
The Effect of Numeric Features on the Scalability
of Inductive Learning Programs

Georgios Paliouras� and David S. Br´ee
paliourg@cs.man.ac.uk dbree@cs.man.ac.uk

Department of Computer Science
University of Manchester

Oxford Road
Manchester, M13 9PL

England

Abstract

The behaviour of a learning program as the quantity of data is increased affects to a
large extent its applicability on real-world problems. This paper presents the results of
a theoretical and experimental investigation of the scalability of four well-known em-
pirical concept-learningprograms. In particular it examines the effect of using numeric
features in the training set. The theoretical part of the work involved a detailed worst-
case computational complexity analysis of the algorithms. The results of the analysis
deviate substantially from previously reported estimates, which have mainly examined
discrete and finite feature spaces. In order to test these results, a set of experiments was
carried out, involving one artificial and two real data sets. The artificial data set intro-
duces a near-worst-case situation for the examined algorithms, while the two real data
sets provide an indication of their average-case behaviour.

Keywords: empirical concept learning, scalability, decision trees

�The author was partially funded for this work by the Science and Engineering Research Council.

1



1 Introduction

During the last two decades, a large number of empirical concept-learning algorithms have
been developed. Out of those, the ones we will examined here cover three major categories.
The first (C4.5 [18]) induces decision trees and is the most recent version of the well-known
ID3 algorithm [17]. The next two (AQ15 [10] and CN2 [2]) generate lists of decision rules
and are based on the AQ algorithm [9]. The last (PLS1 [19]) is a conceptual clustering pro-
gram which is based on the same principles as ID3.

The selected programs have several features which are important to the scalability anal-
ysis presented in the paper:

1. Despite differences in the representation of the learned concepts, all four algorithms
performorthogonal clustering of the feature space. In other words, the resulting con-
cept can be graphically represented by a set of rectangles, aligned in parallel to the
axes of the hyper-space, defined by the feature set1. This imposes a restriction to the
concepts that can be efficiently learned by the algorithms.

2. The algorithms belong to two types, which have been shown (e.g. [21]) to have dif-
ferent computational requirements. The first type consists of algorithms like ID3 and
PLS1, which are calledspecialisation algorithms, because they start from the most
general concept description and specialise this until it discriminates perfectly between
positive and negative examples of the concept. The second type corresponds togen-
eralisation algorithms (e.g. AQ15 and CN2), which start from individual positive ex-
amples and generate all possible rules that discriminate between them and all negative
ones.

3. All four programs can handle numeric features. With the exception of AQ15, the pro-
grams deal with numeric features in the following way: at each stage of the learning
process they select a threshold value for the feature, which dichotomises the exam-
ined set of examples. AQ15 can only deal with integer features, with an upper bound
on their value set (bounded numeric features). It treats those like ordered discrete fea-
tures, looking for characteristic value ranges.

There have been numerous analyses and comparisons of learning algorithms in the past
(e.g. [15], [8], [2], [21], [22], [6], [12], [23], [11], etc.), most of which have concentrated
on the classification accuracy of the algorithms. In general, the issue of scalability has been
neglected, and only a few of these analyses have dealt with the computational performance
of the examined algorithms. The ones which bear some relevance to the work presented
here are those carried out by O’Rorke [15], Rendellet al. [21] and Clark and Niblett [2].

The common conclusion of the work on the computational performance of concept-
learning algorithms is thatspecialisation algorithms are faster thangeneralisation ones, be-
cause they employ less expensive search methods. Additionally, the worst-case complexity
of the algorithms has been estimated to be near-linear, in the size of the training set. For

1A more extensive account of the orthogonality problem appears in [18], chapter 10.

2



example, Rendellet al. [21] estimate the complexity of specialisation algorithms to be of
orderO(kae), wheree is the number of examples,a the number of features andk the num-
ber of nodes in the final decision tree or the number of hyper-rectangles generated by the
clusterer.k is assumed to be independent ofa ande, being determined by the complexity
of the problem. Clark and Niblett [2] examine also the use of numeric features, deriving the
worst-case estimatesO(ae log e) andO(as(e+ log(as)) (wheres is the maximum star size
parameter) for the core components of ASSISTANT (a variant of ID3) and the AQ-based
algorithms respectively. These estimates do not deal with the size of the final concept, im-
plicitly making the same assumption as in [21].

