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ABSTRACT
Today’s organisations require techniques for automated trans-
formation of the large data volumes they collect during their
operations into operational knowledge. This requirement
may be addressed by employing event recognition systems
that detect activities/events of special significance within an
organisation, given streams of ‘low-level’ information that is
very difficult to be utilised by humans. Numerous event
recognition systems have been proposed in the literature.
Recognition systems with a logic-based representation of
event structures, in particular, have been attracting con-
siderable attention because, among others, they exhibit a
formal, declarative semantics, they haven proven to be ef-
ficient and scalable, and they are supported by machine
learning tools automating the construction and refinement of
event structures. In this paper we review representative ap-
proaches of logic-based event recognition, and discuss open
research issues of this field.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Languages

Keywords
event recognition

1. INTRODUCTION
Today’s organisations collect data in various structured and
unstructured digital formats, but they cannot fully utilise
these data to support their resource management. It is ev-
ident that the analysis and interpretation of the collected
data needs to be automated, in order for large data volumes
to be transformed into operational knowledge. Events are
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particularly important pieces of knowledge, as they repre-
sent activities of special significance within an organisation.
Therefore, the recognition of events is of utmost importance.
Systems for symbolic event recognition (‘event pattern

matching’, in the terminology of [22]) accept as input a
stream of time-stamped low-level events (LLE), which are
used to recognise high-level events (HLE) of interest. Con-
sider, for example, the recognition of attacks on nodes of
a computer network given the TCP/IP messages, and the
recognition of suspicious trader behaviour given the trans-
actions in a financial market. Numerous recognition systems
have been proposed in the literature — [37, 17, 7, 22] are but
a few examples. Recognition systems with a logic-based rep-
resentation of event structures, in particular, have been at-
tracting considerable attention. In this paper we will present
representative approaches of logic-based event recognition.

Logic-based event recognition systems exhibit a formal,
declarative semantics, while non-logic-based event recogni-
tion systems often exhibit an informal, procedural seman-
tics. As pointed out in [29], informal semantics constitutes
a serious limitation for many real-world applications, where
validation and traceability of the effects of events are cru-
cial. Moreover, given that a declarative program states what
is to be computed, not necessarily how it is to be computed,
declarative semantics can be more easily applied to a variety
of settings, not just those that satisfy some low-level opera-
tional criteria. A comparison between, and a comprehensive
introduction to, logic-based and non-logic-based event pro-
cessing systems may be found in [29].

Non-logic-based event recognition systems have proven to
be, overall, more efficient than logic-based recognition sys-
tems, and, thus, most industrial applications employ the
former type of system. However, there are logic-based event
recognition systems that have also proven to be very efficient
and scalable — we will present such a system in this paper.

Furthermore, logic-based event recognition systems can
be, and have been, used in combination with existing non-
logic-based enterprise event processing infrastructures and
middleware. The Prolog-based Prova system [31], for exam-
ple, has been used in enterprise event processing networks.

HLE ‘definitions’ in logic-based systems impose temporal
and, possibly, atemporal constraints on subevents, that is,
LLE or other HLE. An event recognition system, therefore,
should allow for, at the very least, temporal representation
and reasoning. In this paper we will review a Chronicle
Recognition System (CRS) [16, 11, 12], the Event Calculus
(EC) [20, 6, 23, 24, 30, 31, 29, 1], and Markov Logic Net-
works (MLN) [10, 34]. CRS is a purely temporal reasoning
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system that allows for very efficient and scalable event recog-
nition. CRS has been used in various domains, ranging from
medical applications to computer network management —
see, for example, [12, 4, 3]. EC, which has also been used
for event recognition (see, for instance, [5, 30, 31, 29, 1]), al-
lows for the representation of temporal as well as atemporal
constraints. Consequently, EC may be used in applications
requiring spatial reasoning, for example. Finally, MLN, un-
like EC and CRS, allow for uncertainty representation and
are thus suitable for event recognition in noisy environments.

The manual development of HLE definitions is a tedious,
time-consuming and error-prone process. Moreover, it is of-
ten necessary to update HLE definitions during the event
recognition process, due to new information about the ap-
plication under consideration. Consequently, methods for
automatically generating and refining HLE definitions from
data are highly desirable. For this reason we chose to re-
view approaches that are supported by machine learning
techniques. The presentation of each approach, therefore,
is structured as follows: representation, reasoning, and ma-
chine learning.

To illustrate the reviewed approaches we will use a real-
world case study: event recognition for city transport man-
agement (CTM). In the context of the PRONTO project1

an event recognition system is being developed with the aim
to support the management of public transport. Buses and
trams are equipped with in-vehicle units that send GPS co-
ordinates to a central server offering information about the
current status of the transport system (for example, the lo-
cation of buses and trams on the city map). Additionally,
buses and trams are being equipped with sensors for in-
vehicle temperature, in-vehicle noise level and acceleration.
Given the LLE that will be extracted from these sensors
other data sources, such as digital maps, as well as LLE
that will be extracted from the communication between the
drivers and the public transport control centre, HLE will
be recognised related to, among others, the punctuality of a
vehicle, passenger and driver comfort, passenger and driver
safety, and passenger satisfaction. A detailed description of
this case study may be found in [1].

2. A CHRONICLE RECOGNITION SYSTEM
In this section we review the Chronicle Recognition System
(CRS) developed by Dousson and colleagues [16, 11, 12].

2.1 Representation
CRS is a temporal reasoning system that has been developed
for event recognition. A ‘chronicle’ can be seen as a HLE —
it is expressed in terms of a set of events linked together by
time constraints, and, possibly, a set of context constraints.
The input language of CRS relies on a reified temporal logic,
where propositional terms are related to time-points or other
propositional terms. Time is considered as a linearly ordered
discrete set of instants. The language includes predicates
for persistence, event absence and event repetition. Table 1
presents the CRS predicates. Variables start with an upper
case letter while predicates and constants start with a lower-
case letter. ? is the prefix of an atemporal variable. Details
about the input language of CRS, and CRS in general, may
be found on the web page of the system2. The code below,
for example, expresses HLE related to vehicle (bus/tram)

1http://www.ict-pronto.org/
2http://crs.elibel.tm.fr/

Table 1: Predicates of CRS.
Predicate Meaning

event(E, T) Event E takes place at time T

event(F:(?V1,?V2),T) An event takes place at
time T changing the value of
property F from V1 to V2

noevent(E, (T1,T2)) Event E does not take place
between [T1,T2)

noevent(F:(?V1,?V2), No event takes place between
(T1,T2)) [T1,T2) that changes the value

of property F from V1 to V2

hold(F:?V, (T1,T2)) The value of property F is V
between [T1,T2)

occurs(N,M,E,(T1,T2)) Event E takes place at least
N times and at most M times
between [T1,T2)

punctuality in the CRS language:

(1) chronicle punctual[?Id, ?V](T1) {
(2) event(stop_enter[?Id, ?V, ?S, scheduled], T0)
(3) event(stop_leave[?Id, ?V, ?S, scheduled], T1)
(4) T1 > T0
(5) end - start in [1, 2000]
(6) }
(7) chronicle non_punctual[?Id, ?V](T0) {
(8) event( stop_enter[?Id, ?V, *, late], T0 )
(9) }
(10) chronicle punctuality_change[?Id, ?V,

non_punctual](T1) {
(11) event( punctual[?Id, ?V], T0 )
(12) event( non_punctual[?Id, ?V], T1 )
(13) T1 > T0
(14) noevent( punctual[?Id, ?V], (T0+1, T1) )
(15) noevent( non_punctual[?Id, ?V], (T0+1, T1) )
(16) end - start in [1, 20000]
(17) }

