Adaptive Event Recognition with the use of Limited Training Data

Georgios Paliouras

ne

and David S. Brée

Computer Science Department
University of Manchester
Oxford Road
Manchester, M13 9PL

UK

Abstract: This paper presents a novel event recognition system, which is capable of adapting itself to
improve its performance on a small set of training data. The event recognition system is represented by a
network of events, related to each other by temporal constraints. This symbolic representation is
particularly suitable to the treatment of overlapping events, which have been overlooked in most of the
work on event recognition. Additionally, a method for refining the temporal parameters of the
recognition system is presented here. The method uses a small set of preclassified training examples to
improve the performance of the system. The principle of minimal model change is used to overcome the
sparseness of the training data. Particular emphasis is given to the issue of multiple positive examples,
which is prevalent when allowing overlapping events. The new system has been applied to the thematic
analysis of humpback whale songs with encouraging results.

Keywords: learning, adaptive systems, event recognition, network models

1. Introduction

The fascinating properties of the sounds emitted by
humpback whales have attracted the attention of marine
biologists during the past few decades. The usual
method of analysis of the song is by examination of the
spectrogram of a recording. A spectrogram is a plot of
the acoustic signal in the frequency domain. It depicts
the frequency components of the uttered sounds, as
acquired by a Fourier transformation, against time.
Figure 1 shows a piece of such a spectrogram. The basic
sounds identifiable in the spectrogram and separated by
silence are called units. In order to aid the analysis of
the song, experts in the field have developed a
hierarchical model which groups units into subphrases,
phrases and themes [Payn71,Payn83]. Phrases and
themes are identified in Figure 1.

The hierarchical model of the humpback whale song

components in different recordings. This is an instance
of the class of event recognition tasks, which are the
subject of this paper. The song components, i.e., units,
subphrases, phrases and themes, are the events and
recognition is achieved by applying the song model to
the recording. Similar tasks occur in a variety of
domains, ranging from speech recognition
[Rabi89,Waib90,Lipp90] and signal understanding
[Nii88,Less95] to process monitoring [Kock94] and
fault diagnosis [Hewi89,Dous96].

In this paper, event recognition is viewed as the process
of analysing a stream of symbolic, time-indexed data, in
order to recognise interesting events that have occurred.
In the case of the humpback whale song the input data
consist of time-stamped occurrences of the basic song
units. The aim of the system is to recognise the
occurrence of other events in the sequence, i.e.,
subphrases, phrases and themes. Event recognition is

THEME | 1
[fgiééégﬁsﬁéég - aJéi_ﬂEiésﬂﬁ - i
1;5 ‘7"7';1 THEME 2 T ‘ T e |
i et i L T T e SRS
T s E— o s .
5-8 TRANS THEME 8 FENES : — :
- — e e wm]Q.J d 4 s a0 ewege phis
——t yre| - peianppute= w”,l ——— e

N Figufe 1. An example of a spectrogram from a humpback whale song, recorded in Hawaii in 1978. Reproduced
with the permission of the Whale Conservation Institute, Lincoln, MA.

allows the identification and comparison of song

based on an event model, which can be thought of as a

* Current address: Institute of Informatics and Telecommunications, NCSR “Demokritos”, 15310 Aghia Paraskevi,

Attikis, Greece.

“This work was funded by Thomson Marconi Sonar UK Ltd. and the Engineering and Physical Sciences Research

Council, UK.

temporal expert system. This model consists of a set of
dependencies between events and temporal parameters,
constraining the recognition of events. Section 2
describes in some detail the representation of the
recognition system.

The manual assignment of the temporal parameters in
the event recognition system is a tedious and error prone
process. For this reason, we present here a method that
partially automates the assignment of the temporal
parameters. The initial values of the parameters are
assumed to be incorrect, but near misses of the true
values. Under this assumption, the parameters are
refined using a small set of training examples. The
relational nature of the event recognition task introduces
a number of challenging issues, in addition to the small
size of the training set. Such issues are the extent of
supervision provided by the preclassified data and the
construction of training examples from the continuous
input stream. Section 3 examines these issues and
provides solutions.