The work presented in the following sections includes a theoretical analysis and an ex-
perimental comparison of the examined algorithms. Section 2 describes worst-case scenar-
ios for the two types of algorithms and estimates their computational complexity. Worst-
case estimates of the size of the learned concept are included in the scenarios. Section 3
presents the results of three experiments, comparing the near-worst-case and average per-
formance of the programs. Finally, sections 4 and 5 summarise and compare the results of
the theoretical and the experimental analyses.

2 Theoretical Analysis

2.1 The focus points

For the purpose of calculating the computational complexity of the algorithms, the scale of
a learning problem can be defined in terms of two parameters: thesize of the training set
and thesize of the search space. The former is determined by the number of instances in the
training set, while the latter depends on the number of features and their value-sets, which
define the set of all possible target concepts that can be learned. This paper concentrates on
the size of the training set, examining its effect on the computational requirements of the
algorithms. However, the type and value-sets of the features play also an important role in
the worst-case scenarios.

In most of the previous studies, dealing with the complexity of ML algorithms, the as-
sumption is made that only finite value-sets are used for the features. This assumption was
valid for early versions of the algorithms, which could only deal with nominal features.
More recent versions, however, can deal with numeric features, whose value-sets need not
be finite. The effect of allowing infinite value-sets is that the search space becomes infinite
and needs to be limited, typically using the feature-values encountered in the training set.
As a result, the order of complexity of the algorithms, with respect to the size of the training
set, increases.

Most of the above-mentioned studies have also assumed that the size of the final concept
description is determined only by the nature of the problem, not the feature-types nor the
number of examples. In a worst-case situation, however, it will be shown that the size of
the concept description depends on the size of the training set. There are also some empirical
results [1] which observe this dependency also in average-case situations.

3



2.2 Specialisation Algorithms

The two specialisation algorithms examined here, i.e., C4.5 and PLS1, behave in a very
similar way to the basic ID3 algorithm, which is described in Figure 1. Thus, ID3 can be
used to derive an estimate of the complexity of the algorithms.

Input: A set of examplesE, a set of featuresA, a set of class
valuesC.
Output: A decision treeT .

Initially S = E andN = T = root node.

Dichotomise(S;N ):

1. If all the members ofS belong to the same class make
N a leaf node and stop dichotomisation.
Else select featureai that best discriminates between
positive and negative examples inS.

2. For each value ofai: vij do:
Create new nodeNj underN .
Dichotomise(Sij; Nj), whereSij is the subset of exam-
ples corresponding tovij.

3. Return T .

Figure 1: The basic ID3 algorithm

The main computational cost of ID3 arises at the stage where all the features are evalu-
ated, in order for the best discriminant to be selected. At this stage, C4.5 discretises numeric
features by evaluating all binary splits, based on the feature-values that are observed in the
examined subset of the training set. This involves sorting the values and calculating the en-
tropy for each binary split. In the worst case, each example will assign a different value to
the numeric feature, resulting ine0

� 1 possible splits, wheree0 is the size of the examined
subset of examples. Combining this with the linear complexity of the entropy calculation,
would result in a quadratic estimate for this stage alone. However, as the feature-values
are sorted, the entropy calculations can be optimised, by maintaining frequency counts (see
[18]). As a result, the most expensive process is the sorting, which is of orderO(e0 log e0).
This process has to be repeated for all features, resulting in a total cost ofO(ae0 log e0) for
the calculations per node, wherea is the number of features.

In the above worst-case situation, it is possible that one node is generated for each value
of the numeric feature in the training set. This would happen in the case where perfect dis-
crimination was sought and no better features were provided. Thus, the maximum size of
the generated decision tree, measured by the number of non-leaf nodes, ise� 1, wheree is

4



the size of the training set. An additional worst-case assumption is that the resulting tree be
highly skewed, which is the case if a single example is discriminated at each node. In that
situation the average size of the subset of the training set examined at each node would be
e0 = e=2. Based on those results, the total cost of the algorithm isO(ae2 log e).

Therefore, by estimating the size of the learned concept description, in the worst case, it
is shown that the complexity of the ID3 algorithm is over-quadratic in the size of the training
set. The assumptions, underlying this result are:

1. Numeric features are used.

2. Each example in the training set assigns a different value to the numeric features.

3. A complete and highly skewed tree results. This means that there are no informative
features to support generalisation and no pre-pruning takes place.

