
A Logic Programming Approach to Activity Recognition

Alexander Artikis1, Marek Sergot2 and Georgios Paliouras1

1Institute of Informatics & Telecommunications, NCSR Demokritos, Athens 15310, Greece
2Department of Computing, Imperial College London, SW7 2BT, UK
{a.artikis, paliourg}@iit.demokritos.gr, mjs@doc.ic.ac.uk

ABSTRACT
We have been developing a system for recognising human ac-
tivity given a symbolic representation of video content. The
input of our system is a set of time-stamped short-term ac-
tivities detected on video frames. The output of our sys-
tem is a set of recognised long-term activities, which are pre-
defined temporal combinations of short-term activities. The
constraints on the short-term activities that, if satisfied, lead
to the recognition of a long-term activity, are expressed using
a dialect of the Event Calculus. We illustrate the expressive-
ness of the dialect by showing the representation of several
typical complex activities. Furthermore, we present a de-
tailed evaluation of the system through experimentation on
a benchmark dataset of surveillance videos.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Experimentation

Keywords
event recognition, event calculus

1. INTRODUCTION
A common approach to human activity recognition sepa-

rates low-level from high-level recognition. The output of the
former type of recognition is a set of activities taking place in
a short period of time: ‘short-term activities’. The output of
the latter type of recognition is a set of ‘long-term activities’,
ie pre-defined temporal combinations of short-term activities.
We focus on high-level recognition.

We define a set of long-term activities of interest, such as
‘fighting’ and ‘meeting’, as temporal combinations of short-
term activities — eg, ‘walking’, ‘running’, and ‘inactive’ (stand-
ing still) — using a logic programming implementation of the
Event Calculus [9]. More precisely, we employ the Event Cal-
culus to express the temporal constraints on a set of short-
term activities that, if satisfied, lead to the recognition of a
long-term activity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EiMM’10, October 25, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-4503-0176-3/10/10 ...$10.00.

We presented preliminary results on activity recognition
from video content in [2]. (In [3] we described some initial
steps towards automatically constructing activity definitions
using machine learning techniques — the use of such tech-
niques is out of the scope of this paper.) In this paper we
extend our previous work in the following ways. First, we use
a more efficient Event Calculus dialect and implementation
to compute the intervals of long-term activities. Second, we
illustrate the expressiveness of the proposed Event Calculus
dialect by presenting several complex activity definitions. We
are able to construct much more succinct representations of
activity definitions for video surveillance than we had in our
earlier work. Third, we present a more detailed and informa-
tive evaluation of the Event Calculus on activity recognition.
We show through experimentation how incomplete short-term
activity narratives, inconsistent annotation of short-term and
long-term activities, and a limited dictionary of short-term
activities and context variables affect recognition accuracy.
Fourth, we evaluate our approach on a dataset with a refined
dictionary of short-term activities, in order to validate experi-
mentally our intuition that a finer classification of short-term
activities increases, under certain circumstances, the accu-
racy of long-term activity recognition. Indeed, the refined
dictionary of short-term activities — which can be provided
by state-of-the-art short-term activity recognition systems —
together with the updated long-term activity definitions pre-
sented in this paper, lead to much higher Precision and Recall
rates.

The remainder of the paper is organised as follows. First,
we present the Event Calculus dialect that we employ to for-
malise activity definitions. Second, we describe the dataset
of short-term activities on which we perform long-term ac-
tivity recognition. Third, we present our knowledge base of
long-term activity definitions. Fourth, we present our exper-
imental results. Finally, we discuss related work and outline
directions for further research.

2. THE EVENT CALCULUS
Our long-term activity recognition (LTAR) system consists

of a logic programming (Prolog) implementation of an Event
Calculus dialect. The Event Calculus, introduced by Kowalski
and Sergot [9], is a many-sorted, first-order predicate calculus
for representing and reasoning about events and their effects.
For the dialect used here, hereafter LTAR-EC (event calculus
for long-term activity recognition), the time model is linear
and it may include real numbers or integers. Where F is a
fluent — a property that is allowed to have different values
at different points in time — the term F =V denotes that
fluent F has value V . Boolean fluents are a special case in
which the possible values are true and false. Informally, F =V

3

Table 1: Main Predicates of the LTAR-EC.

