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Abstract

The behaviour of a learning program as the quantity of data is increased affects to a
large extent its applicability on real-world problems. This paper presents the results of
a theoretical and experimental investigation of the scalability of four well-known em-
pirical concept-learning programs. In particular itexamines the effect of using numeric
features in the training set. The theoretical part of the work involved a detailed worst-
case computational complexity analysis of the algorithms. The results of the analysis
deviate substantially from previously reported estimates, which have mainly examined
discrete and finite feature spaces. In order to test these results, a set of experiments was
carried out, involving one artificial and two real data sets. The artificial data set intro-
duces a near-worst-case situation for the examined algorithms, while the two real data
sets provide an indication of their average-case behaviour.
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1 Introduction

During the last two decades, a large number of empirical concept-learning algorithms have
been developed. Out of those, the ones we will examined here cover three major categories.
The first (C4.5 [18]) induces decision trees and is the most recent version of the well-known
ID3 algorithm [17]. The next two (AQ15 [10] and CN2 [2]) generate lists of decision rules
and are based on the AQ algorithm [9]. The last (PLS1 [19]) is a conceptual clustering pro-
gram which is based on the same principles as ID3.

The selected programs have several features which are important to the scalability anal-
ysis presented in the paper:

1. Despite differences in the representation of the learned concepts, all four algorithms
performorthogonal clustering of the feature space. In other words, the resulting con-
cept can be graphically represented by a set of rectangles, aligned in parallel to the
axes of the hyper-space, defined by the featute $kis imposes a restriction to the
concepts that can be efficiently learned by the algorithms.

2. The algorithms belong to two types, which have been shown (e.g. [21]) to have dif-
ferent computational requirements. The first type consists of algorithms like ID3 and
PLS1, which are calledpecialisation algorithms, because they start from the most
general concept description and specialise this until it discriminates perfectly between
positive and negative examples of the concept. The second type correspgaas to
eralisation algorithms (e.g. AQ15 and CN2), which start from individual positive ex-
amples and generate all possible rules that discriminate between them and all negative
ones.

3. Allfour programs can handle numeric features. With the exception of AQ15, the pro-
grams deal with numeric features in the following way: at each stage of the learning
process they select a threshold value for the feature, which dichotomises the exam-
ined set of examples. AQ15 can only deal with integer features, with an upper bound
on their value setjounded numeric features). Ittreats those like ordered discrete fea-
tures, looking for characteristic value ranges.

There have been numerous analyses and comparisons of learning algorithms in the past
(e.g. [15], [8], [2], [21], [22], [6], [12], [23], [11], etc.), most of which have concentrated
on the classification accuracy of the algorithms. In general, the issue of scalability has been
neglected, and only a few of these analyses have dealt with the computational performance
of the examined algorithms. The ones which bear some relevance to the work presented
here are those carried out by O’Rorke [15], Rendedll. [21] and Clark and Niblett [2].

The common conclusion of the work on the computational performance of concept-
learning algorithms is thapecialisation algorithms are faster thayeneralisation ones, be-
cause they employ less expensive search methods. Additionally, the worst-case complexity
of the algorithms has been estimated to be near-linear, in the size of the training set. For

! A more extensive account of the orthogonality problem appears in [18], chapter 10.
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example, Rendebt al. [21] estimate the complexity of specialisation algorithms to be of
orderO(kae), wheree is the number of examples the number of features aricthe num-

ber of nodes in the final decision tree or the number of hyper-rectangles generated by the
clusterer.k is assumed to be independentuadinde, being determined by the complexity

of the problem. Clark and Niblett [2] examine also the use of numeric features, deriving the
worst-case estimatés(ae log e) andO(as(e + log(as)) (wheres is the maximum star size
parameter) for the core components of ASSISTANT (a variant of ID3) and the AQ-based
algorithms respectively. These estimates do not deal with the size of the final concept, im-
plicitly making the same assumption as in [21].