These assumptions are strong and are not expected to hold in a typical learning problem.
They illustrate, however, how the use of numeric features can affect the computational re-
quirements of the algorithm. Section 3.2 presents a simple artificial problem, which satisfies
most of the above assumptions.

2.3 Generalisation Algorithms

Out of the two generalisation algorithms examined here, i.e., AQ15 and CN2, only the lat-
ter can handle unbounded numeric features, i.e., real numbers and integers of an unlimited
range. AQ15 can only deal with integer features, the range of which has to be specified.
Therefore the behaviour of CN2, will be examined here. Figure 2 reproduces the descrip-
tion of the algorithm, presented in [2].

As with ID3, the most expensive process, during the search for the best decision rule
(complex) in CN2, is the evaluation of all possible complexes. The evaluation in this case
is done using the likelihood ratio statistic and the complexity of this calculation for each
complex isO(ce), wherec is the number of classes ande the number of examples in the
training set. This process has to be repeated for all the generated complexes, the number of
which is determined by the size of theSELECTORS set. The maximum size of this set, in
the worst-case scenario described above for ID3, isae=2, wherea is the number of features,
which is the upper limit for the length of the complex. This process is repeated a maximum
of a times, since each complex gets specialised by the addition of a selector (conjunctively
added condition), which uses a feature that has not been used in the complex so far. Thus
the complexity of the search process isO(a2e2). Again this estimate can be improved, by
optimising the calculation of the likelihood ratio. As in ID3, this involves sorting the nu-
meric feature-values and updating the frequency counts, instead of recalculating them. The
revised worst-case estimate isO(a2e log e).

The number of times this search has to be repeated isk, the size of the final concept
description (set of decision rules). In the worst case, a complex is generated for each ex-
ample in the training set andk = e. The computational complexity of the process is then

5



LetE be a set of classified examples.
Let SELECTORS be the set of all possible selectors.

Procedure CN2(E)
Let RULE-LIST be the empty list.
Repeat untilBEST-CPX is nil orE is empty:

Let BEST-CPX beFind-Best-Complex(E).
If BEST-CPX is not nil,
Then letE0 be the examples covered byBEST-CPX.

RemoveE0 fromE.
LetC be the most common class of examples inE0.
Add the rule ‘IfBEST-CPX then the class isC ’

to the end of theRULE-LIST.
ReturnRULE-LIST.

Procedure Find-Best-Complex(E)
Let STAR be the set containing the empty complex.
Let BEST-CPX be nil.
While STAR is not empty,

Specialise all complexes inSTAR as follows:
Let NEWSTAR be the set:
fx ^ yjx 2 STAR; y 2 SELECTORSg.

Remove all complexes inNEWSTAR that are either inSTAR
(i.e., the unspecialised ones) or null.

For every complexCi in NEWSTAR:
If Ci is statistically significant and better than
BEST-CPX by user-defined criteria when tested onE,
Then replace the current value ofBEST-CPX byCi.

Repeat until size ofNEWSTAR � user-defined maximum:
Remove the worst complex fromNEWSTAR.

Let STAR beNEWSTAR.
ReturnBEST-CPX.

Figure 2: The CN2 algorithm

6



O(a2ce2 log e). One interesting observation is that themaximum star size parameter does
not affect the worst-case complexity of the algorithm. The reason for this is that the maxi-
mum number of distinct complexes in the worst case is bounded by the size of theSELEC-
TOR set, O(ae=2).

Due to the fact that AQ15 can only handle bounded numeric features, the worst-case
scenario for the algorithm differs slightly from CN2. In brief, this scenario involves:

1. The generation of as many complexes, as the size of the training set.

2. The examination of all negative examples, each time a new complex is produced, i.e.,
each complex is maximally specific.

3. The use of an evaluation function that needs to examine the whole training set each
time.

The second element of this list is the main difference between the two algorithms and in-
creases the complexity of the algorithm, with respect to the size of the training set, by an or-
der of magnitude2. The complexity estimate for AQ15 isO(sa2ve3), wherev is the largest
set of feature-values.