The method of refining the temporal parameters of the
system was evaluated on the problem of analysing
humpback whale songs to identify song components.
The results obtained in these experiments, presented in
section 4, are very encouraging, showing that the new
method is useful for refining event recognition systems,
especially under the constraint of a small training set.
Section 5 briefly examines related work in event
recognition and section 6 discusses the advantages and
shortcomings of the methods presented in the paper.

2. Event Network

In order to facilitate parameter refinement, especially
under the constraint of sparse data, the event recognition
system needs to be represented in a simple and well-
structured way. For this purpose, a network
representation is proposed here, which organises events
into a hierarchy. This representation is called ‘event
network’ and its main features are described below. A
detailed description can be found in [Pali97].

2.1 Hierarchical decomposition of events

The basic entities of the event network are events, which
are divided into two types: low-level and high-level.
Low-level events are the basic building blocks in the
system, corresponding to the units in the humpback
whale song. Their recognition is performed by a
separate system, not considered in our work. For
instance, assume the signal in Figure 2, which could be a
simplified arﬁ cleaned up version of a small piece of a
spectrogram.= The low-level event recognition system
identifies four events in this spectrogram: A, B, C, D.

! The term temporal classification network, instead of
event network, was used in [Pali97].

% The term “cleaned up” refers to the removal of
harmonics.

The output of the low-level system is the sequence of
recognised events, with their time stamps:

A(0,200), B(200,400), C(300,500), D(500,600),
where the numbers in brackets correspond to the start
and the end of each event occurrence. The start time for
the recording sets the zero point for time stamps. Time
may be measured in any unit, e.g. msec. So A starts at
time 0O, the start of the recording, and ends after 200
msec. The recognition of an event is notified by the low-
level recognition system, as soon as the event ends, so
that the event can be associated with its time stamp. The
above sequence of low-level event occurrences is the
input to the high-level recognition system, which is the
subject of this article.

frequency i
(H2) 1000

100 [~ / e
—

| p—"
A B D

»id
L]

V.

10

<
<

4

< »
< »

| »

0 100 200 300 400 500 600
Figure 2. A hypothetical piece of a spectrogram.

Low-level events are combined into recognition rules for
high-level events, e.g.
IF A(iAE,iA*’) AND B(iB_,iB+) AND iB> - iA+ =0
THEN Z(i7,iz").
The notation (i ,ic") denotes the time stamp for the
occurrence of event e, i, being the start and i, the end
time. The above rule is called the definition of event Z
and the low-level events A, B are called its subevents.
The time stamp of the event being defined is assumed to
exactly cover the subevent occurrences. Thus, the high-
level event Z(0,400) will be recognised, combining
subevents A(0,200) and B(200,400).

High-level events can also be defined as combinations
of other high-level events. For instance, Z could be the
subevent of another event W. In this manner, a hierarchy
of event definitions is constructed, forming an event
network. The event network can be represented
graphically as a Directed Acyclic Graph, e.g. the graph
in Figure 3. Note that an event may be used as subevent
in more than one high-level event definitions. This is the
case with events A, B in Figure 3. In this case, the
definitions of events Y and Z are said to overlap.
Overlapping event definitions cause a serious problem
in event recognition. The occurrence of A and B is not
sufficient to say whether Y or Z is happening. Events C
and D are necessary for distinguishing between Y and Z.
Under certain conditions, e.g. noisy signal, both C and D
might be recognised making it impossible to decide
whether Y or Z should be recognised. This could be the
case if the following sequence of events is recognised:
A(0,200), B(200,400), C(300,500), D(500,600)

time (msec)

Figure 3. A simple event network.
and both the definitions of Y and Z are satisfied. In such
situations, the system notifies the occurrence of both

events, i.e., Y(0,500) and Z(0,600), using the same
occurrences of subevents A and B.

