the textual data and the associated
linguistic information and to provide a well-
defined programming interface (API) that can be
used in order to retrieve/modify the stored
information.

• An object oriented C++ API which increases the
usability of the C core API. This object oriented
API is exposed in a wide range of programming
languages, including C++, Java, Tcl, Perl and Py-
thon.

• An extensive and easy to use graphical user inter-
face (GUI). This interface can be easily tailored
to the needs of the end user.

• A modular pluggable component system. All lin-
guistic processing within the platform is per-
formed with the help of external, loaded at run-
time, components. These components can be im-
plemented in a wide range of programming lan-
guages, including C, C++, Java, Tcl, Perl and Py-
thon.

??????

LLaanngguuaaggee PPrroocceessssiinngg
CCoommppoonneennttss

GGrraapphhiiccaall IInntteerrffaaccee

CCoolllleeccttiioonn –– DDooccuummeenntt MMaannaaggeerr

OOppeerraattiinngg SSyysstteemm

SSttoorraaggee FFoorrmmaatt
AAbbssttrraaccttiioonn LLaayyeerr

XXMMLL EEllllooggoonn DDaattaabbaasseess

C++ API

WWiinnddoowwss

LLiinnuuxx
SSoollaarriiss

CC AAPPII

Figure 1: Ellogon Architecture.

2.2. Ellogon Data Model
Ellogon shares the same data model as the TIPSTER
architecture. Due to this, it shares some basic fea-
tures with other TIPSTER-based infrastructures,
such as GATE. However, it also offers a large num-
ber of features that differentiate it from such infra-
structures.

The central element for storing data in Ellogon is
the Collection. A collection is a finite set of Docu-
ments. An Ellogon document consists of textual data

as well as linguistic information about the textual
data. This linguistic information is stored in the form
of attributes and annotations.

An attribute associates a specific type of informa-
tion with a typed value. An annotation associates
arbitrary information (in the form of attributes) with
portions of textual data. Each such portion, named
span, consists of two character offsets denoting the
start and the end characters of the portion, as meas-
ured from the first character of some textual data.
Annotations typically consist of four elements:
• A numeric identifier. This identifier is unique for

every annotation within a document and can be
used to unambiguously identify the annotation.

• A type. Annotation types are textual values that
are used to classify annotations into categories.

• A set of spans that denote the range of the anno-
tated textual data.

• A set of attributes. These attributes usually en-
code the necessary linguistic information.

...
 DDooccuummeenntt
 DDooccuummeenntt

 DDooccuummeenntt

CCoolllleeccttiioonn
AAttttrriibbuutteess

language = Hellenic (string)
•••

AAnnnnoottaattiioonnss

ccoo--rreeffeerreennccee
type = person
entity = 132

ttookkeenn
pos = noun
lemma = abc

Textual Data

Information
about

Textual Data

Document

AAttttrriibbuutteess

language = Hellenic (string)
bgImage = <binary data> (image)

Figure 2: Ellogon Data Model.

2.3. Ellogon Components
For most users of Ellogon, the central point of inter-
est is the linguistic processing that can be carried out
within it. Ellogon provides a generic framework
where external components can be easily embedded.
As Ellogon follows a modular paradigm, it utilises
components of various types, with each type special-
ising in a specific processing task. A taxonomy of
the currently defined component types are shown in
figure 3.

The most important component type from the
user’s point of view is of course the linguistic proc-
essing component, as natural language processors
usually belong to this component type. These com-

ponents (along with components of the machine-
learning processing type) can be organised into Sys-
tems for performing some specific task. The tasks
can range from basic linguistic tasks, such as part-of-
speech tagging or parsing, to application level tasks,
such as information extraction or machine transla-
tion.

A linguistic processing component consists
mainly of two parts. The first part is responsible for
performing the desired linguistic processing while
the main responsibility of the second component part
is to interface the linguistic processing sub-
component with Ellogon, through the provided API.
Components can appear either as wrappers or as na-
tive components. Wrappers usually provide the
needed code in order to interface an existing inde-
pendent implementation of a linguistic processing
tool to the Ellogon platform. Native components on
the other hand are processing tools specifically de-
signed for use within the Ellogon platform. Usually,
in such components the two component parts cannot
be easily identified or separated.