2.4 Summary of Results

Table 1 presents the results of the computational complexity analysis for each of the four
algorithms and for each type of feature they can handle3.

The following conclusions can be drawn from the presented results:

1. Most of the algorithms can handle nominal features quite efficiently, with respect to
the size of the training set. This is because the search space is bounded by the domain-
definition of the features.

2. AQ15 is more expensive than the other algorithms.

3. The value-grouping facility provided by C4.5, is expensive in terms of computations.

4. The complexity of the algorithms which can handle integer and real features is the
same for both these types. Moreover, this complexity is higher than quadratic for all
algorithms.

Nevertheless, one has to be very careful with the interpretation of the results of a worst-case
analysis. The situations which were assumed in order to obtain those results are extreme and
very atypical of the problems that concept-learning systems are usually required to solve.

2The details of the calculation of the complexity estimate for AQ15 are not of particular interest to the
paper, and can be found in [16].

3These are the results of an extented analysis, presented in [16].

7



Attribute Types

Algorithms
nominal/ numeric
bounded value-setsa unbounded continuous
integer integer

C4.5 O(ca2ve) O(c2av4e2) O(ae2 log e) O(ae2 log e)
PLS1 — — O(cae2 log e) —
CN2 O(ca3va+1e) — O(ca2e2 log e) O(ca2e2 log e)

AQ15 O(sa2ve3) — — —

aValue-sets for nominal features.

Notes:
a = number of features, c = number of classes, e = the size of the training set, s =maximum
star size, v = maximum number of values per feature.

Table 1: Summary of complexity estimates.

3 Experimental Investigation

3.1 The set-up

The analysis presented in this section examines the scaling behaviour of the four algorithms,
using one artificial and two large real data sets. The desired outcome of the scalability anal-
ysis is a relationship between the performance of each algorithm and the size of the training
set, which can be compared to the corresponding computational complexity estimate. This
relationship can be derived, by measuring the rate at which the CPU-time consumption4

changes, as the size of the training set increases. For that purpose, the CPU-time consump-
tion of the learning process is measured at differentsize-steps, i.e., training sets of different
sizes. The size-steps are determined on a logarithmic scale, starting from a small power of
2, usually26 = 64 and multiplying by2 each time. For the real data sets three randomly
sampled training sets are used at each size-step and the results of the three individual tests
are averaged. The results of the analysis are plotted on a logarithmic scale for both axes and
the slope at each point is examined.

In order to reduce the possibility of implementation inefficiencies, the examined algo-
rithms are written in similar, procedural programming languages (C and Pascal) and are all
original versions, provided by their developers. Especially CN2 was provided only in the
form of executables. Finally, all the experiments were carried out on a ‘Sun-SPARCsystem-
400’ machine (a server similar to a SPARC2), which contains 32 MBytes of fixed memory
and 100 MBytes of swap memory. The system runs the ‘SUNOS 4.1.2’ operating system.

4The built-in C and Pascal functionsgetrusage and clock are used for the measurement of time
consumption.

8



10 100 1000 10000
set size (instances)

0

1

10

100

1000

10000

C
PU

 T
im

e 
(s

ec
.)

Computational Performance
Even-Numbers Learning Task

C4.5
PLS1
CN2
AQ15

Figure 3: Scalability Results, using the
Even Numbers learning task.

60 600 6000 60000
set size (instances)

0

1

2

3

4

R
at

e 
of

 in
cr

ea
se

Rate of increase of CPU-time consumption
Even-numbers Learning Task

(n2)

(n)

(n3)

C4.5
PLS1
CN2
AQ15

Figure 4: Even-Numbers Learning Task:
The rate of increase of the CPU-time con-
sumed at each size-step.

3.2 Learning Even Numbers

This is a simple artificial problem, whose purpose is to verify the results of the theoretical
analysis. The task is the discrimination between even and odd integers, provided no more
information but the integers themselves. Training sets range from 64 examples to the maxi-
mum number that each algorithm can handle and each set contains the first n integers, where
n is the size of the set. With the exception of AQ15, the examined algorithms can deal with
this problem, because they can handle unbounded numeric features. However, AQ15 can
also be included in the experiment, by varying its upper limit for numeric feature-values,
according to the size of the training set. In this way, v = e (table 1), raising the worst-case
complexity estimate to quartic: O(sa2e4).