The implicit assumption so far is that the recognition of
a high-level event requires the occurrence of all of its
subevents. In other words, event definitions correspond
to rules with a conjunctive condition. Such rules are not
sufficient for the representation of a realistic event
recognition system. For this reason, two more types of
event are used in the event network: disjunctive and
repeating. Disjunctive events require simply that one of
the subevents in the definition occurs. Repeating event
definitions contain a single subevent, which is required
to occur repeatedly. The number of repetitions of the
subevent is constrained within a range, e.g. 20 to 30
times.

2.2 Temporal relations and parameters

As mentioned above, the event network represents a
temporal expert system. Thus, event definitions are
augmented with temporal parameters constraining the
recognition of events. The example definition for event
Z above contains such a constraint, i.e., ig” - in" = 0,
which requires that subevent B starts when A ends. In
general, the subevents in an event definition are not
required to meet in time; there may be a gap between
them or they may overlap. This is an important
advantage of the explicit representation of temporal
constraints in a symbolic system.

Three types of temporal constraint are used in an event

network:

> A precedence qualitative constraint, precedes(x,y),
which requires that subevent x ends before y ends.
Note that x and y may still overlap.

» A quantitative constraint on the duration of
subevents, duration(x,[d;,d,]), where [d;,d;] is an
integer range of valid values for the duration of x.

» A quantitative constraint on the temporal distance
between subevents, distance(x,y,[S1,52]), [S1,52]
being the range of valid distances between x and y.

The use of ranges, instead of exact values, is needed to
deal with noise and variation in real-world data.
Disjunctive event definitions do not contain relations
between subevents, since a single subevent is used for
the recognition of the high-level event. Only the
duration of the subevent is constrained. In repeating
event definitions, there is just a single subevent which
precedes itself. Thus, only one duration and one distance
constraint are defined, which apply to all repetitions of
the subevent.

The use of the precedes relation in conjunctive events is
further constrained for efficient event recognition:

» No cycles in the precedence of subevents, e.g.
precedes(A,B) and precedes(B,A), are allowed.

» Each subevent can only be used in two precedes
relations: in one of them it should precede another,
say precedes(B,C) and in the other it must be
preceded, e.g. precedes(A,B).

In this manner a precedence sequence of subevents is
constructed in each conjunctive definition. One of the
subevents in this sequence does not precede any other
and is called terminal subevent, since its end coincides
with the end of the high-level event. Thus if Z is defined
as the sequence of subevents A, B, C, where
precedes(A,B) and precedes(B,C), C is the terminal
subevent in the definition.

2.3 Recognition algorithm

In the design of the representation that was presented in
this section, particular attention was paid to the
performance of the recognition system. In particular two
properties of the representation are used to achieve
efficient recognition:

» The partial ordering of events in the event network.
» The precedence sequence in conjunctive events.

In brief, the recognition algorithm stores the occurrences
of events in a dynamic database and for each incoming
event occurrence it checks whether it could act as the
terminal subevent in a definition. If not, no action is
needed, otherwise the appropriate event definition is
used to recognise potential occurrences of the
corresponding event. These occurrences are appended to
the database and recognition is propagated to the higher
levels of the network. This algorithm is described in
more detail in [Pali97].

3. Adaptation of the event network

The event network for a realistic event recognition
problem may involve a large number of event definitions
with an equally large number of temporal constraints.
Incorrect assignment of values to these constraints may
cause unacceptably high levels of misrecognition.
However, manual setting of these constraint values can
be very difficult and time-consuming. Therefore, any
automation of this process would be welcome by the
experts who design the recognition system. This section
presents a method which starts with a set of initial
constraint values and improves them to achieve correct
recognition on a small set of preclassified training data.
The initial constraint values may be only rough
estimates of the correct values. These values will then be
refined according to the performance of the system on
the training data. Two versions of the parameter
refinement method are presented in the following two
subsections of this section. The two versions differ in
the level of supervision which is provided by the
training data.

3.1 Refinement under full supervision

The first version of the refinement method makes the
assumption that the training data provide information
about all the high-level events which should be
recognised, given a sequence of low-level event
occurrences. For instance, assuming the network in
Figure 3 - where events A, B, C, D may correspond to
the units of a whale song, Y and Z to phrases and W to a
complete theme - the following sequence of unit
occurrences may be part of the training data:

A(0,200), B(200,300), A(250,350), B(400,500),

C(410,500), D(500,600)
and supervision is provided in the form of phrases and
themes that should be recognised, e.g.
Y (0,500), Z(250,600), W(0,600).