Predicate Meaning

happensAt(E, T) Event E is occurring at time T

happensFor(E, I) I is the list of maximal intervals
during which event E takes place

initially(F =V) The value of fluent F is V at time 0

holdsAt(F =V, T) The value of fluent F is V at T

holdsFor(F =V, I) I is the list of maximal intervals
for which F =V holds continuously

initiatedAt(F =V, T) At time T a period of time
for which F =V is initiated

terminatedAt(F =V, T) At time T a period of time
for which F =V is terminated

holds at a particular time-point if F =V has been initiated
by an event at some earlier time-point, and not terminated
by another event in the meantime.

An event description in LTAR-EC includes axioms that de-
fine, among other things, the event occurrences (with the
use of the happensAt and happensFor predicates), the effects
of events (with the use of the initiatedAt and terminatedAt pred-
icates), and the values of the fluents (with the use of the
initially, holdsAt and holdsFor predicates). Table 1 summarises
the main predicates of LTAR-EC. Variables, starting with an
upper-case letter, are assumed to be universally quantified
unless otherwise indicated. Predicates, function symbols and
constants start with a lower-case letter.

The domain-independent axioms for holdsAt and holdsFor are
such that, for any fluent F , holdsAt(F =V, T) if and only if
time-point T belongs to one of the maximal intervals of I
such that holdsFor(F =V, I). However, for efficiency the im-
plementation employs different procedures for these two tasks,
and various indexing techniques to reduce search and improve
efficiency further. Briefly, to compute holdsFor(F =V, I), we
find all time-points Ti in which F =V is initiated, and then,
for each Ti, we compute the first time-point after Ti in which
F =V is terminated. If the list of initiating time-points is gen-
erated in sorted order, which is easy to arrange, both steps can
make effective use of indexing. In particular, if the list of ini-
tiating time-points contains an adjacent pair . . . , Ti, Ti+1, . . .
then the terminating time-point corresponding to Ti must oc-
cur between Ti and Ti+1. In outline, the indexing works as
follows.

The domain-independent axioms for holdsAt can be written
in the following form:

holdsAt(F =V, T)←
initiatedAt(F =V, Ts), not broken(F =V, Ts, T)

(1)

broken(F =V, Ts, T)←
terminatedAt(F =V, Tf), Ts < Tf < T

(2)

broken(F =V1, Ts, T)←
initiatedAt(F =V2, Tf), V1 6= V2, Ts < Tf < T

(3)

not in rule (1) represents ‘negation by failure’, which provides
a form of default persistence (‘inertia’) of fluents.

According to rule (2), a period of time for which F =V
holds is broken at Tf if F =V is terminated at time Tf . Ac-
cording to rule (3), if F =V2 is initiated at Tf then effectively
F =V1 is terminated at time Tf , for all other possible values
V1 of F . Rule (3) ensures therefore that a fluent cannot have
more than one value at any time.

Besides the general, domain-independent rule

initiatedAt(F =V, 0) ← initially(F =V), the definitions of ini-

tiatedAt and terminatedAt are domain specific. One common
form of rule for initiatedAt, eg, has the general form:

initiatedAt(F =V, T)←
happensAt(Ev, T), Conditions[T]

(4)

where Conditions[T] is some set of further conditions referring
to time T . Concrete examples of initiatedAt rules are provided
in the section that follows.

To explain what we mean by indexing, note that clauses
(1), (2) and (3) can be written equivalently as follows:

holdsAt(F =V, T)←
initiatedAt(F =V, 0, Ts, T), not broken(F =V, Ts, T)

(5)

broken(F =V, Tmin, Tmax)←
terminatedAt(F =V, Tmin, Tf , Tmax)

(6)

broken(F =V, Tmin, Tmax)←
initiatedAt(F =V2, Tmin, Tf , Tmax), V1 6= V2

(7)

when every rule of the form (4) is transformed into the form:

initiatedAt(F =V, Tmin, T, Tmax)←
happensAt(Ev, Tmin, T, Tmax), Conditions[T]

(8)

The extra arguments in initiatedAt, terminatedAt, and happensAt

specify the range of time-points Tmin and Tmax between which
the time-point T of interest must occur. Thus happensAt(Ev,
Tmin, T, Tmax) iff happensAt(Ev, T) and Tmin < T < Tmax.