The work presented in the following sections includes a theoretical analysis and an ex-
perimental comparison of the examined algorithms. Section 2 describes worst-case scenar-
ios for the two types of algorithms and estimates their computational complexity. Worst-
case estimates of the size of the learned concept are included in the scenarios. Section 3
presents the results of three experiments, comparing the near-worst-case and average per-
formance of the programs. Finally, sections 4 and 5 summarise and compare the results of
the theoretical and the experimental analyses.

2 Theoretical Analysis

2.1 Thefocus points

For the purpose of calculating the computational complexity of the algorithms, the scale of

a learning problem can be defined in terms of two parameterssizief the training set

and thesize of the search space. The former is determined by the number of instances in the
training set, while the latter depends on the number of features and their value-sets, which
define the set of all possible target concepts that can be learned. This paper concentrates on
the size of the training set, examining its effect on the computational requirements of the
algorithms. However, the type and value-sets of the features play also an important role in
the worst-case scenarios.

In most of the previous studies, dealing with the complexity of ML algorithms, the as-
sumption is made that only finite value-sets are used for the features. This assumption was
valid for early versions of the algorithms, which could only deal with nominal features.
More recent versions, however, can deal with numeric features, whose value-sets need not
be finite. The effect of allowing infinite value-sets is that the search space becomes infinite
and needs to be limited, typically using the feature-values encountered in the training set.
As aresult, the order of complexity of the algorithms, with respect to the size of the training
set, increases.

Most of the above-mentioned studies have also assumed that the size of the final concept
description is determined only by the nature of the problem, not the feature-types nor the
number of examples. In a worst-case situation, however, it will be shown that the size of
the concept description depends on the size of the training set. There are also some empirical
results [1] which observe this dependency also in average-case situations.
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2.2 Specialisation Algorithms

The two specialisation algorithms examined here, i.e., C4.5 and PLS1, behave in a very
similar way to the basic ID3 algorithm, which is described in Figure 1. Thus, ID3 can be
used to derive an estimate of the complexity of the algorithms.

Input: A set of exampled/, a set of featured, a set of class
valuesC'.
Output: A decision tre€l'.

Initially S = F andN =T = root node.

Dichotomise(S, N):

1. If all the members of belong to the same class make
N aleaf node and stop dichotomisation.
Else select feature; that best discriminates between
positive and negative examplesin

2. For each value ofqa;: v;; do:
Create new nodeV; underN.
Dichotomise(sS;;, IV;), wheresS;; is the subset of exam-
ples corresponding to;.

3. ReturnT'.

Figure 1: The basic ID3 algorithm

The main computational cost of ID3 arises at the stage where all the features are evalu-
ated, in order for the best discriminant to be selected. Atthis stage, C4.5 discretises numeric
features by evaluating all binary splits, based on the feature-values that are observed in the
examined subset of the training set. This involves sorting the values and calculating the en-
tropy for each binary split. In the worst case, each example will assign a different value to
the numeric feature, resulting #— 1 possible splits, wheré is the size of the examined
subset of examples. Combining this with the linear complexity of the entropy calculation,
would result in a quadratic estimate for this stage alone. However, as the feature-values
are sorted, the entropy calculations can be optimised, by maintaining frequency counts (see
[18]). As a result, the most expensive process is the sorting, which is of O(ddng ¢').

This process has to be repeated for all features, resulting in a total cost&fog ¢’) for
the calculations per node, wherés the number of features.

In the above worst-case situation, it is possible that one node is generated for each value
of the numeric feature in the training set. This would happen in the case where perfect dis-
crimination was sought and no better features were provided. Thus, the maximum size of
the generated decision tree, measured by the number of non-leaf nades,,isvherec is
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the size of the training set. An additional worst-case assumption is that the resulting tree be
highly skewed, which is the case if a single example is discriminated at each node. In that
situation the average size of the subset of the training set examined at each node would be
¢’ = e/2. Based on those results, the total cost of the algorithdig? log ¢).

Therefore, by estimating the size of the learned concept description, in the worst case, it
is shown that the complexity of the ID3 algorithm is over-quadratic in the size of the training
set. The assumptions, underlying this result are:

1. Numeric features are used.
2. Each example in the training set assigns a different value to the numeric features.

3. A complete and highly skewed tree results. This means that there are no informative
features to support generalisation and no pre-pruning takes place.