All relevant themes and phrases which should be
recognised in the above sequence of unit occurrences
are assumed to be provided in the training data. This
mode of supervision is called here “full supervision.’

Note that the representation of the training data deviates
significantly from the feature vector of typical
classification problems, which is assumed in most of the
machine learning and knowledge refinement literature,
e.g. [Quin93] and [Craw90]. Here the data are presented
in two separate streams of event occurrences:
» The input stream, consisting of unit occurrences in
our examples.
» The feedback stream, consisting of themes and
phrases that should be recognised.

No information is provided about which occurrences of
low-level events should be combined to recognise a
particular high-level event. To a certain extent this
information can be deduced by the event network and
the time stamps in the feedback data. For instance, it is
clear that the unit occurrence C(410,500) can only be
used in the recognition of Y(0,500), since event C
participates only in the definition of Y. Similarly,
A(0,200) is used in the recognition of Y(0,500), because
there is no other event starting at time 0. However, the
use of overlapping event definitions in an event network
complicates matters, e.g. either of the two occurrences
of B, B(200,300) and B(400,500), may be used to
recognise Y(0,500). Thus, there may be more than one
sequence of low-level events which could cause the
recognition of one high-level event, e.g. for Y(0,500):

A(0,200), B(200,300), C(410,500),

A(0,200), B(400,500), C(410,500).
These alternative sequences are called ‘multiple positive
instances.”™ The refinement method is responsible for
covering one or more of the alternative positives,
depending on the extent to which the temporal
parameters need to change. The principle of minimal
model change dictates that the new values of the
temporal parameters remain close to the original values.

In order to make the problem solvable by a machine
learning method, the data pass through two pre-
processing stages, which provide the required
representation shift to the space of the temporal

® This term was coined in [Diet97].

parameters. The first stage of pre-processing enumerates
the sequences of subevent ?ﬁcurrences that could lead to
the recognition of an event.” In the example of the event
Y(0,500) above, the two alternative sequences of A, B,
C will be generated. This process is initiated when the
terminal subevent - C in this case - is recognised. The
alternative subevent sequences are organised into a tree
structure, called ‘event support tree’ (EST). The EST
for the above positive example for event Y(0,500) is
presented in Figure 4.

C(410,500)

B(200,300) B(400,500)

Figure 4. A simple event support tree for the event
occurrence Y(0,500).

The important features of an EST are the following:

> Its root corresponds to the terminal subevent
sequence.

> Each level of the tree corresponds to the occurrences
of a single subevent.

» Each path from the root to a leaf is a sequence of
subevents, which could lead to the recognition of the
high-level event.

Each EST that is generated is considered a single

example to be used for the refinement of the temporal

parameters. The EST in Figure 4 is a positive example
for event Y. In addition to positive ESTs, negative ones
are constructed for those subevent sequences which lead
to the recognition of events not in the feedback data. For
instance, the sequence of unit occurrences

A(250,350), B(400,500), C(410,500)

could cause the recognition of Y(250,500), which is not

in the feedback data and thus its recognition is

undesirable.

In the second stage of pre-processing, a set of ESTs is
collected to form a training set for the refinement of the
temporal parameters in an event definition. Thus, all the
ESTs for event Y - both positive and negative - are
collected into a training set. This training set is also
organised in a tree structure, which is called the ‘relative
event support tree’ (REST). The REST maintains the
structural features of an EST, but instead of absolute
time, the relative parameter values are used to label the
nodes. Furthermore, lists of positive and negative
examples are associated with each node to assist in the
refinement decision. Figure 5 shows the REST for the
running example of event Y(0,500).

* A user-defined window parameter is used to avoid
combinatorial explosion.

[(+11.[-1]

[+11.0] [(+11.[-4]

A:0,200 1101 (A:200,200 10 [

Figure 5. The relative event support tree for event Y.