The atemporal variables of a chronicle (HLE) and event
(LLE or HLE) are displayed in square brackets. * denotes
that a variable can take any value. Lines (1)–(6) of the above
CRS code express a set of conditions in which a vehicle V
with Id is said to be punctual: V enters a stop S and leaves
S at the scheduled time. The time-stamp of the ‘punctual’
HLE is the same as that of the ‘stop leave’ subevent (that is,
T1). The first and the last subevent of the ‘punctual’ HLE,
that is, ‘stop enter’ and ‘stop leave’, must take place within
2000 time-points in order to recognise ‘punctual’ (see line
(5)). Lines (7)–(9) express one out of several cases in which
a vehicle is said to be non-punctual: the vehicle enters a stop
after the scheduled time (that is, it is late). Lines (10)–(17)
express the ‘punctuality change’ HLE: punctuality changes
(to non-punctual) when a vehicle that was punctual at an
earlier time now is not punctual. Another HLE definition
(not shown here to save space) deals with the case in which
a vehicle was not punctual earlier and now is punctual.

Note that all events shown in the above CRS code are
instantaneous. CRS allows for the representation of durative
events. Due to space limitations we do not show here how
such events are treated in CRS.

The CRS language does not allow mathematical opera-
tors in the constraints of atemporal variables. It is not pos-
sible to compute the distance between two entities given
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Figure 1: CRS: Constraint Propagation.

their coordinates, for example. In the CTM HLE definition
concerning passenger safety, for instance, we cannot express
that a vehicle accident or violence within a vehicle is more
severe when the vehicle if far from a hospital or a police sta-
tion. Moreover, the CRS language does not allow universal
quantification. In CTM, for instance, we cannot define HLE
using LLE coming from all vehicles (of a particular route).

2.2 Reasoning
Each HLE definition expressed in the CRS language is typ-
ically translated to a Temporal Constraint Network (TCN)
[16, 11, 12] (see [7], however, for a Petri-Net based semantics
of the CRS language). Each subevent of a HLE definition
corresponds to a node in the TCN, whereas the temporal
constraints between two subevents correspond to the edge
linking the nodes expressing the subevents. Figure 1(a), for
example, shows a TCN expressing the CTM HLE ‘uncom-
fortable driving’. The subevents of this HLE are ‘enter inter-
section’, ‘abrupt deceleration’, ‘sharp turn’ and ‘abrupt ac-
celeration’. The temporal constraints on these events that,
if satisfied, will lead to the recognition of ‘uncomfortable
driving’, are expressed by the edges of the TCN. For exam-
ple, ‘abrupt acceleration’ should take place, at the earliest,
1 time-point after the ‘abrupt deceleration’ LLE and, at the
latest, 5 time-points after this LLE. (There are other ways
to define ‘uncomfortable driving’. This example is presented
simply to provide a concrete illustration.)

Before the recognition stage, CRS propagates the con-
straints of a TCN using an incremental path consistency
algorithm in order to produce the least constrained TCN
expressing the user constraints. Figure 1(b), for example,
shows the TCN for ‘uncomfortable driving’ after constraint
propagation. In this example, the edge between ‘abrupt de-
celeration’ and ‘sharp turn’, and that between ‘sharp turn’
and ‘abrupt acceleration’, became [0 , 5 ] due to the temporal
constraint [1 , 5 ] between ‘abrupt deceleration’ and ‘abrupt
acceleration’. The use of the incremental path consistency
algorithm allows for checking the consistency of the tempo-
ral constraints of a TCN (details about the use of this algo-
rithm in the context of CRS may be found in [11]). CRS,
therefore, detects inconsistent HLE definitions and reports
such definitions to the user.

The recognition process of CRS is illustrated in Figure 2
— this figure shows the process of recognising ‘uncomfort-
able driving’. The left part of Figure 2 shows the effects of
the arrival of ‘enter intersection’ at time-point 6 , while the
right part of this figure shows the effects of the arrival of
‘abrupt deceleration’ at time-point 10 . The arrival of ‘enter
intersection’ creates an instance of ‘uncomfortable driving’,
that is, a partial instantiation of the definition of this HLE.
The horizontal grey lines in Figure 2 show the temporal win-
dows of the subevents of ‘uncomfortable driving’, that is, the
possible times in which a subevent may take place without

Figure 2: CRS: Recognition Stage.

violating the constraints of the ‘uncomfortable driving’ in-
stance. Upon the arrival of ‘enter intersection’, the temporal
window of ‘abrupt deceleration’ becomes [8 , 11 ] because, ac-
cording to the TCN of ‘uncomfortable driving’ (see Figure
1(b)), ‘abrupt deceleration’ must take place 2 time-points
after the ‘enter intersection’ LLE at the earliest, and, at the
latest, 5 time-points after this LLE. Similarly, the window of
‘sharp turn’ becomes [8 , 16 ], while that of ‘abrupt acceler-
ation’ becomes [9 , 16 ]. The occurrence of ‘abrupt decelera-
tion’ at time-point 10 is integrated in the displayed instance
of ‘uncomfortable driving’ as it complies with the constraints
of the instance (that is, ‘abrupt deceleration’ takes place
within its temporal window), and constrains the temporal
windows of the (yet) undetected subevents of ‘uncomfortable
driving’ (see the right part of Figure 2).

Using this type of recognition, CRS may report to the
user not only a fully recognised HLE, but also a partially
recognised HLE, that is, a pending HLE instance. More-
over, CRS may report the events that need to be detected
in order to fully recognise a HLE. Such information can be
very helpful in various application domains.

Figure 3: CRS: HLE Instance Management.

Figure 2 shows the evolution of one HLE instance. For
each HLE definition more than one instance may be cre-
ated. Figure 3 illustrates the HLE instance management of
CRS — this figure shows instance management concerning
‘uncomfortable driving’. The occurrence of ‘enter intersec-
tion’ at time-point 1 creates a new instance of ‘uncomfort-
able driving’. CRS computes the temporal windows of the
forthcoming events — for example, ‘abrupt deceleration’ is
expected between [3 , 6 ]. The occurrence of the second ‘enter
intersection’ LLE at time-point 4 creates a new instance of
‘uncomfortable driving’. Moreover, the passing of time re-
sults in constraining the temporal windows of the forthcom-
ing events of the first instance (for example, the temporal
window of ‘abrupt deceleration’ becomes [4 , 6 ]). Upon the
arrival of ‘abrupt deceleration’ at time-point 7 , CRS makes
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a copy of the second instance of ‘uncomfortable driving’,
thus creating a third instance of this HLE, and integrates
‘abrupt deceleration’ in the third HLE instance. CRS keeps
the second instance because another ‘abrupt deceleration’
LLE may take place in the future (more precisely, between
7 and 9 ), which may lead to another recognition of ‘un-
comfortable driving’. The first instance of ‘uncomfortable
driving’ is killed at time-point 7 because no ‘abrupt decel-
eration’ LLE was detected between [4 , 6 ], and thus it is not
possible to satisfy the constraints of this instance any more.