Our implementation automatically transforms initiatedAt

rules of the form (4) into the form (8) on compilation, in a pro-
cess transparent to the user. The advantage is that in Prolog
execution of holdsAt and holdsFor, when
happensAt(Ev, Tmin, T, Tmax) is called, Ev is always ground
(variable-free), which exploits Prolog’s built-in indexing when
searching for occurrences of event Ev. But much more impor-
tantly, Tmin and Tmax are also always ground which means
that the storage of happensAt data can be indexed to exploit
this and reduce search very significantly.

terminatedAt and other forms of initiatedAt rules are handled
similarly. We omit these and other details for lack of space.
The complete code for LTAR-EC is available upon request.

3. SHORT-TERM ACTIVITIES
Our long-term activity recognition system (LTAR) includes

long-term activity definitions in LTAR-EC. The input to
LTAR is a symbolic representation of short-term activities.
The output of LTAR is a set of recognised long-term activities.
In [2, 3] we used the first dataset of the CAVIAR project1 to
perform long-term activity recognition. This dataset includes
28 surveillance videos of a public space. The videos are staged
— actors walk around, sit down, meet one another, leave ob-
jects behind, fight, and so on. Each video has been manually
annotated in order to provide the ground truth for both short-
term and long-term activities.

Our preliminary experiments with this dataset, however,
showed that the limited dictionary of short-term activity types
compromised the recognition of some long-term activities —
it was often impossible to distinguish between certain long-
term activities. To overcome this problem, in the context of
this paper we introduced in the CAVIAR dataset a short-term
activity for ‘abrupt motion’: we manually edited the annota-
tion of the CAVIAR videos by changing, when necessary, the

1
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

4

label of a short-term activity to ‘abrupt motion’. This is a
form of short-term activity that is recognised by some state-
of-the-art recognition systems, such as [8]. A person is said to
exhibit an ‘abrupt motion’ activity if he moves abruptly and
his position in the global coordinate system does not change
significantly — if it did then the short-term activity would be
classified as ‘running’. For this set of experiments, therefore,
the input to LTAR is:

(i) The short-term activities abrupt motion, walking, run-
ning, active (non-abrupt body movement in the same
position) and inactive (standing still), together with their
time-stamps, ie the video frame in which that short-
term activity took place. These activities are mutually
exclusive. This type of input is represented by means
of the happensAt predicate — eg, happensAt(abrupt(id6),
15560) expresses that id6 moved abruptly at video
frame (time-point) 15560 . Short-term activities are rep-
resented as events in the Event Calculus in order to use
the initiatedAt and terminatedAt predicates for expressing
the conditions in which these activities initiate and ter-
minate a long-term activity.

(ii) The coordinates of the tracked people and objects as
pixel positions at each time-point. The coordinates are
represented with the use of the holdsAt predicate — eg,
holdsAt(coord(id2) =(14 , 55), 10600) expresses that
the coordinates of id2 are (14 , 55) at time-point (frame
number) 10600 .

(iii) The first and the last time a person or object is tracked
(‘appears’/‘disappears’). This type of input is repre-
sented using the happensAt predicate. Eg,
happensAt(appear(id10), 300) expresses that id10 is first
tracked at time-point (frame number) 300 .

Given this input, LTAR recognises the following long-term
activities: a person leaving an object, a person being im-
mobile, people meeting, moving together, or fighting. Long-
term activities are represented as Event Calculus fluents in
order to use the holdsFor predicate for computing the inter-
vals of these activities. Eg, holdsFor(moving(id1 , id3) = true,
[(0 , 40), (340 , 380)]) states that id1 was moving together with
id3 in the intervals (0 , 40), and (340 , 380).

To recognise long-term activities, LTAR processes the in-
put information as follows. First, given input type (i), ie the
short-term activities detected at each time-point and recorded
using the happensAt predicate, LTAR computes the maximal
duration of each short-term activity, and represents it us-
ing the happensFor predicate. Eg, happensFor(walking(id5),
[(40 , 400), (600 , 720)]) expresses that the maximal inter-
vals for which id5 was walking are (40 , 400) and (600 , 720).
appear(A) and disappear(A) are instantaneous events. (They
occur at one time point.) Second, given input type (ii), LTAR
computes the distance between two tracked entities and com-
pares the distance with pre-defined thresholds. Eg,
holdsAt(close(id3 , id5 , 30) = true, 80) expresses that id3 is
‘close’ to id5 at time 80 in the sense that their distance is at
most 30 pixel positions. Further, LTAR computes the maxi-
mal intervals for which two tracked entities are ‘close’ — eg,
holdsFor(close(id3 , id5 , 24) = true, [(40 , 80)]) states that
(40 , 80) is the maximal interval for which the distance be-
tween id3 and id5 is continuously at most 24 pixel positions.