Each node in the REST contains two parameter values:
the first is the distance of the subevent occurrence from
the occurrence that it precedes and the second is the
duration of the subevent occurrence. For instance, the
root of the tree does not precede any other subevent and
its distance value is undefined (=?). Its duration is 90
msec, which is the difference between the end and the
start of the event occurrence C(410,500). Similarly, the
distance between B(400,500) and C(400,500) is 400-
500=-100 msec and the duration of B(400,500) is 100
msec, resulting in the node B:-100,100 of the REST in
figure 5. The lists next to the nodes of the tree contain
labels for positive and negative examples. These labels
are given by global example counters. In the example of
figure 5 there is one positive (+1) and one negative
example (-1). The positive example corresponds to two
alternative paths through the tree, as explained above.
The cumulative construction of the REST, allows the
use of a batch learning method which is independent of
the order in which examples are presented in the data.

Given the data in the form of RESTs, a number of

alternative search algorithms can be applied to look for

the optimal set of new parameter values. The algorithm

that we developed performs a simple best-first search,

traversing the tree from the root to the leaves. The

optimality criterion combines two subcriteria:

> purity, which gives an indication of how many
positive and negative examples are covered by each
solution;

» proximity, measuring the closeness of a solution to
the original values.

The user is allowed to determine the relative weight of

these parameters, depending on the amount of noise in

the data and his/her confidence in the original parameter

values. The details of the algorithm can be found in

[Pali97].

3.2 Refinement under partial supervision

In subsection 3.1 we have assumed that the feedback
stream contains information about all of the events in an
event network. This assumption cannot easily be
satisfied when a realistically large event network is used.
It is, therefore, desirable to reduce the amount of
supervision required for refinement. This section
presents briefly an extension to the original method,
which makes the assumption that supervision is
provided for only part of the training data. In particular
only the top-level nodes in the network - the themes in
the case of the whale song - are identified in the
feedback data. In our running example, this would

shrink the feedback data to a single event occurrence:
W(0,600).

The problem that appears under this weaker supervision
scenario is the labelling - as positive or negative - for the
occurrences of all intermediate events in the network. In
our example, we need to decide, which of the following
occurrences of Y and Z should really be recognised:

Y (0,500), Y(250,500), Z(0,600), Z(250,600).
Almost any combination of the above two pairs of Y and
Z occurrences could be used to recognise W(0,600), the
only exception being the combination of Y(250,500)
and Z(250,600), which does not give the right start time
for W.

The solution that we adopted was to maintain a set of
weights, one for each event occurrence in the network.
These weights are called recognition beliefs and provide
an estimate of whether an occurrence should be
recognised or not. Recognition beliefs are initially set
according to how easy it would be to recognise an event
occurrence, i.e.,, how much the original model
parameters should be modified, if at all, in order for the
occurrence to be recognised. This initial model-based
estimate is updated according to the feedback data. The
recognition belief for the top-level event occurrences
that are explicitly identified in the data is set to the
maximum (1.0), while those events that should not be
recognised are given minimum belief (0.0). This
information is propagated backwards to their subevents
to obtain the final belief for each event occurrence in the
network.

After this two-stage calculation of the recognition
beliefs, each training example is associated with a
weight. At this stage, a heuristic could be applied to
decide on a single set of event occurrences that would
lead to the recognition of the required high-level events.
For instance, a winner-takes-all strategy could be
adopted. The problem with such heuristics is that they
are local in nature and can thus cause brittleness,
throwing away useful information, i.e., the actual
weights. For this reason, we have opted for a simple
modification to the optimality criteria used under full
supervision, which allows the use of weights, resulting
in finer distinctions between alternative solutions. The
details of the extended refinement method can be found
in [Pali97].

4. Experimental evaluation

The event recognition system that was briefly introduced
in this paper was tested on a real-world problem: the
recognition of song components in humpback whale
songs. The structure of the song has been studied in
detail in the biological literature, e.g. [Payn71,Payn83],
and a number of interesting observations were made.
The following are of particular interest here:
» In each recording season (roughly December to
April) and for a particular population of humpback

whales, the same song is sung by all individuals,
with only small aberrations.