The problem examined here has a number of properties which generate a near-worst-
case situation for most of the algorithms:

1. The key element is that there are no similarities between the instances on which in-
duction can be based. In a typical learning problem informative features would be
defined, usually by a domain expert, and the data would be represented using these
features5. For example, in this problem the feature divisible-by-2, which would ex-

5Rendell [20] estimates that in the fifteen puzzle problem the feature extraction process provides about
80% of the acquired knowledge.

9



amine the divisibility of each number by 2 is very informative. Since, however, the
raw data are used, such additional information is not available.

2. The pattern followed by the data is one that cannot be detected by orthogonal clus-
tering algorithms. As mentioned above, the examined algorithms look for ranges of
numeric feature-values that correspond to objects of the same class. In this problem,
the largest range of that kind contains a single example.

3. The outcome of the learning process is complete and highly skewed decision trees
and complete decision-rule lists. In other words, no generalisation is achieved.

4. The problem is easy to reproduce and uses a single integer feature and a binary class,
minimising the effect of parameters other than the size of the training set.

The only algorithm for which this problem does not approximate the worst-case scenario
is AQ15. The reason for this is that the concept-description generated by AQ15 consists of
single-selector complexes, decreasing the complexity of the process by two orders of mag-
nitude:

1. Not all negative examples need to be examined during the search for each complex.

2. The evaluation of each complex does not depend on the size of the value-set of the
feature, which in this case is equal to the size of the training set.

The results of this experiment are shown in figures 3 and 4. Figure 3 presents, on a log-
arithmic scale, the CPU-time in seconds over the number of examples, so straight lines in-
dicate a polynomial relationship, with the slope indicating the power. In figure 4 the slope
of the curves at each point is plotted.

The main conclusion to be drawn from these results is that, although polynomial, the
performance of the algorithms is mostly worse than quadratic, as predicted by the theo-
retical analysis. However, the algorithms perform significantly different from each other.
More specifically, the generalisation algorithms (AQ15 and CN2) have a consistent, near-
quadratic behaviour throughout the experiment. As expected, the performance of AQ15 is
better than its worst-case estimate. PLS1 is somewhat worse, starting with an over-quadratic
time consumption, which quickly approaches the cubic threshold. The results are less clear
for C4.5, which starts below quadratic, but deteriorates to reach the cubic threshold for large
sets, which is worse than predicted. A possible explanation for this is that the optimisation
assumed in the analysis of the ID3 algorithm (section 2.2) is not implemented.

3.3 Letter Recognition

While the worst-case analysis serves as a warning, most applications will not encounter such
extreme conditions. For this reason, we have carried out experiments using two real data
sets, in order to get an indication of the average-case performance. The first set deals with

10



the problem of classifying typed upper case letters of the Latin alphabet, based on a num-
ber of statistical properties of their pixel images. The data set was acquired from the UCI
Repository [13] and its original donor was D.J. Slate. Its author has used it as an applica-
tion domain for Holland-style genetic classifier systems [7]. More recently the data set has
also been used in the StatLog project [11]. The data set contains 20; 000 instances, of which
roughly 16; 000 have been used for learning in this experiment. Each instance corresponds
to an upper case letter, described in terms of 16 integer features, which take values in the
range of 0-15. All of the algorithms examined here can handle bounded integer features and
can thus participate in this experiment.

60 600 6000
set size (instances)

1

10

100

1000

10000

100000

C
PU

 T
im

e 
(s

ec
.)

Computational Performance
Letter Recognition Set

C4.5
PLS1
CN2
AQ15

Figure 5: Scalability Results, using the
Letter Recognition data set.

60 600 6000 60000
set size (instances)

0

1

2

3

4

R
at

e 
of

 in
cr

ea
se

Rate of increase of CPU-time consumption
Letter Recognition Set

(n2)

(n)

C4.5
PLS1
CN2
AQ15

Figure 6: Letter Recognition Set: The rate
of increase of the CPU-time consumed at
each size-step.

Figures 5 and 6 present the results of the experiment, in the same manner as previously.
Additional information is provided about the deviation between the three measurements at
each size-step. These are sufficiently small not to affect the results of the comparison.