GG
ee n

n e
e rr

ii cc
 CC

oo
mm

pp
oo

nn
ee n

n t
t

PPrroocceessssiinngg CCoommppoonneenntt

VViissuuaalliissaattiioonn CCoommppoonneenntt

CCoolllleeccttiioonn CCrreeaattiioonn OOppeerraattoorr

SSttoorraaggee FFoorrmmaatt CCoommppoonneenntt

LLiinngguuiissttiicc PPrroocceessssiinngg CCoommppoonneenntt

MMaacchhiinnee LLeeaarrnniinngg PPrroocceessssiinngg CCoommppoonneenntt

GGUUII TTooooll CCoommppoonneenntt

PPllaaiinn CCoommppoonneenntt

BBuuttttoonn CCoommppoonneenntt

CCoommbboo BBooxx CCoommppoonneenntt

IImmaaggee CCoommppoonneenntt

RReessoouurrccee CCoommppoonneenntt

TTrraaiinniinngg DDaattaa GGeenneerraattiioonn

EEvvaalluuaattiioonn DDaattaa GGeenneerraattiioonn

AAllggoorriitthhmm TTrraaiinniinngg

AAllggoorriitthhmm EEvvaalluuaattiioonn

Figure 3: The various component types.

Each component is associated with metadata, which
include a set of pre-conditions and a set of post-
conditions among other information. Pre-conditions
declare the linguistic information that must be pre-
sent in a document before this specific component
can be applied to it. Post-conditions describe the lin-
guistic information that will be added in the docu-
ment as a side effect of processing the document
with this specific component. Ellogon uses these two
sets in order to establish relations among the various

components or to “undo” the results of a component
application on a corpus.

Each component can also specify a set of parame-
ters, as well as a set of viewers (components of type
“visualisation component”). Parameters represent
various run-time dependent options (such as the lo-
cation of a file containing the grammar of a syntactic
parser). They can be edited by the end user through
the graphical interface and are given to the compo-
nent every time it is executed. A component can also
specify a set of predefined viewers, in order to pre-
sent in a graphical way the linguistic information
produced during the component execution. Examples
of available viewers are shown in figures 4 and 5.

Figure 4: An Ellogon viewer showing a parse tree of a

simple sentence.

Figure 5: An Ellogon viewer presenting the output of a
part-of-speech tagger applied on an HTML document.

Creating components can be easily done through
the Ellogon GUI. Currently, Ellogon components can
be developed in five languages, C/C++, Tcl, Java,
Perl and Python. The Ellogon GUI offers a special-
ised dialog where the user can specify various pa-
rameters of the component he/she intends to create,
including its pre/post-conditions. Then Ellogon cre-
ates the skeleton of the new component that will
handle all the interaction with the Ellogon platform.
If the language of the component is C/C++ or Java,

proper Makefiles for compiling the component under
Unix and Windows will also be created. Besides cre-
ating a skeleton, Ellogon tries to facilitate the devel-
opment of the component by allowing the developer
to edit the source code and re-load the specific com-
ponent into Ellogon from its GUI.

2.4. Ellogon key features
In the following paragraphs, we briefly present some
of the most important aspects of the Ellogon lan-
guage engineering platform. For more details, see
(Petasis et al. 2002) as well as the Ellogon documen-
tation at the Ellogon site.

2.4.1. Support of multiple languages
The fact that Ellogon offers complete Unicode sup-
port (in both its core unit CDM as well as in its GUI)
provides the ability to properly support a wide range
of languages. Ellogon includes a large number of
input/output filters for various encodings, such as the
ISO-8859-* encodings or the encodings used under
Microsoft Windows or Apple Macintosh. Addition-
ally, components can be classified according to the
language they support and can utilise the utilities
provided by the API in order to convert textual data
among various encodings. Finally, Ellogon provides
an internationalised GUI3 that has been designed to
facilitate the integration of additional languages,
even by the end user.