These assumptions are strong and are not expected to hold in a typical learning problem.
They illustrate, however, how the use of numeric features can affect the computational re-
qguirements of the algorithm. Section 3.2 presents a simple artificial problem, which satisfies
most of the above assumptions.

2.3 Generalisation Algorithms

Out of the two generalisation algorithms examined here, i.e., AQ15 and CN2, only the lat-
ter can handle unbounded numeric features, i.e., real numbers and integers of an unlimited
range. AQ15 can only deal with integer features, the range of which has to be specified.
Therefore the behaviour of CN2, will be examined here. Figure 2 reproduces the descrip-
tion of the algorithm, presented in [2].

As with ID3, the most expensive process, during the search for the best decision rule
(complex) in CN2, is the evaluation of all possible complexes. The evaluation in this case
is done using the likelihood ratio statistic and the complexity of this calculation for each
complex isO(ce), wherec is the number of classes aadhe number of examples in the
training set. This process has to be repeated for all the generated complexes, the number of
which is determined by the size of t8ELECTORS set. The maximum size of this set, in
the worst-case scenario described above for ID&; 18, wherea is the number of features,
which is the upper limit for the length of the complex. This process is repeated a maximum
of a times, since each complex gets specialised by the addition of a selector (conjunctively
added condition), which uses a feature that has not been used in the complex so far. Thus
the complexity of the search processi&:*e?). Again this estimate can be improved, by
optimising the calculation of the likelihood ratio. As in ID3, this involves sorting the nu-
meric feature-values and updating the frequency counts, instead of recalculating them. The
revised worst-case estimate(¥$a’c log ¢).

The number of times this search has to be repeatédtise size of the final concept
description (set of decision rules). In the worst case, a complex is generated for each ex-
ample in the training set and = ¢. The computational complexity of the process is then
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Let K be a set of classified examples.
Let SELECTORS be the set of all possible selectors.

Procedure CN2(E)
Let RULE-LIST be the empty list.
Repeat untiBEST-CPXis nil or £ is empty:
Let BEST-CPX be Find-Best-Complex(E).
If BEST-CPX is not nil,
Then let£’ be the examples covered BEST-CPX.
RemoveF’ from £.
Let C' be the most common class of examplein
Add the rule ‘IfBEST-CPX then the class i§”
to the end of th&RULE-LIST.
ReturnRULE-LIST.

Procedur e Find-Best-Complex(E)
Let ST AR be the set containing the empty complex.
Let BEST-CPX be nil.
While ST AR is not empty,
Specialise all complexes it1' A R as follows:
Let NEWSTAR be the set:
{r Ny|le € STAR,y € SELECTORSY}.
Remove all complexes INEWSTAR that are either ih T’ AR
(i.e., the unspecialised ones) or null.
For every complex’; in NEWSTAR:
If C; is statistically significant and better than
BEST-CPX by user-defined criteria when tested Bn
Then replace the current value BEST-CPX by ;.
Repeat until size dNEWSTAR < user-defined maximum:
Remove the worst complex froMEWSTAR.
Let ST AR be NEWSTAR.
ReturnBEST-CPX.

Figure 2: The CN2 algorithm




O(a*ce? log e). One interesting observation is that theximum star size parameter does
not affect the worst-case complexity of the algorithm. The reason for this is that the maxi-
mum number of distinct complexes in the worst case is bounded by the sizeSHltEE-
TOR set, Ofe/2).

Due to the fact that AQ15 can only handle bounded numeric features, the worst-case
scenario for the algorithm differs slightly from CN2. In brief, this scenario involves:

1. The generation of as many complexes, as the size of the training set.

2. The examination of all negative examples, each time a new complex is produced, i.e.,
each complex is maximally specific.

3. The use of an evaluation function that needs to examine the whole training set each
time.

The second element of this list is the main difference between the two algorithms and in-
creases the complexity of the algorithm, with respect to the size of the training set, by an or-
der of magnitudé The complexity estimate for AQ15 &(sa*ve?), wherew is the largest

set of feature-values.