The performance of the algorithms, in this problem, is polynomial and near-linear. How-
ever, despite their similar performance, the actual CPU-time consumption of the algorithms
varies substantially. In general, the two generalisation algorithms (CN2 and AQ15) seem
to have a higher computational unit cost than the specialisation ones (C4.5 and PLS1). This
agrees with previously reported comparisons (section 1). Another interesting observation,
drawn from figure 6 is that most of the algorithms start with a very close to linear perfor-
mance, which worsens as the size of the training set increases. This can be explained by the
effect of fixed start-up costs.

11



3.4 Chromosome Classification

The second real data set describes a chromosome analysis task. It is the Copenhagen data
set, also used in [4] and [5], where an artificial Neural Network system was used for the clas-
sification of chromosomes. The data set was provided by the Department of Medical Bio-
physics, University of Manchester and contains 8; 106 examples, of which roughly 6; 000
were used for learning in this experiment. Each example corresponds to an instance of a set
of 24 chromosomes and is described in terms of 15 real-valued features, which correspond
to the grey-level profile of the chromosome. Due to the use of continuous features only two
of the algorithms could be used in this experiment, i.e., C4.5 and CN2.

60 600 6000
set size (instances)

1

10

100

1000

C
P

U
 T

im
e 

(s
ec

.)

Computational Performance
Chromosome Classification Set

C4.5
CN2

Figure 7: Scalability Results, using the
Chromosome Classification data set.

60 600 6000 60000
set size (instances)

0

1

2

3

4

R
at

e 
of

 i
nc

re
as

e

Rate of increase of CPU-time consumption
Chromosome Classification Set

(n2)

(n)

C4.5
CN2

Figure 8: Chromosome Classification Set:
The rate of increase of the CPU-time con-
sumed at each size-step.

Figures 7 and 8 present the results, which are similar to the letter recognition experiment,
with the exception of an overall increase in the actual CPU-time consumption values, as a
result of the increased difficulty of the problem. The performance of the algorithms remains
close to linear.

4 Discussion of Results

The results of the experiment on the artificial data illustrate how the use of numeric fea-
tures can increase the computational requirements of the examined algorithms. This is in

12



accordance to the theoretical over-quadratic complexity estimates, presented in section 2,
which give an explanation of why this happens. Despite the extreme assumptions of the
worst-case scenarios, this analysis supports attempts to reconsider the methods of handling
numeric features in concept-learning problems (e.g. [3], [14]).

Another observation, drawn from the results of the first experiment, is that although the
generalisation algorithms are in general more expensive, their behaviour is very stable and
their CPU-time consumption is comparable to that of the specialisation ones for large data
sets. This points to a potential advantage of the AQ-based programs, which however does
not hold for the two experiments that use real data.

The average-case performance of the algorithms is significantly better than the worst-
case. Their behaviour in both the experiments using real-world data sets was near-linear, de-
spite the fact that non-nominal features were used. Additionally, during these experiments
a large difference between the real unit cost of different algorithms has been observed. Al-
though their order of complexity is very similar, some of the algorithms, in particular the
generalisation ones, became prohibitively slow for large data sets.

5 Conclusion

This paper has looked at the behaviour of four empirical concept-learning algorithms on
data sets of variable size. Using a computational complexity analysis, it has been shown
that, in the worst case, the behaviour of the algorithms is not linear, as previously reported,
but higher than quadratic. This result was achieved by the analysis of a parameter, i.e., the
size of the concept description, which was assumed to be independent from the size of the
training set, an assumption that does not hold in a worst-case situation. The results of this
analysis were empirically confirmed, using an artificial problem, which generates a near-
worst-case situation. Additionally, two large real data sets were used, in order to gain an in-
dication of the average-case performance of the algorithms. These experiments have shown
that the average-case behaviour of the algorithms is near-linear and some of the algorithms
(i.e., those having a smaller unit cost) can deal efficiently with large data sets.

Acknowledgements
We are greatful to the following people for supplying programs, documentation, data sets
and other valuable information:

G. Blix, E. Bloedorn, R. Boswell, P. Errington, J. Graham, R. Michalski, R.
Nakhaeizadeh, T. Niblett, P. O’Rorke, R. Quinlan, L. Rendell, M. Rissakis, D.
Slate, D. Sleeman

This work was greatly facilitated by the exchange of materials available within the Con-
certed Action of Automated Cytogenics Groups, supported by the European Community,
Project No. II.1.1/13, and the use of material from the UCI Repository of machine learning
databases in Irvine, CA: University of California, Department of Informationand Computer
Science.