2.4.2. Portability
Supporting all the major operating systems has al-
ways been a shortcoming of many of the existing
language engineering platforms. Ellogon on the other
hand, offers native ports to many operating systems
and has been extensively used and tested under Unix
(Solaris 2.6, 7, 8 & 9, Red Hat Linux 6.x, 7.x, 8.0 &
9.x) and Microsoft Windows (95, 98, Me, NT 4.0,
NT 2000 & XP). Additionally, Ellogon aims to pro-
vide a unified view of various operating system spe-
cific tasks under all supported operating systems. For
example, pipelines and file redirections are emulated
under Microsoft Windows or filenames can be speci-
fied using the Unix notation under all supported op-
erating systems. Finally, the provided graphical in-
terface provides exactly the same functionality under
the various supported operating systems.

2.4.3. Advanced GUI
Ellogon offers an extensive and powerful multi-
lingual user interface. This GUI provides users with
the ability to manage Collections, Documents Sys-
tems, to visualise linguistic information with an ex-
tensible set of visualisation tools, to develop and in-

3 Currently, the provided GUI languages include only English
and Greek.

tegrate linguistic components, to browse documenta-
tion and of course, to do linguistic processing of tex-
tual data using various modes. Finally, the user inter-
face can be adapted to meet specific needs, such as
systems dedicated to specific linguistic processing
tasks.

2.4.4. Modular Architecture
Ellogon is based on a modular architecture that al-
lows the reuse of Ellogon sub-systems in order to
ease the creation of applications targeting specific
linguistic needs.

Ellogon’s core component – CDM – is imple-
mented as a separate library that can be dynamically
loaded if the underlying operating system offers such
ability. This library can be independently embedded
inside any application that can call functions from
libraries, following the C++ naming conventions.
Examples of embedding CDM under various appli-
cations include Microsoft Word4 as well as the Tcl,
Java, Perl and Python interpreters.

2.4.5. Memory compression
The use of memory by a text engineering platform is
a very important aspect, as it usually determines the
size of textual data that can be processed under this
platform. Under Ellogon, this requirement is far
more important, as the use of Unicode can increase
memory requirements by simply changing from a
language that requires fewer bytes per character (like
English) into a language needing more bytes per
character (like Greek). Ellogon tries to decrease its
memory requirements by incorporating a memory
compression scheme. Initial measurements have
shown that Ellogon uses less memory for performing
the same tasks than other TIPSTER-based platforms.

3. Supporting Ellogon Users
The users of Ellogon can be roughly classified in
three major categories: computational linguists, lan-
guage engineers and end users. In this section we try
to investigate how Ellogon can facilitate each user
group work.

3.1. Facilitating Computational Linguists
Ellogon tries to facilitate many aspects of the tasks
computational linguists usually perform within the
platform, especially if the task involves annotated
corpora creation, linguistic processing component
adaptation or various evaluation tasks.

Providing a wide range of highly customisable
and easy to use annotation tools, Ellogon is an ideal
environment for annotated corpora construction.

4 In order to embed CDM under Microsoft Word we utilise the
Active-X technology, with CDM exported as an Active-X com-
ponent.

Available annotators support regular marking (e.g.
part of speech tagging or named entities annotation)
as well as annotation of hierarchically information
(i.e. syntactic relation annotation) on plain as well as
HTML corpora. (Two annotation tools are shown in
figures 6, 7).

Figure 6: Annotating named entities on HTML pages.

Figure 7: Annotating syntactic relations.