Long-term activity recognition is based on a knowledge base
of long-term activity definitions. Next we present example
definition fragments of LTAR’s knowledge base.

4. LONG-TERM ACITIVITY DEFINITIONS
The ‘leaving an object’ activity is defined as follows:

initiatedAt(leaving object(P , Obj) = true, T)←
happensAt(appear(Obj), T),
happensAt(inactive(Obj), T),
holdsAt(close(P , Obj , 30) = true, T),
holdsAt(person(P) = true, T),
happensAt(appear(P), T0), T0 < T

(9)

terminates(leaving object(P , Obj) = true, T)←
happensAt(disappear(Obj), T)

(10)

In the CAVIAR videos an object carried by a person is not
tracked — only the person that carries it is tracked. The
object will be tracked, ie ‘appear’, if and only if the person
leaves it somewhere. Moreover, objects (as opposed to per-
sons) can exhibit only inactive short-term activity. Accord-
ingly, axiom (9) expresses the conditions in which ‘leaving
an object’ is recognised. The fluent recording this activity,
leaving object(P ,Obj), becomes true at time T if Obj ‘ap-
pears’ at T , its short-term activity at T is ‘inactive’, there
is a person P ‘close’ to Obj at T , and P has ‘appeared’ at
some time earlier than T . Recall that appear(A) is an event
that takes place at the first time A is tracked and that the
close(A,B ,D) fluent is true when the distance between A and
B is at most D pixel positions. The value of 30 pixel positions
was determined from an empirical analysis of CAVIAR.

In CAVIAR there is no explicit information that a tracked
entity is a person or an inanimate object. Therefore, in the
activity definitions we try to deduce whether a tracked entity
is a person or an object given, among others, the detected
short-term activities. We defined the fluent person(P) to have
value true if P has exhibited an active, walking, running or
abrupt motion short-term activity since P ‘appeared’. The
value of person(P) is time-dependent because in CAVIAR, the
identifier P of a tracked entity that ‘disappears’ (is no longer
tracked) at some point may be used later to refer to another
entity that ‘appears’ (becomes tracked), and that other entity
may not necessarily be a person.

Unlike the specification of person, it is not clear from the
CAVIAR data whether a tracked entity is an object, and for
this reason we do not have a fluent explicitly representing that
an entity is an object. person(P) = false does not necessarily
imply that P is an object; it may be that P is not tracked, or
that P is an inactive person. Note finally that axiom (9) incor-
porates a (reasonable) simplifying assumption, that a person
entity will never exhibit ‘inactive’ activity at the moment it
first ‘appears’ (is tracked). If an entity is ‘inactive’ at the
moment it ‘appears’ it can be assumed to be an object, as
in the first two conditions of axiom (9). (This assumption is
adequate for CAVIAR. Removing it raises further issues we
do not have space to discuss fully here.)

The lack of explicit information that a tracked entity is
an inanimate object may compromise recognition accuracy
in certain conditions. A discussion about the effects of the
limitations of CAVIAR’s dictionary on recognition accuracy
will be presented in the next section.

Axiom (10) expresses the conditions in which a
leaving object activity ceases to be recognised. In brief,
leaving object is terminated when the object in question is
picked up. An object that is picked up by someone is no longer
tracked — it ‘disappears’ — terminating leaving object .

The long-term activity immobile was defined in order to
signify that a person is resting in a chair or on the floor,

5

or has fallen on the floor (eg, fainted). Note that there is no
short-term activity in the CAVIAR annotation for the motion
of leaning towards the floor or a chair. The absence of such
a short-term activity substantially complicates the definition
of immobile, and, as discussed in the next section, sometimes
reduces the accuracy of recognising immobile. Below is one
of the axioms of the immobile definition:

initiatedAt(immobile(P) = true, T)←
happensFor(inactive(P), Intervals),
(T , T1) ∈ Intervals, T1 > T+54 ,
holdsAt(person(P) = true, T),
findall(S , shop(S), Shops),
holdsAt(farS(P , Shops, 24) = true, T)