24 Summary of Results

Table 1 presents the results of the computational complexity analysis for each of the four
algorithms and for each type of feature they can handle

The following conclusions can be drawn from the presented results:

1. Most of the algorithms can handle nominal features quite efficiently, with respect to
the size of the training set. This is because the search space is bounded by the domain-
definition of the features.

2. AQ15 is more expensive than the other algorithms.
3. The value-grouping facility provided by C4.5, is expensive in terms of computations.

4. The complexity of the algorithms which can handle integer and real features is the
same for both these types. Moreover, this complexity is higher than quadratic for all
algorithms.

Nevertheless, one has to be very careful with the interpretation of the results of a worst-case
analysis. The situations which were assumed in order to obtain those results are extreme and
very atypical of the problems that concept-learning systems are usually required to solve.

2The details of the calculation of the complexity estimate for AQ15 are not of particular interest to the
paper, and can be found in [16].
3These are the results of an extented analysis, presented in [16].



Attribute Types
Algorithms nominal/ numeric
bounded | value-sets | unbounded | continuous
integer integer
C4.5 O(ca*ve) | O(c*av'e?) | O(ae?loge) O(ae*loge)
PLS1 — — O(cae*loge) —
CN2 O(ca’v**e) — O(ca*e*loge) | O(ca’e?loge)
AQ15 O(sa*ve?) — — —

%Value-sets for nominal features.

Notes:
a = number of features, ¢ = number of classes, ¢ = thesizeof thetraining set, s = maximum
star size, v = maximum number of values per feature.

Table 1: Summary of complexity estimates.

3 Experimental Investigation

3.1 Theset-up

The analysis presented in this section examines the scaling behaviour of the four algorithms,
using one artificial and two large real data sets. The desired outcome of the scalability anal-
ysis is a relationship between the performance of each algorithm and the size of the training
set, which can be compared to the corresponding computational complexity estimate. This
relationship can be derived, by measuring the rate at which the CPU-time consumption
changes, as the size of the training set increases. For that purpose, the CPU-time consump-
tion of the learning process is measured at diffesetsteps, i.e., training sets of different

sizes. The size-steps are determined on a logarithmic scale, starting from a small power of
2, usually2® = 64 and multiplying by2 each time. For the real data sets three randomly
sampled training sets are used at each size-step and the results of the three individual tests
are averaged. The results of the analysis are plotted on a logarithmic scale for both axes and
the slope at each point is examined.

In order to reduce the possibility of implementation inefficiencies, the examined algo-
rithms are written in similar, procedural programming languages (C and Pascal) and are all
original versions, provided by their developers. Especially CN2 was provided only in the
form of executables. Finally, all the experiments were carried out on a ‘Sun-SPARCsystem-
400’ machine (a server similar to a SPARC?2), which contains 32 MBytes of fixed memory
and 100 MBytes of swap memory. The system runs the ‘SUNOS 4.1.2’ operating system.

“The built-in C and Pascal functiorgetrusage and clock are used for the measurement of time
consumption.



Computational Performance . . .
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Figure 3: Scalability Results, using the Figure 4: Even-Numbers Learning Task:
Even Numbers learning task. The rate of increase of the CPU-time con-
sumed at each size-step.

3.2 Learning Even Numbers

Thisisasimple artificial problem, whose purpose isto verify the results of the theoretical
analysis. The task is the discrimination between even and odd integers, provided no more
information but the integersthemselves. Training sets range from 64 examples to the maxi-
mum number that each algorithm can handle and each set containsthefirst » integers, where
n isthe size of the set. With the exception of AQ15, the examined algorithms can deal with
this problem, because they can handle unbounded numeric features. However, AQ15 can
also be included in the experiment, by varying its upper limit for numeric feature-val ues,
according to the size of the training set. Inthisway, v = ¢ (table 1), raising the worst-case
complexity estimate to quartic: O(sa¢c*).