» The song is structured hierarchically into themes,
phrases, subphrases and units, i.e., themes are broken
down into phrases, which consist of subphrases and
can be further decomposed into units.

» The temporal features of the song components, e.g.
duration and distance, are highly variable, even for
the same individual.

Each whale song consists of a sequence of themes,
which differ structurally from each other. The task that
was set for the event recognition system was to identify
the themes and their structural components, i.e., phrases,
subphrases and units. This task is named here ‘theme
analysis’ of the whale song. The data that we used for
the test were provided by the Whale Conservation
Institute in the form of spectrogram print-outs. These
spectrograms corresponded to several hours of recording
in one season in Hawaii. The same data were used in the
detailed study presented in [Payn83].

The event network representation suited nicely the
hierarchical structure of the whale song. Each theme was
represented by an event network, using information from
the study in [Payn83]. We also manually extracted
sequences of unit occurrences from 10 of the
spectrograms. Manual extraction was necessary due to
the lack of a low-level event recognition system. The
goal of our system was to learn the correct parameter
settings, so that the subphrases, phrases and themes that
are identified by the event networks are the correct ones.
For this purpose, we performed a 10-fold cross-
validation experiment, using the 10 songs that were
coded from the spectrograms. In each of the ten runs,
one of the songs was held out as test data and the rest
were used for training.

The literature in marine biology does not provide
detailed information on the temporal aspects of song
components. For this reason, a parameter initialisation
algorithm was developed, which uses a set of data to
approximate the values of the temporal parameters in the
event networks. The use of problem-specific information
allows this algorithm to achieve close approximations of
the real parameter values. Applying this algorithm on a
subset of the 9 songs in the training data, the parameters
were assigned initial values, which were further refined
with the use of the remaining training data. For instance,
4 songs could be used to initialise the parameters and 5
to refine them. The performance of the algorithm for
different sizes of the initialisation set is reported in the
results below.

The initial set of parameters, generated by the above-
mentioned algorithm is called an ‘expert model.’
Similarly, the ‘refined model’ is the set of refined
parameters. In addition to those two, two more models
were set up to act as standards for comparison: the
‘perfect model’ is the set of correct parameter vales,
which recognises correctly all events in the 10 songs and

the ‘goal model’ is the model that correctly recognises
the events in the 9 songs of the training set. It should be
noted that the goal model is an approximation of the
parameters that we expect the refinement method to
generate, but does not provide a uniquely correct
solution.

Figure 6 presents the results of the experiment, using an
evaluation metric called ‘model displacement.” This
metric is simply the sum of absolute differences between
the parameter values of a model and the perfect model.
Results both under full and partial supervision are
presented. The number of songs that are used in the
initialisation of the parameters is varied on the x-axis of
the diagram. When the initialisation set is small, e.g. 1
song, the expert model is far from the desired perfect
model. As expected, for larger initialisation sets the
expert model approaches the perfect model. When 8 of
the 9 songs are used for initialisation the difference
between the expert and the goal model is minimal. The
goal model, which is generated on the 9 songs of the
training set remains largely unaffected by the size of the
initialisation set.

2000

- « expert model

== goal model .

- - refined model Partlal)

a— — a refined model (full)
1500 [

1000

displacement from perfect model

500 -
4 L
- - *
& -
- A
=g 0. -
)
1 2 3 4 5 6 7

IR
L

size of initialisation set (songs)

Figure 6. Displacement from the perfect model for
different sizes of the initialisation set.

The goal and the expert model form an envelope, within
which the refined model is expected to lie. The
performance of the refinement method is judged by the
distance of the refined model from the expert and the
goal model. The closer the refined model is to the goal
the better the method. On this basis, the results
presented in Figure 6 are very encouraging. Both under
full and partial supervision, the refined model is very
close to the goal. The expected fall in performance
under partial supervision is also small, when compared
to the improvement that is achieved over the expert
model. Under partial supervision, the amount of
feedback provided for training is minimal: only the
theme occurrences are given. Thus, the results of figure
6 suggest that our refinement method has handled the
test problem very well.