CRS stores all pending HLE instances in trees, one for
each HLE definition. Each event occurrence and clock up-
date traverses these trees in order to further develop, or kill,
some HLE instances. For K HLE instances, each having n
subevents, the complexity of processing each incoming event
or a clock update is O(Kn2 ).
Various techniques have been recently developed to reduce

the number of created HLE instances and thus improve the
efficiency of CRS [12]. One such technique, called temporal
focusing, can be briefly described as follows. Let’s assume
that, according to the definition of HLE H, event er should
take place after event ef in order to recognise H, er is a
very rare event and ef is a frequent event. The frequency
of events is determined by an a priori analysis of the ap-
plication under consideration. In this case CRS stores all
incoming ef events and starts the recognition process, that
is, creates a new instance of H, only upon the arrival of
an er event (the new instance will include er and a stored
ef that satisfies the constraints of H). In this way the cre-
ation of HLE instances is significantly reduced. (Temporal
focusing significantly improves the efficiency of recognising
‘uncomfortable driving’, for example, as ‘enter intersection’
is a very frequent LLE, ‘abrupt deceleration’ is a rare LLE,
and ‘abrupt deceleration’ should take place after ‘enter in-
tersection’ in order to recognise ‘uncomfortable driving’.)

Empirical analysis has shown that CRS can be very ef-
ficient and scalable [12]. Recall, however, that CRS is a
purely temporal reasoning system.

2.3 Machine Learning
Various approaches have been proposed in the literature for
the automated construction of HLE definitions expressed
in the CRS language. The proposed approaches include
automata-based learning [16], frequency-based analysis of
events [14], and inductive logic programming (ILP) [4, 3].
ILP is well-suited to the construction of HLE definitions ex-
pressed in the CRS language, as these definitions can be
straightforwardly translated into first-order logic descrip-
tions used by ILP systems, and vice-versa. In what follows,
therefore, we will present the use of ILP for constructing
HLE definitions for CRS.

Note that the approaches mentioned above do not learn
the numerical temporal constraints of a HLE definition at
the same time as they learn the structure of the HLE, that
is, the structure of the TCN expressing the HLE definition.
The most common approach is to separate the relational
part from the numerical constraints, which are either de-
fined by experts before the relational learning [4], or they are
computed from data using simple statistics once the TCN
structure is learned [16].

ILP is the combination of inductive machine learning and
logic programming. It aims at inducing theories from exam-
ples and background knowledge in the form of a first-order

logic program. It inherits, from machine learning, the princi-
ple of hypothesis induction from data, but its first-order logic
representation allows the induction of more expressive the-
ories than classical machine learning approaches, which in-
duce propositional hypotheses. Furthermore, a-priori back-
ground knowledge can easily be used to guide learning. The
logical elements involved in ILP can be defined as follows
(these elements will be shortly explained in terms of HLE
definition learning):

• A set of positive examples E+ and a set of negative
examples E−. These are typically ground facts.

• A set of hypotheses H.
• A background knowledge base B. B and H are sets of

clauses of the form h ← b1 ∧ · · ·∧ bn, where the head
h and bi are literals.

ILP searches for hypotheses H such that B∧H ! E+ (com-
pleteness) and B ∧ H ∧ E− ! ! (consistency) [26]. The
completeness condition guarantees that all positive exam-
ples in E+ can be deduced from H and B. The consistency
condition guarantees that no negative examples in E− can
be deduced fromH and B. The clauses inH are usually con-
strained by some form of domain-dependent language bias.
A form of language bias that is typically used in ILP is called
mode declarations. A set M of mode declarations defines a
hypothesis space LM within which H ⊆ LM must fall. In
general, ILP can be seen as a search problem over a space
of hypotheses, which needs an evaluation function to esti-
mate the value of hypotheses under consideration at each
step of the search. An exhaustive search is usually impos-
sible, due to the exponential complexity of the space, and
thus pruning strategies are employed. The language bias is
an effective way of reducing the search space, as it constrains
the candidate hypotheses.

Many ILP algorithms have been developed in the litera-
ture — such algorithms differ in the way they perform the
search, in the way they evaluate the hypotheses, etc. Ex-
amples of ILP algorithms include icl [21], Progol3 and
Aleph4. In what follows we illustrate the use of Aleph for
learning HLE definitions expressed in the CRS language (see
[3] for a more detailed example).

To learn hypotheses H, expressing HLE definitions con-
cerning punctuality, for example, we use the following mode
declarations M and background knowledge B (to save space
only a fragment of B is shown):
% mode declarations
:- modeh(*, punctual(+id,+vehicle,+float)).
:- modeb(*, event(stop_enter(+id,+vehicle,+stop,

#respected_time), -float, -evt, -evt)).
:- modeb(*, event(stop_leave(+id,+vehicle,+stop,

#respected_time), -float, -evt, -evt)).

% background knowledge: LLE for tram tr1
event(stop_enter(tr1,tram,stop1,early),20,init,e1).
event(stop_leave(tr1,tram,stop1,scheduled),20.5,e1,e2).
...
% background knowledge: LLE for bus b2
event(stop_enter(b2,bus,stop4,scheduled),20,init,e1).
event(stop_leave(b2,bus,stop4,scheduled),21,e1,e2).
...

A mode declaration is either a head declaration modeh(r,s)
or a body declaration modeb(r,s), where s is a ground lit-
eral, the scheme, which serves as a template for literals in the
3http://www.doc.ic.ac.uk/~shm/progol.html
4http://www.comlab.ox.ac.uk/activities/machinelearning/
Aleph/
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head or body of a hypothesis, and r is an integer, the recall,
which limits how often the scheme is used [33]. In this ex-
ample the scheme of the head of a hypothesis is punctual,
while the scheme of the body of a hypothesis is an event
predicate for stop_enter or stop_leave. +, -, # express,
respectively, input terms, output terms, and ground terms.
Note that if we had no prior knowledge about the subevents
of punctual, we would have written a body declaration for
every LLE, stating that any LLE may appear in the body of
a hypothesis. The background knowledge base B includes
the event narrative used for learning the hypotheses. In this
example the narrative consists of a stream of detected LLE
— for brevity only stop_enter and stop_leave are shown
above. Notice that a 4-argument event predicate is used in
the learning procedure. The 4th argument of an event pred-
icate represents the id of the event that is the 1st argument
of the predicate, while the 3rd argument of event represents
the id of the directly temporally preceding event. These two
arguments allow for the temporal ordering of events. At the
end of the learning procedure the produced hypotheses are
translated into the CRS representation shown in Section 2.1

To learn hypotheses H concerning punctual, a set of pos-
itive examples E+ and a set of negative examples E− are
given:

%E+
punctual(tr1,tram,20.5). punctual(b2,bus,21).
...
%E-
punctual(tr1,tram,55). punctual(b2,bus,46).
...

Using M , B, E+ and E−, Aleph performs the following
operations. First, it selects an example from E+ to be gener-
alised (for example, punctual(tr1, tram, 20.5)). Second,
it generates the most specific clause that entails this exam-
ple with respect to B. Third, it searches for a more general
clause than that generated in the previous step, aiming to
cover as many positive examples from E+, without covering
any negative examples from E−. Fourth, it adds the clause
to H, removing redundant clauses and restarting with a new
example from E+ until E+ is empty.

In practice, the examples used to induce a hypothesis in
H, as well as the event narrative that is part of B, may be
noisy. In order to facilitate learning under such conditions,
ILP systems relax the consistency and completeness require-
ments, allowing some negative examples to be deduced from
H and B and some positive ones to not be covered. (An
approach that has been specifically developed for learning
hypotheses in noisy environments is presented in Section 4).