The problem examined here has a number of properties which generate a near-worst-
case situation for most of the algorithms:

1. The key element is that there are no similarities between the instances on which in-
duction can be based. In atypical learning problem informative features would be
defined, usually by a domain expert, and the data would be represented using these
features’. For example, in this problem the feature divisible-by-2, which would ex-

>Rendell [20] estimates that in the fifteen puzzle problem the feature extraction process provides about
80% of the acquired knowledge.



amine the divisibility of each number by 2 is very informative. Since, however, the
raw data are used, such additional information is not available.

2. The pattern followed by the data is one that cannot be detected by orthogonal clus-
tering algorithms. As mentioned above, the examined algorithms look for ranges of
numeric feature-values that correspond to objects of the same class. In this problem,
the largest range of that kind contains a single example.

3. The outcome of the learning process is complete and highly skewed decision trees
and complete decision-rulelists. In other words, no generalisation is achieved.

4. The problemiseasy to reproduce and uses a single integer feature and abinary class,
minimising the effect of parameters other than the size of the training set.

The only algorithm for which this problem does not approximate the worst-case scenario
iISAQ15. Thereason for thisis that the concept-description generated by AQ15 consists of
single-selector complexes, decreasing the complexity of the process by two orders of mag-
nitude:

1. Not al negative examples need to be examined during the search for each complex.

2. The evaluation of each complex does not depend on the size of the value-set of the
feature, which in thiscase is equal to the size of the training set.

The results of this experiment are shown in figures 3 and 4. Figure 3 presents, on alog-
arithmic scale, the CPU-time in seconds over the number of examples, so straight linesin-
dicate a polynomial relationship, with the slope indicating the power. Infigure 4 the slope
of the curves at each point is plotted.

The main conclusion to be drawn from these results is that, although polynomial, the
performance of the algorithms is mostly worse than quadratic, as predicted by the theo-
retical analysis. However, the agorithms perform significantly different from each other.
More specifically, the generalisation algorithms (AQ15 and CN2) have a consistent, near-
quadratic behaviour throughout the experiment. As expected, the performance of AQ15is
better than itsworst-case estimate. PL S1 issomewhat worse, starting with an over-quadratic
time consumption, which quickly approaches the cubic threshold. Theresultsareless clear
for C4.5, which startsbelow quadratic, but deterioratesto reach the cubic threshold for large
sets, which is worse than predicted. A possible explanation for thisis that the optimisation
assumed in the analysis of the ID3 algorithm (section 2.2) is not implemented.

3.3 Letter Recognition
Whiletheworst-case analysis servesasawarning, most applicationswill not encounter such

extreme conditions. For this reason, we have carried out experiments using two real data
sets, in order to get an indication of the average-case performance. The first set deals with
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the problem of classifying typed upper case letters of the Latin alphabet, based on a num-
ber of statistical properties of their pixel images. The data set was acquired from the UCI
Repository [13] and its original donor was D.J. Slate. Its author has used it as an applica-
tion domain for Holland-style genetic classifier systems[7]. More recently the data set has
also been used in the Statl og project [11]. The data set contains 20, 000 instances, of which
roughly 16, 000 have been used for learning in this experiment. Each instance corresponds
to an upper case letter, described in terms of 16 integer features, which take values in the
range of 0-15. All of the algorithms examined here can handle bounded integer features and
can thus participate in this experiment.

Computational Performance Rate of increase of CPU-time consumption
L etter Recognition Set L etter Recognition Set
100000 4
10000 -
7
g 1000 A %
rt # £ > “
d — |
£ e S X
= § - -
o 100 i g
° Tl
1 f/f\% (n) -
10 &
=Y
0 Ll | L
60 600 6000 60000
1 w w set size (instances)
60 600 6000 cas
c45 set size (instances) ~ APLSL
s—2APLSL <= CN2
x—x CN2 +—AQ15
+ ~AQ15

Figure 5: Scalability Results, using the Figure 6: Letter Recognition Set: The rate
Letter Recognition data set. of increase of the CPU-time consumed at
each size-step.