(11)

immobile(P) is recognised if the following conditions are sat-
isfied. First, P stays inactive for more than 54 frames (see
lines 2–3 of axiom (11)). We chose this number of frames,
like all other numerical constraints of the definitions, based
on empirical analysis of the CAVIAR dataset. Second, P is
a person (see line 4 of axiom (11)). With the use of this
constraint we distinguish between an inanimate object, which
is inactive since it is first tracked, from an immobile person.
Third, P is not ‘close’ to a shop (see lines 5–6 of axiom (11)).
If P were ‘close’ to a shop then he would have to stay inactive
much longer than 54 frames before immobile could be recog-
nised. (Those conditions are specified in other axioms defining
immobile not shown here.) In this way we avoid classifying
the activity of browsing a shop as immobile. farS(A,List ,D)
is true when A is more than D pixel positions away from every
element of the List .

immobile(P) is terminated when P starts walking, running
or ‘disappears’, ie he is no longer tracked by the video cam-
eras. The relevant axioms for terminatedAt are straightforward
and are not shown here.

meeting (of two persons P1 and P2) is recognised when two
people ‘interact’: at least one of them is active or inactive, the
other is neither running nor moves abruptly, and the distance
between them is at most 25 pixel positions. In the CAVIAR
annotations, this interaction phase can be seen as some form
of greeting (eg, a handshake). The rule below shows one set
of conditions in which meeting is initiated:

initiatedAt(meeting(P1 , P2) = true, T)←
holdsAt(close(P1 , P2 , 25) = true, T),
holdsAt(person(P1), T),
happensAt(inactive(P1), T),
holdsAt(person(P2), T),
not happensAt(running(P2), T),
not happensAt(abrupt(P2), T)

(12)

meeting is terminated when the two people walk away from
each other, or one of them starts running, moves abruptly,
or ‘disappears’. The formalisation is straightforward and so
omitted here.

The activity moving was defined in order to recognise
whether two people are walking along together. This activ-
ity, like the activities presented so far, could be formalised in
terms of initiatedAt/terminatedAt predicates to specify the con-
ditions in which moving starts/ceases to be recognised, and
then using the domain-independent axioms of holdsFor to com-
pute the maximal intervals of this activity: moving is initiated
when two people are walking and are ‘close’ to each other, and
terminated when the people walk away from each other, when
they stop moving, ie become active or inactive, when one of
them starts running, moves abruptly, or ‘disappears’.

A considerably more concise representation of moving , how-
ever, can be given directly in terms of holdsFor:

holdsFor(moving(P1 ,P2) = true, MovingI)←
holdsFor(close(P1 ,P2 , 34) = true, CloseI),
happensFor(walking(P1), WalkingI1),
happensFor(walking(P2), WalkingI2),
intersect all([WalkingI1 ,WalkingI2 ,CloseI], MovingI)

(13)

CloseI are the maximal intervals in which the distance be-
tween P1 and P2 is continuously at most 34 pixel positions.
We compute these intervals using the recorded trajectories of
P1 and P2 given as input to LTAR. intersect all computes the
intersection of a list of intervals. The implementation of inter-

sect all and other constructs manipulating intervals is available
with the source code of LTAR-EC. According to axiom (13),
the maximal intervals in which P1 and P2 are moving together
are produced by the intersection of the intervals in which P1

is ‘close’ to P2, P1 is walking and P2 is walking.
As in the case of moving , we could also have formalised

leaving object , immobile and meeting directly in terms of holds-
For (as opposed to representing these activities in terms of initi-
atedAt and terminatedAt and then using the domain-independent
axioms of holdsFor to compute their maximal intervals). How-
ever, formalising leaving object , immobile and meeting di-
rectly in terms of holdsFor is not more concise than formal-
ising these activities in terms of initiatedAt and terminatedAt.
For leaving object , immobile and meeting it is much simpler
to identify the conditions in which these activities are initi-
ated and terminated, than identifying all possible conditions
in which these activities hold.

The last definition of LTAR’s knowledge base concerns the
fighting activity:

holdsFor(fighting(P1 ,P2) = true, FightingI)←
happensFor(abrupt(P1), AbruptI),
holdsFor(close(P1 ,P2 , 24) = true, CloseI),
intersect all([AbruptI , CloseI], AbruptCloseI)
happensFor(inactive(P2), InactiveI),
complement(AbruptCloseI , InactiveI , FightingI)

(14)

complement is an implementation of the complement operation.
Two people are assumed to be fighting if at least one of them
is moving abruptly, the other is not inactive, and the distance
between them is at most 24 pixel positions. As in the case
of moving , we expressed the definition of fighting directly in
terms of holdsFor because expressing the conditions in which
two people are fighting leads to a more succinct representation
than expressing the conditions in which fighting is initiated
and terminated.