The result of ILP in this example comprises the following:

[Rule 1]
punctual(Id,V,T2) :-

event(stop_enter(Id,V,S,early),T1,E0,E1),
event(stop_leave(Id,V,S,scheduled),T2,E1,E2).

[Rule 2]
punctual(Id,V,T2) :-

event(stop_enter(Id,V,S,scheduled),T1,E0,E1),
event(stop_leave(Id,V,S,scheduled),T2,E1,E2).

These rules express the HLE definition concerning a punc-
tual vehicle. After the end of the ILP procedure, the numer-
ical temporal constraints are added using simple statistics as
mentioned earlier. Moreover, the generated hypotheses are

translated into the CRS language. For instance, the sec-
ond rule shown above is translated into the first chronicle
presented in Section 2.1.

Learning HLE definitions that have other HLE as
subevents is performed in a similar manner. In this case,
however, one would have to add to the background knowl-
edge base B a HLE narrative, as opposed to a LLE narrative.
To learn the definition of the ‘punctuality change’ HLE, for
example, B would have to include a narrative of punctual
and non_punctual HLE.

3. THE EVENT CALCULUS
The Event Calculus (EC), introduced by Kowalski and Ser-
got [20], is a many-sorted, first-order predicate calculus for
representing and reasoning about events and their effects.
EC was not originally developed for event recognition, but
has recently been used for this task. EC is typically ex-
pressed as a logic (Prolog) program (see [13], however, for
a Java implementation of EC, and [24] for an implemen-
tation using satisfiability solvers). Various dialects of EC
have been proposed in the literature (for event recognition).
In Section 3.1 we present a high-level review of the expres-
siveness of EC as a logic programming language, in Section
3.2 we present a concrete implementation of this formalism,
while in Section 3.3 we present techniques for automatically
constructing an EC logic program.

Table 2: Predicates of the Event Calculus.
Predicate Meaning

happensAt(E , T ) Event E is occurring at time T

happensFor(E , I ) I is the list of the maximal
intervals during which event E
takes place

initially(F =V ) The value of fluent F is V
at time 0

holdsAt(F =V , T ) The value of fluent F is V
at time T

holdsFor(F =V , I ) I is the list of the maximal
intervals for which F =V
holds continuously

initiatedAt(F =V , T ) At time T a period of time
for which F =V is initiated

terminatedAt(F =V ,T ) At time T a period of time
for which F =V is terminated

3.1 Representation
The time model of EC is often linear and it may include
real numbers or integers. Where F is a fluent — a property
that is allowed to have different values at different points in
time — the term F =V denotes that fluent F has value V .
Boolean fluents are a special case in which the possible values
are true and false. Informally, F =V holds at a particular
time-point if F =V has been initiated by an event at some
earlier time-point, and not terminated by another event in
the meantime.

An event description in EC includes rules that define the
event occurrences (with the use of the happensAt and hap-
pensFor predicates), the effects of events (with the use of
the initiatedAt and terminatedAt predicates), and the values of
the fluents (with the use of the initially, holdsAt and holdsFor
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predicates). Table 2 summarises the main EC predicates.
Variables start with an upper-case letter while predicates
and constants start with a lower-case letter.

EC has built-in rules for holdsAt and holdsFor, that is, for
computing the value of a fluent at a particular time and
for computing the maximal intervals in which a fluent has a
particular value (there are EC dialects with additional built-
in rules for more expressive temporal representation [23]). A
partial specification of holdsAt, for example, is given below:

holdsAt(F =V, T ) ←
initiatedAt(F =V, Ts), Ts ≤ T,
not broken(F =V, Ts, T )

(1)

broken(F =V, Ts, T ) ←
terminatedAt(F =V, Te), Ts ≤ Te ≤ T

(2)

not represents ‘negation by failure’. The above rules state
that F =V holds at T if F =V has been initiated at Ts,
where Ts ≤ T , and not ‘broken’, that is, terminated, in the
meantime. The events that initiate/terminate a fluent are
represented in the body of initiatedAt and terminatedAt. The
interested reader is referred to the cited papers for alter-
native implementations of holdsAt, and implementations of
holdsFor (in the following section we sketch one implementa-
tion of holdsFor).
The EC rules below express a set of conditions in which a

vehicle is said to be punctual/non-punctual:

happensAt(punctual(Id ,V ), DT ) ←
happensAt(stop enter(Id ,V ,S , scheduled), AT ),
happensAt(stop leave(Id ,V ,S , scheduled), DT ),
1 ≤ DT−AT ≤ 2000

(3)

happensAt(non punctual(Id ,V ), AT ) ←
happensAt(stop enter(Id ,V , , late), AT )

(4)

All events in the above rules are instantaneous and thus they
are represented by means of happensAt. Punctuality change
may be expressed in EC as follows:

initially(punctuality( , )= punctual) (5)

initiatedAt(punctuality(Id ,V )= punctual , T ) ←
happensAt(punctual(Id ,V ), T )

(6)

initiatedAt(punctuality(Id ,V )=non punctual , T ) ←
happensAt(non punctual(Id ,V ), T )

(7)

happensAt(punctuality change(Id ,V ,Value), T ) ←
holdsFor(punctuality(Id ,V )=Value, I ),
(T , ) ∈ I , T '= 0

(8)

We have defined an auxiliary fluent, punctuality , that records
the time-points in which a vehicle is (non-)punctual. The
fluent punctuality is defined by rules (5)–(7). Rule (8) ex-
presses the definition of the HLE ‘punctuality change’. This
rule uses the EC built-in implementation of holdsFor to com-
pute the maximal intervals for which a vehicle is continu-
ously (non-)punctual. Punctuality changes at the first time-
point of each of these intervals (see the last line of rule (8)).

Note that, depending on the requirements of the user (city
transport officials, in the CTM example), punctuality may
itself be a HLE, as opposed to an auxiliary construct. In
general, a HLE may not necessarily be treated as an EC
event. In some cases it is more convenient to treat a HLE as
an EC fluent. In the case of a durative HLE H, for exam-
ple, treating H as a fluent and using the built-in holdsFor to
compute the intervals of H, may result in a more succinct

representation than treating H as an EC event and develop-
ing domain-dependent rules for happensFor to compute the
intervals of H.

The availability of the full power of logic programming is
one of the main attractions of employing EC as the temporal
formalism. Paschke et al. [30, 31, 29], for instance, have
used the power of logic programming to develop predicates
for event recognition that are used in the context of EC.
These predicates include implementations of the following
event operators: sequence, mutual exclusivity, concurrency,
aperiodicity, and so on. In general, the availability of logic
programming allows EC HLE definitions to include not only
complex temporal constraints (EC is at least as expressive as
the CRS language with respect to temporal representation),
but also complex atemporal constraints. For example, it is
straightforward to develop in Prolog a predicate computing
the distance between two entities.

Logic programming, not including an EC implementation,
has been used frequently for event recognition. A notable
example can be found in [35]. A benefit of EC, in compari-
son to pure Prolog, is that EC has built-in rules for complex
temporal representation, including the formalisation of iner-
tia, events with delayed effects, continuous change [23], etc,
which help considerably the development of HLE definitions.