These good results are reinforced by the recognition

accuracy of the system on the unseen data, i.e., the tenth
song that was not used for training. Recognition
accuracy corresponds to the standard evaluation
measure in machine learning literature, i.e., the
proportion of objects being correctly classified. Figure 7
presents the results along this dimension. The picture is
similar to that in Figure 6: the refined models achieve
the desired performance. Under full supervision, the
refined model outperforms even the goal model, which
suffers small approximation errors.

1.0

E * - e = ¥ =
| + t 1
+ ¢
0.8 p'
> Lot
o .
3 06
(5]
[
c hd
o
=
c
0.4 expert model o - - o
<4) oal modelm =
Q refined model partlal}o -
e aa

refined model (full

size of initialisation set (songs)

Figure 7. Recognition accuracy of the various models
on the held-out song data.

5. Related work

Most of the work on event recognition, e.g. [Rabi89,
Waib90, Lipp90] adopts numeric approaches such as
Artificial Neural Networks and Hidden Markov Models.
These methods can provide accurate and effective
models, when there is enough data to estimate the
necessary parameters. This was not the case in our work.
Furthermore, these approaches cannot deal with
overlapping events and do not provide an easy way to
use domain knowledge, provided by a human expert.

Early symbolic signal understanding systems which also
perform event recognition [Erma80, Lowe90] have
meanwhile been abandoned, due their inefficiency. The
main problem with these approaches was the use of a
blackboard architecture, which is a flexible and
powerful, but also inefficient, problem solving method.
This architecture has been used in a more recent system
which is presented in [Samm90]. In this system, the
authors tried to improve recognition efficiency by
structuring the use of the blackboard inference strategy
into four distinct levels of event definitions. All the
above-mentioned systems do not deal with overlapping
events and are not adaptive, i.e., no learning takes place.

The event recognition system, as described in section 2,
belongs in a small class of systems, grouped under the
label ‘temporal event recognition systems.” Examples of
this work can be found in [Kock94] and [Dous96].
These systems use a temporal logic to represent the
event model and Temporal Constraint Satisfaction

algorithms for event recognition. The first important
difference of these approaches to the system presented
here is that they are not adaptive. Additionally, there are
practical differences in the recognition system, such as
the kind of event that is used and the recognition
algorithm. These differences are discussed in detail in
[Palia7].

6. Conclusions

In this paper we presented an event recognition system,
which is able to adopt itself in order to improve its
performance on a small set of training data. In addition
to the restriction of the small training set, the system was
required to handle overlapping events, which are
commonly ignored and are difficult to handle. The
solution that we proposed was based on a simple, but
well-structured hierarchical representation of events.
This representation allows the use of explicit temporal
constraints, making the handling of overlapping events
easier.

Due to the small size of the training set, we restricted the
scope of the learning method on the refinement of the
temporal parameters. The parameters are initially
assigned approximate values, which can be refined in
the light of the training information. Particular attention
was paid to the extent of supervision that the expert
designer needs to provide, as this can be decisive for the
usability of the system. We extended our method to
handle a situation where a minimal amount of
supervision is provided.

The evaluation of the method was performed on real
data that was drawn from the “realm” of marine
mammals. 10 songs of the humpback whale were coded
and used to test our method. The results of the
experiment are very encouraging. The refinement
method consistently managed to improve the initially
inaccurate model and reach close to the expected
maximum on two different measures.

While these results are encouraging, they are just
indicative, as only a single problem was used for
evaluation. Further evaluation on more data and
different problems is needed to verify the effectiveness
of our system. This effort should be combined with the
use of an automatic system for the recognition of low-
level events, i.e., units in the case of the whale song.

Another direction for further work is to expand the
scope of refinement to include the restructuring of the
event network. Although the confidence of the human
expert on the structure of the recognition system is
higher than on the exact values of the temporal
constraints, errors can also be made at that level. A
prerequisite for a method that would perform such
restructuring is the use of more training data, in order to
make reliable decisions.