5. EXPERIMENTAL RESULTS
We present experimental results on 28 surveillance videos

of the CAVIAR project. These videos contain 26419 frames
that were manually annotated by the CAVIAR team in or-
der to provide the ground truth for short-term and long-term
activities. We edited the original CAVIAR annotation by in-
troducing a short-term activity for abrupt motion. Table 2
shows the performance of LTAR; it shows, for each long-term
activity, the number of True Positives (TP), False Positives
(FP) and False Negatives (FN), and the corresponding Re-
call and Precision values. Long-term activities are recognised
with the use of the holdsFor Event Calculus predicate.

LTAR achieved high Recall and Precision rates, indicating
that it may adequately represent complex activities. Perfect

6

Table 2: Experimental Results.

Behaviour TP FP FN Recall Precision

leaving object 4 0 1 0.8 1

immobile 9 8 0 1 0.52

meeting 6 1 3 0.66 0.85

moving 15 3 2 0.88 0.83

fighting 6 0 0 1 1

Recall and Precision rates were not achieved due to various
reasons. One of these reasons concerns the fact that the narra-
tive of short-term activities (produced by manual annotation,
in the present experiments) is incomplete. Eg, the single FN
concerning leaving object is due to the fact that in the video
in question the object was left behind a chair and was not
tracked. In other words, the left object never ‘appeared’, it
never exhibited a short-term activity.

Another reason for having FP and FN is the lack of con-
sistency in the annotation of the videos; eg, the long-term
activity of people walking in the same direction while be-
ing ‘close’ to each other is not always classified as moving
(this type of inconsistency leads to FP concerning the recog-
nition of moving), the short-term activity of people being ac-
tive is sometimes classified as walking (eg, leading to FN in
the recognition of meeting), and so on.

The most important reason for not achieving perfect Recall
and Precision in the CAVIAR dataset concerns the limited
dictionary of short-term activities and context variables with
which the tracked activity is represented. The recognition
of immobile, for instance, would be much more accurate if
there were a short-term activity for the motion of leaning
towards the floor or a chair. In the absence of such an activity,
the recognition of immobile is primarily based on how long a
person is inactive. In the CAVIAR videos a person who falls
on the floor or rests in a chair stays inactive for at least 54
frames. Consequently LTAR recognises immobile if, among
other things, a person stays inactive for at least 54 frames.
There are situations, however, in which a person stays inactive
for more than 54 frames and has not fallen on the floor or sat
in a chair: people watching a fight, or just staying inactive
waiting for someone. It is in those situations that we have
the FP concerning immobile.

For similar reasons we did not achieve perfect Recall and
Precision in the recognition of meeting ; it is impossible to
define this activity precisely due to the absence of a short-
term activity for ‘greeting’.

A particular refinement of CAVIAR’s dictionary — the in-
troduction of a short-term activity for abrupt motion — con-
siderably increased LTAR’s recognition accuracy. More pre-
cisely, compared to our earlier results [2, 3], the introduc-
tion of abrupt motion reduced the number of FP regarding
moving and meeting . In the original annotation of CAVIAR,
the short-term activities of people fighting were sometimes
classified as walking or active. In the first case LTAR incor-
rectly recognised moving , because two people were walking
while being ‘close’ to each other, while in the second case
LTAR incorrectly recognised meeting (in addition to recog-
nising fighting), because two people were active while being
‘close’ to each other. Labelling the short-term activities of
people fighting as abrupt motion resolved this issue, because
abrupt motion does not initiate moving or meeting .

In addition to increasing the recognition accuracy of moving
and meeting , the introduction of abrupt motion eliminated

FP and FN regarding fighting . Moreover, the introduction of
abrupt motion did not increase FP or FN in the recognition
of the other long-term activities.