Adapting linguistic processing components into a
new domain is another frequent task. Usually it in-
volves modifications to domain specific resources
used internally by the processing components. El-
logon facilitates the adaptation process as the modi-
fied component can be applied immediately and the
user can very easily identify the effect of his/her
modifications, through the comparison facilities of-
fered by the platform. Ellogon provides significant
infrastructure for comparing the linguistic informa-
tion associated with the textual data. The Collection
Comparison tool (figures 8, 9) can be used for com-
paring the linguistic information stored in a set (or
collection) of documents. Various constraints regard-
ing the information that will be compared can be
specified through the graphical user interface of the
comparison tool and the comparison results are pre-
sented by utilising standard figures, like recall, preci-
sion and F-measure. Additionally, the comparison

tool can present a comparison log. This log is a
graphical representation of the differences found dur-
ing the comparison process and can provide valuable
help to the user in order to locate and possibly cor-
rect the errors.

3.2. Facilitating Language Engineers
One of the most frequent tasks performed by lan-
guage engineers inside Ellogon is of course the de-
velopment of processing components. Significant
infrastructure is provided in order to facilitate com-
ponent development, from the very first step of writ-
ing the component to ensuring that the component
works as expected. Operating as an integrating envi-
ronment (IDE), Ellogon allows the creation of com-
ponents in a wide range of programming languages
(C, C++, Tcl, Java, Perl, Python): all the needed
code of the component structure is automatically
generated during the initial construction of a compo-
nent while a component can be compiled, linked,
loaded and tested from inside Ellogon. For some
specific languages (all supported ones except Java) a
component can be even unloaded, modified, com-
piled and re-loaded, in order to quickly test the effect
of desired modifications.

Figure 8: Specifying comparison parameters.

Developing components for Ellogon is a fairly easy
process, as a high level API is provided both as a set
of functions or as an object oriented hierarchy of
classes, if the programming language allows it. Ad-
ditionally, Ellogon is distributed with a small set of
components whose source code can be used as an
example on how to perform some commonly needed
tasks.

The fact that almost everything in Ellogon is de-
fined in terms of components, offers a large degree
of flexibility to component developers. Combined
with its modular architecture, Ellogon offers the abil-
ity to be tailored in order to meet specific needs. For

example, particular Ellogon parts can be wrapped
along with specific processing components to form a
stand-alone application that performs a specific
processing task (having possibly a specifically-made
graphical interface). Such an application5 will even
ran without requiring the installation of Ellogon.

Figure 9: The Ellogon Corpora Comparison tool.

3.3. Facilitating end users
End users of Ellogon can be roughly distinguished in
two categories: users that use applications or services
based on Ellogon and users that use Ellogon as a
“black box” in order to process corpora and collect
the results.

Regarding the first category of end users, Ellogon
provides many facilities for creating stand alone ap-
plications with customised graphical interfaces that
are extremely easy to use. Such an application is
shown in figure 10, where all the complexity of cre-
ating collections, applying the required processing
components and exporting the processing results is
hidden behind a simple graphical interface. In addi-
tion to creating specialised applications, Ellogon can
be instrumented through the use of services, like
ActiveX, DDE, HTTP or SOAP, which allow other
applications to use Ellogon facilities in a way trans-
parent to the end user.

The second category of end users characterises
users who want to perform some sort of linguistic
processing by simply applying the components
available through Ellogon on a corpus. For this cate-
gory of users, Ellogon is a toolbox of “black boxes”:
for example users may want to apply a named-entity
recognition system operating within Ellogon or use
more primitive components like a syntactic analyser.
Ellogon tries to facilitate this category of users by
providing an easy to use graphical interface that can

5 As the creation of stand-alone applications is frequently
needed, Ellogon provides a relevant wizard to facilitate
this task.

be used to create collections from a wide variety of
sources and easily apply on them any available proc-
essing component. Processing results can be exam-
ined through the large set of available viewers or
even exported to widely used formats, such as
SGML or XML. Finally, Ellogon offers the ability to
automate tasks through the definition of “macro”
commands, which can be useful especially in tasks
that must be repeated multiple times.

Figure 10: A stand alone application automatically gener-
ated by the relevant wizard of Ellogon.

4. Systems that use Ellogon
Ellogon has been constantly used by the SKEL labo-
ratory in many national and European research pro-
jects (some of which are presented below). Ellogon
was also used by some of SKEL partners in the con-
text of these projects. Additionally, Ellogon is cur-
rently being used by other research organisations for
many tasks, including annotated corpora creation,
corpora comparison and evaluation as well as for
various educational purposes. We hope to collect
valuable information about its use that will enable us
to further improve Ellogon along many directions.