Figures 5 and 6 present the results of the experiment, in the same manner as previously.
Additional informationis provided about the deviation between the three measurements at
each size-step. These are sufficiently small not to affect the results of the comparison.

The performanceof the algorithms, inthisproblem, ispolynomial and near-linear. How-
ever, despitetheir smilar performance, the actual CPU-time consumption of the algorithms
varies substantially. In general, the two generalisation algorithms (CN2 and AQ15) seem
to have a higher computational unit cost than the specialisation ones (C4.5and PLS1). This
agrees with previously reported comparisons (section 1). Another interesting observation,
drawn from figure 6 is that most of the algorithms start with a very close to linear perfor-
mance, which worsens as the size of thetraining set increases. This can be explained by the
effect of fixed start-up costs.
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3.4 Chromosome Classification

The second real data set describes a chromosome analysis task. It is the Copenhagen data
set, also used in[4] and [5], wherean artificial Neural Network system wasused for the clas-
sification of chromosomes. The data set was provided by the Department of Medical Bio-
physics, University of Manchester and contains 8, 106 examples, of which roughly 6, 000
were used for learning in this experiment. Each example correspondsto an instance of a set
of 24 chromosomes and is described in terms of 15 real-valued features, which correspond
to the grey-level profile of the chromosome. Dueto the use of continuous features only two
of the algorithms could be used in this experiment, i.e., C4.5 and CN2.

Computational Performance Rate of increase of CPU-time consumption
1000 Chromosome Classification Set 4 Chromosome Classification Set
X

3+ il
~ 100 | %
o 3]
E £2 ™
F G
2 Q
O 10t L x

X X
1r = (n) .
160 600 6000 060 | 660 | 6600 60000

Hgﬁ g set size (instances) o CAE set size (instances)

~— CN2

Figure 7: Scalability Results, using the Figure 8: Chromosome Classification Set:
Chromosome Classification data set. The rate of increase of the CPU-time con-
sumed at each size-step.

Figures7 and 8 present theresults, which are similar to thel etter recognition experiment,
with the exception of an overall increase in the actual CPU-time consumption values, as a

result of theincreased difficulty of the problem. The performanceof the algorithmsremains
closeto linear.

4 Discussion of Results

The results of the experiment on the artificial data illustrate how the use of numeric fea-
tures can increase the computational requirements of the examined algorithms. Thisisin

12



accordance to the theoretical over-quadratic complexity estimates, presented in section 2,
which give an explanation of why this happens. Despite the extreme assumptions of the
worst-case scenarios, this analysis supports attempts to reconsider the methods of handling
numeric features in concept-learning problems (e.g. [3], [14]).

Another observation, drawn from the results of thefirst experiment, is that although the
generaisation algorithms are in general more expensive, their behaviour is very stable and
their CPU-time consumption is comparable to that of the specialisation ones for large data
sets. This points to a potential advantage of the AQ-based programs, which however does
not hold for the two experiments that use real data.

The average-case performance of the algorithmsis significantly better than the worst-
case. Their behaviour in both the experimentsusing real-world data sets was near-linear, de-
gpite the fact that non-nominal features were used. Additionally, during these experiments
alarge difference between the real unit cost of different algorithms has been observed. Al-
though their order of complexity is very similar, some of the algorithms, in particular the
generalisation ones, became prohibitively slow for large data sets.

5 Conclusion

This paper has looked at the behaviour of four empirical concept-learning algorithms on
data sets of variable size. Using a computational complexity analysis, it has been shown
that, in the worst case, the behaviour of the algorithmsis not linear, as previously reported,
but higher than quadratic. This result was achieved by the analysis of a parameter, i.e., the
size of the concept description, which was assumed to be independent from the size of the
training set, an assumption that does not hold in a worst-case situation. The results of this
analysis were empirically confirmed, using an artificial problem, which generates a near-
worst-case situation. Additionally, two largereal data sets were used, in order to gainanin-
dication of the average-case performance of the algorithms. These experiments have shown
that the average-case behaviour of the algorithmsis near-linear and some of the algorithms
(i.e., those having a smaller unit cost) can deal efficiently with large data sets.
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