Acknowledgements

We are both indebted to the people doing work on the
sounds of the humpback whale for their invaluable help,
in particular to Roger Payne for providing the data and
the much-needed insight on the acoustics of the whale
sounds.

References

[Craw90] S. Craw and D. Sleeman. “Automating the
Refinement of Knowledge-Based Systems.”
Proceedings of the European Conference on Artificial
Intelligence, 167-172, 1990.

[Diet97] T.G. Dietterich, R.H. Lathrop and T. Lozano-
Pérez. “Solving the Multiple Instance Problem with
Axis-parallel Rectangles.” Artificial Intelligence, 89:31-
71, 1997.

[Dous96] C. Dousson. “Alarm Driven Supervision for
Telecommunication Network 1l - on-line chronicle
recognition.” Annales des Télécommunication, 51(9-
10):501-508, 1996.

[Erma80] L.D. Erman, F.Hayes-Roth, V.R. Lesser, and
D.R. Reddy. “The Hearsay-Il Speech-Understanding
System: integrating Knowledge to resolve uncertainty.”
ACM Computing Surveys, 12(2):214-253, 1980.
[Hewi89] P.D. Hewitt, P.J.C. Skitt, and R.C. Witcomb.
“A Self-organising Feedforward Network Applied to
Acoustic Data.” In J.G. Taylor and C.L.T. Mannion
(eds.), New Developments in Neural Computing, pages
71-78, Adam Hilger, 1989.

[Kock94] S. Kockskamper, B. Neuman, and M. Schick.
“Extending Process Monitoring by Event Recognition.”
In Proceedings of the 2™ International Conference on
Intelligent Systems Engineering, pages 455-460, 1994.
[Less95] V.R. Lesser, S.H. Nawab, and F.I. Klassner.
“IPUS: an architecture for the integrated processing and
understanding of signals.” Artificial Intelligence,
77:129-171, 1995.

[Lipp90] R.P. Lippmann. “Review of Neural Networks
for Speech Recognition.” In A. Waibel and K.F. Lee
(eds.), Readings in Speech Recognition, pages 374391,
Morgan-Kaufmann, 1990.

[Lowe90] B. Lowerre and R. Reddy. “The HARPY
Speech Understanding System.” In A. Waibel and K.F.
Lee (eds.), Readings in Speech Recognition, pages 576-
586, Morgan-Kaufmann, 1990.

[Nii88] H.P. Nii, E.A. Feigenbaum, J.J. Anton, and A.J.
Rockmore. “Signal-to-Symbol Transformation:
HASP/SIAP case study.” In R. Engelmore and T.
Morgan, (eds.), Blackboard Systems, pages 135157,
Addison-Wesley, 1988.

[Pali97] G. Paliouras. Refinement of Temporal
Constraints in an Event Recognition System using Small
Datasets. Ph.D. Thesis, Computer Science Department,
University of Manchester, 1997.

[Payn71] R.S. Payne and S. McVay. “Songs of
Humpback Whales.” Science, 173(3997):585-597,
1971.

[Payn83] K. Payne, P. Tyack, and R. Payne.
“Progressive Changes in the Songs of Humpback
Whales (Megaptera Novaeangliae): a detailed analysis
of two seasons in Hawaii.” In R. Payne, (ed.)

Communication and Behaviour of Whales, pages 9-57,
Westview Press, 1983.

[Quin93] J.R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, CA, 1993.
[Samm90] T.M. Sammon Jr. “The Transient Expert
Processor.” Conference Record - Asilomar Conference
on Signals, Systems and Computers, 612-617, 1990.
[Rabi89] L.R. Rabiner. “A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition.” IEEE Proceedings, 77(2):257-285, 1989.
[Waib90] A. Waibel, T. Hanazawa, G. Hinton, K.
Shikano, and K.J. Lang. “Phoneme Recognition using
Time-Delay Neural Networks.” In A. Waibel and K.F.
Lee (eds.), Readings in Speech Recognition, pages 393-
404, Morgan-Kaufmann, 1990.