4.1. MITOS
MITOS is an R&D project6 that combines techniques
from information filtering to classify incoming news
articles, as well as techniques from information ex-
traction to extract factual information from financial
news articles, which is then stored into a database
(e.g. buyer, company bought). Ellogon was used as
the development platform for the linguistic process-
ing and information extraction components. It was
also used to develop user-friendly applications for
information extraction and for annotating training
data. These applications are currently used success-
fully by users with no linguistic or NLP background.

4.2. SCHEMATOPOIESIS
In the context of the Greek R&D project SCHEMA-
TOPOIESIS, Ellogon was used to develop the first
prototype controlled language checker for Greek in

6 See also at: http://www.iit.demokritos.gr/skel/mitos/.

order to assist Greek technical writers as well as to
facilitate translation from Greek to other languages7.
The project covered technical documents from the
domain of computer equipment. Ellogon was used
not only as the development platform for the
checker, but also as a mean for embedding the
checker under Microsoft Word, allowing the user to
check his/her documents in a similar way as a
spell/syntax checker.

4.3. CROSSMARC
The “CROSS-lingual Multi Agent Retail Compari-
son” (CROSSMARC8) project develops technology
for information filtering and extraction from the
Web.

A large number of the functionalities provided by
Ellogon have been exploited by SKEL and its part-
ners, in the context of the CROSSMARC project.
Supporting Java as a component development lan-
guage has enabled the integration of the web site
crawling and spidering agents as Ellogon compo-
nents, thus easing their development as well as their
deployment. The ability of Ellogon to automatically
extract systems of components as stand-alone appli-
cations that run unmodified under different operating
systems (Windows, Linux, Solaris, etc.) has been
used extensively in CROSSMARC since the partners
were using different operating systems for the devel-
opment of their systems. Furthermore, the Ellogon
tools for creating vectors in various formats (e.g.
WEKA ARFF, C4.5 vector format, etc.) for use with
machine learning algorithms have significantly fa-
cilitated the process of training of some of the
CROSSMARC components based on machine learn-
ing. Additionally, the extensive set of annotation
tools offered by Ellogon (either for plain text or
HTML documents) has played a central role in cor-
pora annotation in CROSSMARC, as these tools
have been used for annotating part-of-speech,
named-entity, noun phrase and syntactic information
on the collected web pages. Finally, functionalities
like the processing and display of HTML documents,
XML, DOM and XSLT support as well as the vari-
ous viewers created a “comfortable” environment for
CROSSMARC developers (Petasis at al. 2003).

5. Discussion
The motivation behind the development of Ellogon
(which started in 1998) was the inadequacy of exist-
ing platforms to support, at that time, some essential
properties, such as the ability to
− support a wide range of languages through Uni-

code,

7 See also at: http://www.iit.demokritos.gr/skel/en/Projects/
SCHEMATOPOIESIS.htm.
8 See also at: http://www.iit.demokritos.gr/skel/crossmarc/.

− function under all major operating systems,
− have as few hardware requirements as possible in

terms of processing speed and memory usage,
− be based on an embeddable – decomposable ar-

chitecture that enables parts to be embedded in
other systems and

− provide an extensible, easy to use and powerful
user interface.

Ellogon in its present form satisfies all of these re-
quirements.

As Ellogon is based on the TIPSTER architec-
ture, it shares many basic properties with other TIP-
STER-based infrastructures like GATE. However,
Ellogon offers several important features that differ-
entiate it from similar infrastructures. In the follow-
ing subsections some of these features are briefly
presented.

5.1. Easy Component Development
It is fairly easy to understand the process of develop-
ing new components and develop them using the
functionalities provided by Ellogon. Additionally, a
wide range of programming languages for compo-
nent development are supported, including C, C++,
Java, Tcl, Perl and Python.