3.2 Reasoning
Several implementations of the EC built-in rules have been
proposed in the literature. Reasoning in EC is often per-
formed at query-time, that is, the incoming LLE are logged
without processing them, and reasoning about the LLE log
is performed when a query, concerning the recognition of
HLE, is submitted. In most cases query-time reasoning is
not accompanied by caching techniques, that is, the outcome
of query computation is not stored. Although this type of
reasoning may be acceptable for retrospective event recog-
nition, that is, recognition performed after the operation of
the application under consideration (for example, recogni-
tion performed at the end of the day in order to evaluate
the performance of public transportation), the absence of
caching techniques does not allow for run-time event recog-
nition, that is, recognition performed during the operation
of the monitored application (for instance, recognition per-
formed during the day in order to detect, at real-time, in-
cidents affecting the smooth operation of public transporta-
tion). To perform run-time event recognition using query-
time reasoning, one would have to repeatedly query EC (say
every 5 seconds). If the outcome of query computation (the
intervals of the recognised HLE) is not stored, reasoning
would be performed on all detected LLE, as opposed to the
LLE detected between two consecutive query times. Conse-
quently, recognition time would substantially increase over
time. (In retrospective recognition, querying about the in-
tervals of a HLE is performed once, so there is considerably
less need to store the outcome of query computation.)

To overcome the above limitation a cached version of the
Event Calculus has been proposed: the so-called Cached
Event Calculus (CEC) [6]. Reasoning in CEC is not per-
formed at query-time, but at update-time: CEC infers and
stores all consequences of LLE as soon as they arrive. Query
processing, therefore, amounts to retrieving the appropriate
HLE intervals from the memory.

Note that caching does not necessarily imply update-time
reasoning. Caching techniques may be implemented for
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Figure 4: The Cached Event Calculus (from [6]).

query-time reasoning.
Figure 4 shows the main modules of CEC. Each new LLE

is entered into the database using update. updateInit and
updateTermin are then called to manage fluents that are
initiated and, respectively, terminated by the LLE. Recall
that a fluent may represent a HLE or it may represent a
context variable used in the definition of a HLE. updateInit
may call creatingI to create a new maximal interval for a
fluent. updateTermin may call breakingI to clip a maxi-
mal interval of a fluent. The modules propagateAssert and
propagateRetract deal with the non-chronological arrival of
LLE, that is, the arrival of a LLE that happened (was de-
tected) before some of the already acquired LLE. When a
maximal interval (or part of it) of a fluent is retracted, or
asserted, as a result of the occurrence of a LLE that arrived
in a non-chronological manner, the update has to be prop-
agated to the fluents whose validity may rely on such an
interval. The retraction or assertion of an interval [T1 ,T2 ]
in which a fluent has a particular value modifies the context
of events occurring at time-points belonging to this interval,
and possibly invalidates (or activates) the effects of these
events. propagateAssert and propagateRetract may recur-
sively activate the process of creating or breaking maximal
intervals, by means of calling creatingI and breakingI . To
avoid clutter in Figure 4, however, we do not show the infor-
mation flow between propagateAssert , propagateRetract and
the remaining CEC modules.

The complexity of update processing (inferring the conse-
quences of events) in CEC, measured in terms of accesses to
happensAt and holdsFor Prolog facts (happensAt facts represent
the incoming LLE while holdsFor facts represent cached flu-
ent intervals, including HLE intervals), is O(nLfw+3 ), where
n is the number of initiating and terminating events for any
fluent, and Lfw is the maximum number of propagations of
fluent interval assertions and retractions — see discussion
above on propagateAssert and propagateRetract . The com-
plexity of query processing (retrieving cached fluent inter-
vals) in CEC is O(n). Details about the complexity analysis
of CEC may be found in [6].

The efficiency of CEC has been reported to be adequate
for certain application domains [5]. In practice, where de-
layed LLE are considered only if the delay does not exceed
a certain threshold, the complexity of update processing is
considerably less than the worst-case complexity presented
above. Moreover, ways to improve the efficiency of CEC
have been identified [1]. Note, however, that caching in CEC
concerns only HLE represented as fluents, and thus needs to
be extended to cater for HLE represented as EC events (such
as, for example, punctuality change — see Section 3.1).

3.3 Machine Learning
Since EC event descriptions are typically expressed as logic
programs, Inductive Logic Programming (ILP) methods are
an obvious candidate for constructing domain-dependent
rules representing HLE definitions. As discussed in Section
2.3, ILP can be used to induce hypotheses from examples.
For instance, to learn the definition of the HLE punctual , one
has to provide positive examples E+ and negative examples
E− for punctual using the happensAt predicate, and a back-
ground knowledge base B including a LLE narrative. The
learnt hypotheses will be of the form of rules (3) and (4). In
general, learning hypotheses for predicates for which exam-
ples are available (such as happensAt(punctual(Id ,V ),T )),
that is, ‘observation predicate learning’ (OPL) [25], may be
achieved using ILP techniques as shown in Section 2.3.

Automatically constructing an EC logic program often in-
cludes learning hypotheses for predicates for which examples
are not available, which implies that induction cannot be di-
rectly applied to produce the required hypotheses. Consider,
for instance, the case in which we need to learn the defini-
tion of the CTM HLE ‘reducing passenger satisfaction’, we
require to represent this HLE as a fluent in terms of initi-
atedAt (because, say, we expect that such a representation
would be succinct), and the available examples for learn-
ing this HLE are given only in terms of holdsAt. In such a
case, abduction may be combined with induction in order
to produce the required hypotheses. Abduction may pro-
duce ground initiatedAt rules, using the examples expressed
by means of holdsAt and the EC built-in rules, such as (1)
and (2), relating initiatedAt and holdsAt. Then, induction may
generalise the outcome of abduction.

Various approaches have been proposed in the literature
for combining abduction with induction in order to learn
a logic program. In what follows we will briefly describe
the XHAIL system [33] that has been recently developed for
this task, and has been used for learning EC programs. The
learning technique of XHAIL is based on the construction
and generalisation of a preliminary ground hypothesis, called
a Kernel Set, that bounds the search space in accordance to
user specified language and search bias. XHAIL follows a
three-stage process. First, abduction is used to compute the
head literals of a Kernel Set. Second, deduction is used to
compute the body literals of the Kernel Set. Third, induc-
tion is used to generalise the clauses of the Kernel Set. Each
stage is specified as an executable abductive logic program-
ming (ALP) task. Consequently, all three stages may be
implemented using any ALP reasoner or answer set solver.

We will illustrate the use of XHAIL by showing how it may
be used to learn the definition of the ‘reducing passenger sat-
isfaction’ HLE. As mentioned above, we require to represent
this HLE as a fluent in terms of initiatedAt, while the avail-
able examples are given in terms of holdsAt. The input to
XHAIL for learning this HLE is a background knowledge
base B including the built-in EC rules and a LLE narrative,
and a set of positive and negative examples E such as:

holdsAt(reducing passenger satisfaction(b1 , bus)= true, 8 )
not holdsAt(reducing passenger satisfaction(b1 , bus)= true, 6 )

The first phase of XHAIL, that is, the abductive phase,
computes ground initiatedAt atoms. The computed atoms
∆=

⋃n
i=1 αi are such that E is entailed by B and ∆. Below

is an atom produced by the abductive phase of XHAIL:

initiatedAt(reducing passenger satisfaction(b1 , bus)= true, 8 )
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Recall that initiatedAt and holdsAt are related by the EC built-
in rules (see rule (1), for instance). Each abduced initiatedAt
atom will go in the head of a Kernel Set clause.