Similar to introducing abrupt motion, we could have en-
hanced CAVIAR’s dictionary by including activities for greet-
ing a person, falling on the floor, etc, and variables explicitly
representing that a tracked entity is an object. We did not
do this because we are not aware of any short-term activity
recognition systems that detect such activities and explicitly
represent the aforementioned type of information. In contrast,
there are systems that detect abrupt motion — eg, see [8]. We
expect that a finer classification of short-term activities and
the addition of context variables such as the one mentioned
above, will, under certain circumstances, increase the over-
all activity recognition accuracy, provided that the long-term
activity definitions are updated accordingly.

We should like to point out that the issues identified above
do not always compromise recognition accuracy. Eg, the lack
of explicit information that a tracked entity is an object did
not the affect the recognition accuracy of leaving object in
the 28 CAVIAR videos. This lack of information would have
led to FP in the recognition of leaving object in certain con-
ditions, but these conditions did not arise in the CAVIAR
videos. Similarly, the lack of consistency in the annotation of
activities, and the incompleteness of short-term activity nar-
ratives do not always lead to FP or FN. In any case, in the
next section we discuss ways of addressing these issues.

Concerning recognition efficiency, we were able to recognise
each long-term activity in less than 1 second CPU time, given
as input around 1800 temporally sorted short-term activities
representing, on average, a CAVIAR video, on an Intel Core
i7 920@2.67GHz with 6 GB RAM running Linux Kernel 2.6.
Ways to further improve recognition efficiency are presented
in the following section.

6. DISCUSSION
Numerous recognition systems have been proposed in the

literature. In this section we focus on long-term activity (high-
level) recognition systems that, similar to our approach, ex-
hibit a formal, declarative semantics.

A well-known system for activity recognition is the Chron-
icle Recognition System (CRS)2. A ‘chronicle’ can be seen
as a long-term activity — it is expressed in terms of a set
of events (short-term activities in our example), linked to-
gether by time constraints, and, possibly, a set of context
constraints. The language of CRS relies on a reified temporal
logic, where propositional terms are related to time-points or
other propositional terms. Time is considered as a linearly
ordered discrete set of instants. The language includes pred-
icates for persistence and event absence. Details about CRS
may be found on the web page of the system and [5].

The CRS language does not allow mathematical operators
in the constraints of atemporal variables. Consequently, the
computation of the distance between two people/objects can-
not be computed. CRS, therefore, cannot be directly used for
activity recognition in video surveillance applications. More
generally, CRS cannot be directly used for activity recogni-
tion in applications requiring any form of spatial reasoning,
or any other type of atemporal reasoning. These limitations
could be overcome by developing a separate tool for atempo-
ral reasoning that would be used by CRS whenever this form
of reasoning was required. To the best of our knowledge, such
extensions of CRS are not available. Clearly, the computa-

2http://crs.elibel.tm.fr/

7

tional efficiency of CRS, which is one of the main advantages
of using this system for activity recognition, would be com-
promised by the integration of an atemporal reasoner.

Hakeem and Shah [7] have presented a hierarchical event
representation for analysing videos. The temporal relations
between the sub-events of an event definition (or activity, in
the terminology of this paper) are represented using the inter-
val algebra of Allen and Ferguson [1] and an extended form of
the CASE representation [6] originally used for the syntactic
analysis of natural languages.

In our approach to activity recognition, the availability of
the full power of logic programming is one of the main at-
tractions of employing the Event Calculus as the temporal
formalism. It allows activity definitions to include not only
complex temporal constraints — LTAR-EC is at least as ex-
pressive as the CRS language and the extended CASE rep-
resentation with respect to temporal representation — but
also complex atemporal constraints. Moreover, when neces-
sary more expressive Event Calculus dialects may be adopted
(see, eg, [10]).

Shet et al. have presented a logic programming approach to
activity recognition. See [12, 13] for two recent publications.
These researchers have presented activity definitions concern-
ing theft, entry violation, unattended packages, and so on.
A distinguishing feature of our approach with respect to this
line of work concerns the fact that we use the Event Calcu-
lus for temporal representation and reasoning. The temporal
aspects of the definitions of Shet, Davis et al. are crudely rep-
resented — eg, there are no rules for computing the intervals
in which a long-term activity takes place. In contrast, the
Event Calculus has built-in axioms for complex temporal rep-
resentation, including the formalisation of inertia, durative
events, events with delayed effects, etc, which help consider-
ably the system designer develop activity definitions. Shet
and colleagues stated that “[i]n the future we would like to
extend this system to reason explicitly about temporal infor-
mation thus helping us [..] to define models for and recognise
human activities within a single framework” [13, p.8]. To the
best of our knowledge, they have not developed a system for
explicit temporal representation and reasoning since.