5.2. Integrated Development Environment
Ellogon operates as an integrated development envi-
ronment, as it provides complete support to the de-
velopment cycle of a component. Components can
be created, edited, compiled and linked (whether ap-
plicable) from inside Ellogon. Furthermore,
C/C++/Java components can be unloaded, modified,
compiled and re-loaded into Ellogon without having
to quit from Ellogon. The ability to unload or re-load
all components is essential as it can significantly re-
duce development cycle, since component modifica-
tions can be immediately evaluated.

5.3. A ready to use component “toolbox”
Ellogon is equipped with a large number of ready-to-
use tools for performing tasks like annotated corpora
creation, vector generation or data comparison.

Additionally, several sample components are
provided that can be adapted to various domains and
languages, which perform some basic tasks like to-
kenization, part-of-speech tagging or gazetteer list
lookup. Finally, Ellogon offers several data visuali-
sation tools, ranging from simple viewers for the an-
notation database to viewers able to display hierar-
chical information, like syntax trees.

5.4. Easy deployment
As Ellogon implements a decomposable architecture,
it is extremely easy to create an easy to use product
from a set of components that perform a specific

task. All the components along with the needed El-
logon parts can be packaged either in a single execu-
table (which needs no installation) or as an applica-
tion (which can be ran unmodified under multiple
operating systems). These specialised applications
can be distributed and used in any system, even if
Ellogon has not been installed to the system.

5.5. Features offered by similar platforms
Although Ellogon offers many features, the provided
facilities may not cover specific needs that are possi-
bly covered by other platforms. For example, GATE
– another TIPSTER-based platform – offers a com-
plete information extraction system. As such a sys-
tem is not delivered by Ellogon, it may be less ap-
propriate to use Ellogon in cases where a ready-to-
use information extraction system is required.

6. Future Plans

We are continuously working to improve Ellogon
along many directions. Although Ellogon is already
highly optimised, we still try to further reduce the
memory requirements. Currently, we try to enhance
CDM with the ability to selectively load only the
needed information from a document in memory in-
stead of the whole document. We are also working
towards improving the user interface by adding new
features and improving existing ones. Future ver-
sions of Ellogon will provide more ready to use tools
as well as more linguistic processing components.
Finally a specialised extension is under development,
which will provide better support for relations
among annotations (inside the same document or
across multiple documents) as well as better han-
dling of hierarchical data, like ontologies.

7. References
(Grishman, 1997): Grishman, R. 1997. “TIPSTER Archi-

tecture Design Document Version 2.3”. Technical Re-
port, DARPA. Available at:
http://www.itl.nist.gov/div894/894.02/rel
ated_projects/tipster and
http://www.tipster.org.

(McKelvie et. al. 1997): McKelvie D., Brew C., Thomp-
son H. S. 1997. “Using SGML as a Basis for Data In-
tensive Natural Language Processing”. Computers and
the Humanities, 31(5): 367-388.

(Petasis et al. 2001): Petasis G., Karkaletsis V., Far-
makiotou D., Samaritakis G., Androutsopoulos I., Spy-
ropoulos C.D., 2001 “A Greek Morphological Lexicon
and its exploitation by a Greek Controlled Language
Checker”. In Proceedings of the 8th Panhellenic Con-
ference on Informatics, Nicosia, Cyprus, 8-10 Novem-
ber 2001.

(Petasis et al., 2002) G. Petasis, V. Karkaletsis, G.
Paliouras, I. Androutsopoulos and C. D. Spyropoulos,
“Ellogon: A New Text Engineering Platform”. In Pro-
ceedings of the 3rd International Conference on Lan-
guage Resources and Evaluation (LREC 2002), Las
Palmas, Canary Islands, Spain, pp. 72-78, May 2002.

(Petasis et al. 2003) Petasis G., Karkaletsis V and Spyro-
poulos C. D., 2003. “Cross-lingual Information Extrac-
tion from Web pages: the use of a general-purpose Text
Engineering Platform”, Proceedings of the
RANLP'2003 Conference, Borovets, Bulgaria, 2003.