The second phase of XHAIL, that is, the deductive phase,
computes a ground program K =

⋃n
i=1 αi ← δ1i , . . . ,δ

mi
i

such that every δji , where 1≤i≤n and 1≤j≤mi, is entailed
by B and ∆. In other words, the second phase adds body
literals in the clauses of the Kernel Set K. In this exam-
ple, a body literal may be any LLE, that is, we have no
prior knowledge concerning what affects passenger satisfac-
tion, and any fluent expressing in-vehicle conditions such as
temperature, noise level and passenger density. The user re-
stricts the range of possible body literals of the Kernel Set
by means of mode declarations. Below is a clause of the
produced Kernel Set K:

initiatedAt(reducing passenger satisfaction(b1 , bus)= true,
8) ←

happensAt(passenger density change(b1 , bus, high), 8 ),
holdsAt(temperature(b1 , bus)= very warm), 8 ),
holdsAt(noise level(b1 , bus)= high), 8 )

A passenger density increase initiates a period of time for
which passenger satisfaction is reducing, provided that in-
vehicle temperature is very warm and noise level is high.
Note that this clause concerns a particular time-point (8 ).

The third phase of XHAIL, that is, the inductive phase,
computes a theory H that subsumes K and entails E with
respect to B. Below is a clause of the computed theory H:

initiatedAt(reducing passenger satisfaction(Id ,V )= true,
T ) ←

happensAt(passenger density change(Id ,V , high), T ),
holdsAt(temperature(Id ,V )= very warm), T )

Noise level is not included in the above clause because it
did not prove to be a determining factor of the reduction of
passenger satisfaction.

The proposed combination of abduction and induction has
been applied to relatively small and noise-free applications
[33]. As mentioned in Section 2.3, the examples (annotated
HLE) used to induce a hypothesis, as well as the event narra-
tive (annotated or detected LLE or HLE) that is part of the
background knowledge base, may be noisy. Next we present
an approach that has been specifically developed for learning
and reasoning about hypotheses in noisy environments.

4. MARKOV LOGIC
Event recognition systems often have to deal with the fol-

lowing issues [1, 35]: incomplete LLE streams, erroneous
LLE detection, inconsistent LLE and HLE annotation, and
a limited dictionary of LLE and context variables. These
issues may compromise the quality of the (automatically
or manually) constructed HLE definitions, as well as HLE
recognition accuracy. In this section we review Markov Logic
Networks that consider uncertainty in representation, rea-
soning and machine learning, and, consequently, address, to
a certain extent, the aforementioned issues.

4.1 Representation
In order to deal with uncertainty, probabilistic graphical
models can be used in event recognition. Sequential graphi-
cal models such as Dynamic Bayesian Networks [27] and Hid-
den Markov Models [32] are useful for modelling HLE defini-
tions representing event sequences. Event recognition with

such models is usually performed through maximum likeli-
hood estimation on the LLE sequences. For large-scale ap-
plications with complex events that involve long-term depen-
dencies and hierarchical structure, sequential models have
been extended into more complex variants. For instance,
the model in [18] captures long-term dependencies, in [28]
hierarchical events are represented, and the model in [19] can
be applied to structured data. However, these models have
restricted temporal representation and most of them allow
only for sequential relations between events. Moreover, they
do not naturally incorporate domain-specific knowledge.

On the other hand, logic-based formalisms, such as first-
order logic, can compactly represent complex event rela-
tions, but do not naturally handle uncertainty. Assume, for
example, a first-order logic knowledge base expressing HLE
definitions. A possible world assigns a truth value to each
possible ground atom. A missed LLE or an erroneous LLE
detection, violating even a single formula of the knowledge
base, may result in a zero-probability world.

The research communities of Statistical Relational Learn-
ing and Probabilistic Inductive Logic Programming have
proposed a variety of methods [8, 9, 15] that combine con-
cepts from first-order logic and probabilistic models. This
approach is adopted by Knowledge-Based Model Construc-
tion (KBMC) methods, where a logic-based language is used
to generate a propositional graphical model on which prob-
abilistic inference is applied [9]. Markov Logic Networks
(MLN) [10, 34] is a recent and rapidly evolving KBMC
framework, which provides a variety of reasoning and learn-
ing algorithms5, and has recently been used for event recog-
nition [2, 38]. The main concept behind MLN is that the
probability of a world increases as the number of formulas
it violates decreases. Therefore, a world violating formulas
becomes less probable, but not impossible as in first-order
logic. Syntactically, each formula Fi in Markov logic is repre-
sented in first-order logic and it is associated with a weight
wi. The higher the value of the weight, the stronger the
constraint represented by Fi. Semantically, a set of Markov
logic formulas (Fi, wi) represents a probability distribution
over possible worlds.

Consider, for example, the formulas below expressing a
simplified version of the definition of the ‘uncomfortable
driving’ CTM HLE:

abrupt movement(Id, V, T ) ←
abrupt acceleration(Id, V, T ) ∨
abrupt deceleration(Id, V, T ) ∨
sharp turn(Id, V, T )

(9)

uncomfortable driving(Id, V, T2) ←
enter intersection(Id, V, T1) ∧
abrupt movement(Id, V, T2) ∧
before(T1, T2)

(10)

Variables, starting with upper-case letters, are universally
quantified unless otherwise indicated. Predicates and con-
stants start with a lower-case letter. The definition of
uncomfortable driving is simplified here in order to facil-
itate the presentation of MLN reasoning techniques that
will be given in the following section. According to the
above formulas, uncomfortable driving is defined in terms
another HLE, abrupt movement , which is in turn defined

5A system implementing MLN reasoning and learning algo-
rithms may be found at http://alchemy.cs.washington.edu/
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in terms of the abrupt acceleration, abrupt deceleration and
sharp turn LLE. before is a simple predicate comparing two
time-points. Formulas (9) and (10), expressing the defini-
tions of the aforementioned HLE, have real-valued positive
weights.

MLN facilitate a mixture of soft constraints and hard con-
straints in a HLE knowledge base, where hard constraints
correspond to formulas with infinite weight values. Hard
constraints can be used to capture domain-specific knowl-
edge or facts. For example, a bus is driven only by one
driver at a time. Soft constraints, on the other hand, can
be used to capture imperfect logical statements and their
weights provide their confidence value. Strong weights are
given to formulas that are almost always true. For instance,
we may assign a strong weight to formula (10), as it is true
most of the time. Respectively, weak weights may be as-
signed to formulas that describe exceptions. For example,
we may assign a weak weight to the formula stating that
‘unsafe driving’ is recognised when we have ‘abrupt move-
ment’ — normally a ‘very abrupt movement’ leads to the
recognition of ‘unsafe driving’.

4.2 Reasoning
A MLN L is a template that produces a ground Markov net-
work ML,C by grounding all its formulas F , using a finite
set of constants C = c1, ...c|C|. All formulas are translated
into clausal form and the weight of each formula is equally
divided among its clauses. For different sets of constants,
the same MLN L will produce different ground Markov net-
works, but all will have certain regularities in structure and
parameters — for example, all groundings of a clause will
have the same weight. Each node in a ML,C is represented
by a boolean variable and corresponds to a possible ground-
ing of a predicate that appears in L. Each subset of ground
predicates, appearing in the same ground clause, are con-
nected to each other and form a clique in ML,C . Each clique
is associated with the corresponding weight wi of a clause
and a feature. The value of the feature is 1 when the ground
clause is true, otherwise it is 0.