Shet and colleagues have incorporated in their logic pro-
gramming framework a mechanism for reasoning over rules
and facts that have an uncertainty value attached. We aim to
extend our work by allowing for uncertainty values in the rules
of activity definitions in order to address, to a certain extent,
the issues arising from incomplete short-term activity narra-
tives, inconsistent annotation of short-term and long-term ac-
tivities, and a limited dictionary of short-term activities and
context variables.

Paschke and colleagues [11] have also proposed the use of
an Event Calculus dialect for event recognition. This dialect
and LTAR-EC have numerous differences. For example, un-
like LTAR-EC, there is no support in the dialect of Paschke et
al for multi-valued fluents — only Boolean fluents are consid-
ered. Moreover, the treatment of intervals is quite different.
The Event Calculus dialect of Paschke and colleagues, for in-
stance, does not include axioms for recognising an ‘on-going’
long-term activity, ie a activity that started taking place at
some earlier time-point and still holds. There are also very
significant differences in the implementations.

Apart from the numerous differences in expressiveness and
implementation, a key contribution of the work presented
here, as we see it, is that we have illustrated the expressive-

ness of the Event Calculus for complex activity recognition
on a benchmark example, showed a range of different types
of definition, and evaluated the adequacy of our representa-
tion empirically. We expect that the example itself will be
a valuable resource in future uses of the Event Calculus for
activity/event recognition.

A logic programming approach to activity recognition has,
among others, the advantage that machine learning techniques
can be directly employed for developing/refining activity def-
initions. An area of current work is the use of abductive and
inductive logic programming techniques for learning activity
definitions. Details about this line of work are given in [3].

LTAR-EC does not currently store the outcome of query
computation, ie the intervals of the recognised activities. Con-
sequently, LTAR-EC often performs unnecessary computa-
tions, re-computing activity intervals that it already com-
puted but did not store. We are currently experimenting
to find the most effective options for caching in LTAR-EC,
including those presented in [4].

Acknowledgements
This work was supported partly by the EU PRONTO Project
(FP7-ICT 231738).

7. REFERENCES
[1] J. Allen and G. Ferguson. Actions and events in interval

temporal logic. Journal of Logic and Computation,
4(5):531–579, 1994.

[2] A. Artikis and G. Paliouras. Behaviour recognition
using the event calculus. In Artificial Intelligence
Applications & Innovations. Springer, 2009.

[3] A. Artikis, A. Skarlatidis, and G. Paliouras. Behaviour
recognition from video content using the event calculus.
International Journal of AI Tools, 19(2), 2010.

[4] L. Chittaro and A. Montanari. Efficient temporal
reasoning in the cached event calculus. Computational
Intelligence, 12(3):359–382, 1996.

[5] C. Dousson and P. Le Maigat. Chronicle recognition
improvement using temporal focusing and
hierarchisation. In IJCAI, pages 324–329, 2007.

[6] C. Fillmore. The case for CASE. In E. Bach and
R. Harms, editors, Universals in Linguistic Theory,
pages 1–88. Holt, Rinehart, and Winston, 1968.

[7] A. Hakeem and M. Shah. Learning, detection and
representation of multi-agent events in videos. Artificial
Intelligence, 171(8–9):586–605, 2007.

[8] D. Kosmopoulos, P. Antonakaki, K. Valasoulis,
A. Kesidis, and S. Perantonis. Human behaviour
classification using multiple views. In Hellenic
Conference on Artificial Intelligence, LNAI 5138.
Springer, 2008.

[9] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67–96, 1986.

[10] R. Miller and M. Shanahan. The event calculus in a
classical logic. JETAI, 4(16), 2000.

[11] A. Paschke and M. Bichler. Knowledge representation
concepts for automated SLA management. Decision
Support Systems, 46(1):187–205, 2008.

[12] V. Shet, D. Harwood, and L. Davis. VidMAP: video
monitoring of activity with Prolog. In Advanced Video
and Signal Based Surveillance. IEEE, 2005.

[13] V. Shet, J. Neumann, V. Ramesh, and L. Davis.
Bilattice-based logical reasoning for human detection. In
Computer Vision and Pattern Recognition. IEEE, 2007.

8