13



References

[1] J. Catlett. Megainduction: a test flight. In Proceedings of the Eighth International
Workshop in Machine Learning, pages 596–599, 1991.

[2] P. Clark and T. Niblett. The CN2 Algorithm. Machine Learning, 3(4):261–283, 1989.

[3] T. V. de Merckt. Decision Trees in Numerical Attribute Spaces. In Proceedings of the
Int. Joint Conf. on Artificial Intelligence, pages 1016–1021, 1993.

[4] P. Errington and J. Graham. Application of Artificial Neural Networks to Chromosome
Classification. Cytometry, 14:627–639, 1993.

[5] P. Errington and J. Graham. Classification of Chromosomes using a Combination of
Neural Networks. In Proceedings of the IEEE Int. Conf. on Neural Networks, pages
1236–1241, 1993.

[6] D. Fisher and K. McKusick. An Empirical Comparison of ID3 and Back-propagation.
In Proceedings of the Int. Joint Conf. on Artificial Intelligence, pages 788–793, 1991.

[7] P. Frey and D. Slate. Letter Recognition Using Holland-Style Adaptive Classifiers.
Machine Learning, 6:161–182, 1991.

[8] M. Gams and N. Lavrač. Review of Five Empirical Learning Systems Within a Pro-
posed Schemata. In Proceedings of 2nd European Workshop on Machine Learning,
pages 46–66, 1987.

[9] R. Michalski. A Theory and Methodology of Inductive Learning. In R. Michalski,
J. Carbonell, and T. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, pages 83–138. Kaufmann, 1983.

[10] R. Michalski, I. Mozetic, J. Hong, and N. Lavrač. The Multi-purpose incremental
learning system AQ15 and its testing application to three medical domains. In AAAI
Proceedings, pages 1041–1045, 1986.

[11] D. Michie, D. Spiegelhalter, and C. Taylor. Machine Learning, Neural and Statistical
Classification. Ellis Harwood, 1994.

[12] R. Mooney, J. Shavlik, G. Towell, and A. Gove. An Experimental Comparison of
Symbolic and Connectionist Learning Algorithms. In Proceedings of the Int. Joint
Conf. on Artificial Intelligence, pages 775–780, 1991.

[13] P. Murphy and D. Aha. UCI Repository of machine learning databases. Machine
Readable data repository, 1994.

[14] S. Murthy, S. Kasif, S. Salzberg, and R. Beigel. OC1: Randomised Induction of
Oblique Decision Trees. In AAAI Proceedings, pages 322–327, 1993.

14



[15] P. O’Rorke. A Comparative Study of Inductive Learning Systems AQ11P and ID3
Using a Chess-End Game Problem. Technical Report ISG 82-2, Computer Science
Department, University of Illinois at Urbana-Champaign, 1982.

[16] G. Paliouras. The Scalability of Machine Learning Algorithms. Master’s thesis, De-
partment of Computer Science, University of Manchester, 1993.

[17] J. Quinlan. Learning Efficient Classification Procedures and Their Application to
Chess End Games. In R. Michalski, J. Carbonell, and T. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach, pages 463–482. Kaufmann, 1983.

[18] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
Inc., San Mateo, CA, 1993.

[19] L. Rendell. A New Basis for State-Space Learning Systems and a Successful Imple-
mentation. Artificial Intelligence, 20(4):369–392, 1983.

[20] L. Rendell. Conceptual Knowledge Acquisition in Search. In L. Bolc, editor, Com-
putational Models of Learning, pages 89–159. Springer Verlag, 1987.

[21] L. Rendell, H. Cho, and R. Seshu. Improving the Design of Similarity-Based Rule-
Learning Systems. International Journal of Expert Systems, 2:97–133, 1989.

[22] P. Utgoff. Incremental Induction of Decision Trees. Machine Learning, 4(2):161–186,
1989.

[23] S. Weiss and I. Kapouleas. An Empirical Comparison of Pattern Recognition, Neural
Nets, and Machine Learning Classification Methods. In Proceedings of the Int. Joint
Conf. on Artificial Intelligence, pages 781–787, 1991.

15