A ground Markov network ML,C , therefore, is composed
of a set X of random variables (ground predicates). A state
x ∈ X of ML,C represents a possible world, as it assigns
truth values to all random variables X. A probability distri-
bution over states is specified by the ground Markov network
ML,C , and represented as follows:

P (X =x)= 1
Z exp

(∑|Fy |
i wini(x)

)
(11)

Fy⊆F is the set of clauses, wi is the weight of the i-th clause,
ni(x) is the number of true groundings of the i-th clause in
x, and Z is the partition function used for normalisation,
that is, Z =

∑
x∈X exp(P (X =x)), where X is the set of all

possible states.
In event recognition, the detected LLE provide the con-

stants C that are necessary for producing ground Markov
networks expressing a knowledge base of HLE definitions.
Consider, for example, the HLE definitions expressed by
formulas (9) and (10), and a LLE stream including enter
intersection(tr0 , tram, 100 ), sharp turn(tr0 , tram, 101 ), etc.
Figure 5 shows a fragment of the ground Markov network.
Recall that formulas are translated into clausal form — for-
mula (9), for example, is translated into three clauses, while
formula (10) is translated into a single clause. Predicates,
appearing in the same ground clause, are connected to each

enter_ 
intersection

(tr0,tram,100)

abrupt_ 
movement

(tr0,tram,101)

uncomfortable
_driving

(tr0, tram,101)

before
(100,101)

abrupt_ 
deceleration
(tr0,tram,101)

sharp_turn
(tr0,tram,101)

abrupt_ 
acceleration
(tr0,tram,101)

Figure 5: Ground Markov Network.

other in the network and form a clique.
In order to demonstrate how the probability of each state

of a ground Markov network is computed, we will assume
that the partial network of Figure 5 is the complete Markov
network. We will calculate the probability of two states, x1

and x2, where both states assign the same truth values to
all predicates except uncomfortable driving(tr0 , tram, 101 ).
More precisely, in both states enter intersection(tr0 , tram,
100 ), abrupt acceleration(tr0 , tram, 101 ), abrupt
movement(tr0 , tram, 101 ), before(100 , 101 ) are true, and
sharp turn(tr0 , tram, 101 ) and abrupt deceleration(tr0 ,
tram, 101 ) are false. uncomfortable driving(tr0 , tram, 101 )
is true in x1 and false in x2. In x1 every clause has one true
grounding. In state x2 only the three clauses of formula (9)
have true groundings — each one has one true grounding.
Using eq. (11) we compute the following:

P (X =x1)= 1
Z exp( 13w1· 1 + 1

3w1· 1 + 1
3w1· 1 + w2· 1)

= 1
Z ew1+w2

P (X =x2)= 1
Z exp( 13w1· 1 + 1

3w1· 1 + 1
3w1· 1 + w2· 0)

= 1
Z ew1

w1 is the weight of formula (9) — w1 is equally divided
to each of the three clauses of this formula — while w2 is
the weight of formula (10). According to the above results,
a state in which the ‘uncomfortable driving’ HLE and its
subevents have all been recognised is more probable than a
state in which the subevents of ‘uncomfortable driving’ have
been recognised while this HLE does not hold.

Sensors may detect LLE with certainty or with a degree
of confidence — usually probability. In the former case, the
LLE are simply boolean variables that are given directly
to the MLN as evidence. In the latter case, the detected
LLE are added to the MLN knowledge base as clauses hav-
ing weights proportional to their detection probability. The
negation of these clauses is also provided with a weight pro-
portional to the complement of the LLE detection probabil-
ity [38]. For example, if the LLE sharp turn(tr0 , tram, 20 )
is detected with probability 0.7, sharp turn(tr0 , tram, 20 )
and ¬sharp turn(tr0 , tram, 20 ) will be added to the MLN,
having weights w1 ∝ 0.7 and w2 ∝ 0.3 respectively. In this
manner, the detected LLE propagate their detection proba-
bility to the MLN.

Complete grounding of MLN, even for simple knowledge
bases, results in complex and large networks. For this rea-
son, only the minimal required network is constructed. In
particular, evidence variables are used to separate the net-
work into regions, allowing some variables to be removed
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from the network, as they cannot influence reasoning. For
example, if abrupt movement(tr0 , tram, 101 ) is known to be
true (from previous inference), then the nodes corresponding
to abrupt acceleration(tr0 , tram, 101 ), sharp turn(tr0 , tram,
101 ) and abrupt deceleration(tr0 , tram, 101 ) can safely be
removed from the network, as they cannot influence the rea-
soning process. In addition, further efficiency can be gained
by employing (a) lazy inference methods that ground pred-
icates as and when needed [10, Section 3.3] or (b) lifted in-
ference [10, Section 3.4].

Event recognition in MLN involves querying a ground
network about HLE. In particular, the set X of random
variables of a ground network can be partitioned as X =
Q∪E∪H, where Q is the set of query variables, that is, the
HLE of interest, E is the set of evidence variables, that is,
the detected LLE, and H is the set of the remaining vari-
ables with unknown value — also known as hidden variables
— which are auxiliary constructs of a HLE definition. There
are two basic types of inference in graphical models, max-
imum a posteriori (MAP) inference and the computation
of conditional probabilities. For both types, a variety of ex-
act and approximate probabilistic inference methods exist in
the literature. However, probabilistic inference in MLN may
become infeasible due to the size and the complexity of the
ground network. For this reason, several methods combin-
ing ideas from logical and probabilistic inference have been
proposed [10, Chapter 3].

Event recognition queries require conditional inference,
that is, computing the probability that a predicate holds
given some evidence. Given a MLN and some evidence
E= e, a conditional query is specified as follows:

P (Q | E= e,H)=
P (Q,E= e,H)
P (E= e,H)

(12)

Q are the query predicates, H are the hidden variables, and
the numerator and denominator may be computed using
eq. (11). We may be interested in finding out, for instance,
the trams that are driven in an uncomfortable manner given
a LLE stream. In this case, the set of query variables Q in-
cludes only uncomfortable driving(Id ,V ,T ), the set of ob-
served LLE that forms E includes, among others:

enter intersection(tr0 , tram, 100 )
abrupt acceleration(tr0 , tram, 101 )
sharp turn(tr24 , tram, 100 )

and the set of hidden variables H includes, among others:

abrupt movement(tr0 , tram, 101 )
abrupt movement(tr24 , tram, 101 )

Given eq. (12) we may compute the probability of each
grounding of uncomfortable driving .
Eq. (12) can be efficiently approximated by sampling meth-

ods, such as Markov Chain Monte Carlo (MCMC) algo-
rithms — for example, Gibbs sampling. The conditional
probability in eq. (12), can be computed by a MCMC that
rejects all moves to states where E= e does not hold. In
MCMC, the successive sample depends only on the current
sample and not on its predecessors. In fact, each sample dif-
fers only marginally from its predecessor — for example, by
the truth value of a predicate. Following this idea, MCMC
performs a random walk in the state space. Recall that each
ground predicate is connected with other predicates in the
network only when they appear together in some grounding

of a clause. Consequently, the probability of a ground predi-
cate depends only on the probabilities of its neighbour pred-
icates in the network, and is independent from the rest of the
network. The set of neighbouring predicates, called Markov
blanket, is exploited by the Gibbs sampling algorithm for
probabilistic inference. For example, the Markov blanket of
abrupt movement in the network shown in Figure 5, is com-
posed of uncomfortable driving , before, enter intersection,
sharp turn, abrupt acceleration and abrupt deceleration.
The algorithm has the tendency to get stuck in local maxima
and, therefore, the more samples are generated, the more ac-
curate the estimation becomes.

Due to the combination of logic with probabilistic mod-
els, inference must handle both deterministic and proba-
bilistic dependencies. Deterministic or near-deterministic
dependencies are formed from formulas with infinite and
strong weights respectively. MCMC, being a pure statistical
method, can only handle probabilistic dependencies. Deter-
ministic dependencies create isolated regions in the state
space by introducing zero-probability (impossible) states.
Similarly, near-deterministic dependencies create regions
that are difficult to cross, that is, contain states with near
zero-probability. To overcome this problem and deal with
both types of dependency, satisfiability testing is combined
with MCMC [10, Section 3.2]. In particular, satisfiability
testing helps MCMC move between isolated and difficult-
to-cross regions.

4.3 Learning
Learning a MLN involves estimating the weights of the net-
work and/or the first-order formulas forming the network
structure, given a set of training data, that is, LLE an-
notated with HLE. Weight learning in MLN is performed
by optimising a likelihood function, which is a statistical
measure of how well the probabilistic model (MLN) fits the
training data. In particular, weights can be learned by ei-
ther generative or discriminative estimation [10, Section 4.1].
Generative learning attempts to optimise the joint distribu-
tion of all variables in the model. In contrast, discriminative
learning attempts to optimise the conditional distribution of
a set of outputs, given a set of inputs.

Generative estimation methods search for weights that op-
timise the likelihood function, given a HLE knowledge base
and training data. Learning can be performed by a stan-
dard gradient-descent optimisation algorithm. However, it
has been shown that computing the likelihood and its gra-
dient is intractable [34]. For this reason, the optimisation of
the pseudo-likelihood function is used instead, which is the
product of the probabilities of the ground predicates, condi-
tioned on their neighbours in the network (Markov blanket)
[34]. In particular, if x is a state of a ground network and
xl is the truth value of the l-th ground predicate Xl, the
pseudo-likelihood of x, given weights w, is:

log P∗
w (X = x )=

∑n
l=1 log Pw (Xl = xl | MBx (Xl)) (13)

MBx (Xl) represents the truth values of the ground predi-
cates in the Markov blanket of Xl. Thus, computation can
be performed very efficiently, even in domains with millions
of ground predicates, as it does not require inference over
the complete network.

The pseudo-likelihood function assumes that each ground
predicate’s Markov blanket is fully observed, and does not
exploit information obtained from longer-range dependen-
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cies in the network. In some cases such an implementation
may lead to poor results. Consider, for example, the HLE
definitions of abrupt movement and uncomfortable driving
(see formulas (9) and (10)). As mentioned earlier, the Markov
blanket of abrupt movement includes the sharp turn, abrupt
acceleration and abrupt deceleration LLE, while the Markov
blanket of uncomfortable driving includes abrupt movement .
Assume that the training dataset includes a stream of the
aforementioned LLE, and has annotations only for
uncomfortable driving , that is, there is no annotation for
abrupt movement . In this case pseudo-likelihood will give
poor results with respect to the uncomfortable driving HLE.
This is due to the fact that pseudo-likelihood will only use in-
formation from the Markov blanket of this HLE, making an
assumption about the absent annotation of abrupt movement
(usually the closed-world assumption), and will not exploit
the information provided by the abrupt acceleration, abrupt
deceleration and sharp turn LLE of the training dataset.
In event recognition we know a priori which set of vari-

ables will form the evidence and which ones will concern
queries — evidence variables represent LLE while query vari-
ables represent HLE. In the usual case, where we aim to
recognise the latter given the former, it is preferable, as will
be explained below, to learn the weights discriminatively by
maximising the conditional likelihood function. In particu-
lar, if we partition the variables of the domain into a set of
evidence variables E and a set of query variables Q, then
the conditional likelihood function is defined as follows:

P (Q= q | E= e)= 1
Ze

exp
(∑

i wini(e, q)
)

(14)

Ze normalises over all states consistent with the evidence
e, and ni(e, q) is the number of true groundings of the i-th
clause in the training dataset. It has been shown that learn-
ing weights discriminatively can lead to higher predictive
accuracy than generative learning [36]. This is partly due to
the fact that, in contrast to the pseudo-likelihood function,
conditional likelihood can exploit information from longer-
range dependencies. Similar to the likelihood function, con-
ditional likelihood requires inference. However, there is one
key difference: conditioning on the evidence in a Markov
network reduces significantly the number of likely states.
Therefore, inference takes place on a simpler model and
the computational requirements are reduced. Optimisation
techniques for computing conditional likelihood in the con-
text of MLN may be found in [10, Section 4.1].

In addition to weight learning, the structure of a MLN
can be learned from training data. In principle, the struc-
ture of a MLN can be learned in two stages, using any ILP
method, as presented in Section 2.3, and then performing
weight learning. However, separating the two learning tasks
in this way may lead to suboptimal results, as the first op-
timisation step (ILP) needs to make assumptions about the
weight values, which have not been optimised yet. Better re-
sults can be obtained by combining structure learning with
weight learning in a single stage.

A variety of structure learning methods have been pro-
posed for MLN, which optimise a likelihood function and
create the structure by employing ILP techniques. In brief,
these methods can be classified into top-down and bottom-
up methods. Top-down structure learning [10, Section 4.2]
starts from an empty or existing MLN and iteratively con-
structs clauses by adding or revising a single predicate at a
time, using typical ILP operations and a search procedure

(for example, beam search). However, as the structure of a
MLN may involve complex HLE definitions, the space of po-
tential top-down refinements may become intractable. For
this reason, bottom-up structure learning can be used in-
stead, starting from training data and searching for more
general hypotheses [10, Section 4.2]. This approach usually
leads to a more specialised model, following a search through
a manageable set of generalisations.

5. SUMMARY AND OPEN ISSUES
We presented three representative logic-based approaches to
event recognition. All approaches assume as input a stream
of time-stamped low-level events (LLE), which are being
processed to detect high-level events (HLE) of interest. We
illustrated the use of the three approaches, drawing exam-
ples from the domain of city transport management.

Being based on logic, all three approaches benefit from
a formal semantics, a variety of inference mechanisms, and
methods for learning a knowledge base from data. As a
result, compared to commonly used procedural methods,
logic-based ones facilitate efficient development and man-
agement of event definitions, which are clearly separated
from the generic inference mechanism and their consistency
is verifiable. Furthermore, recent logic-based methods ap-
pear to be sufficiently mature and scalable to be used in
industrial applications.

The presented Chronicle Recognition System (CRS) has
been specially developed for event recognition and is the
choice of preference for efficient, purely temporal recogni-
tion. CRS was developed with the aim to support only tem-
poral reasoning and thus a line of future work concerns its
extension with atemporal reasoning.

The Event Calculus (EC) provides a more generic and ex-
pressive representation of events, taking advantage of the
full power of logic programming on which it is based. Thus,
EC supports complex temporal as well as atemporal repre-
sentation and reasoning. A line of further work concerns
the optimisation of the reasoning of EC for run-time event
recognition. Caching techniques, in particular, should be
investigated, supporting all types of HLE representation.

Markov Logic Networks (MLN) are useful for handling
noisy event streams, as they combine the strengths of logical
and probabilistic inference. Their use for event recognition
has been very limited so far and there are many issues that
need to be resolved still, such as the incorporation and use
of numerical temporal constraints in MLN inference.

Finally, a number of challenging issues remain open in
learning event definitions. Examples of such issues are the
use of abduction to handle partial supervision that is com-
monly available for event recognition and the simultaneous
optimisation of numerical parameters (for example, weights
and temporal constraints) and the logical structure of the
knowledge base expressing HLE definitions.
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