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Abstract—A new transfer learning method is presented in
this paper, addressing a particularly hard transfer learning
problem: the case where the target domain shares only a
subset of its classes with the source domain and only unlabeled
data are provided for the target domain. This is a situation
that occurs frequently in real-world applications, such as the
multiclass document classification problems that motivated
our work. The proposed approach is a transfer learning
variant of the Probabilistic Latent Semantic Analysis (PLSA)
model [1] that we name TL-PLSA. Unlike most approaches
in the literature, TL-PLSA captures both the difference of
the domains and the commonalities of the class sets, given no
labelled data from the target domain. We perform experiments
over three different datasets and show the difficulty of the task,
as well as the promising results that we obtained with the new
method.
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I. INTRODUCTION

Machine learning technologies have already achieved
significant success in many knowledge engineering areas
including classification, regression and clustering. However,
many machine learning methods work well only under a
common assumption: the training and test data are drawn
from the same distribution. When the distribution changes
most statistical models need to be rebuilt from scratch
using newly collected training data. In many real world
applications, it is expensive or impossible to collect the
needed training data and rebuild the models. Knowledge
transfer would greatly improve the performance of learning
by avoiding expensive data-labeling efforts. In recent years,
transfer learning has emerged as a new learning framework
to address this problem. It tries to extract knowledge from
previous experience and apply it on new learning domains
or tasks.

As an example, we may want to learn a classifier for
web blog posts, in order to categorize them into different
themes, but we may not have such documents pre-annotated
with appropriate categories. However, we may be given
plenty of news articles that are categorized as a source.
Hand labeling data in the new domain is costly, and
one often wishes to be able to leverage the original, “out-

of-domain” data when building a model for the new domain.

Existing transfer learning approaches can be categorized
into three main types [2], based on the characteristics of the
source and target domains and tasks:

1) Inductive transfer: The target task is different from the
source task and some labeled data in the target domain
are required. For document classification, two tasks are
considered different if either the label sets are different
in the two domains, or the source and target documents
are very imbalanced in terms of user-defined classes.
Depending on the availability of labeled data in the
source domain, we distinguish two subcategories:
• Labeled data in the source domain are available.

This setting is similar to multitask learning.
• No labeled data in the source domain are avail-

able. This setting is similar to self-taught learning.
Most existing approaches of this type focus on the
former subcategory.

2) Transductive transfer learning setting: The source
and target tasks are the same, while the source and
target domains differ. For document classification, two
domains are considered different if either the term
features are different, or their marginal distributions
are different. No labeled data for the target domain
are available, while labeled data are available for the
source domain.

3) Unsupervised transfer learning: Similar to inductive
transfer learning, the target task is different from but
related to the source task. However, the unsupervised
transfer learning focuses on solving unsupervised
learning tasks in the target domain, such as clustering.
There are no labeled data available in either the source
or the target domains.

In this work, we propose a new approach, which lies
between the first two categories (Inductive and Transductive
transfer learning). In our setting, no labeled data for the
target domain are available, as in transductive transfer
learning, while the source and target tasks are also not
exactly the same, as in inductive transfer learning. In
particular, we assume that we have labeled data for the



source domain and unlabeled data for the target domain.
Additionally, the two tasks are multiclass classification
ones and they share only a subset of common classes.
This is a situation that occurs frequently in real-world
applications, such as in document classification problems.
In many cases, as we mentioned before, it is very hard to
find training data in a particular domain we are interested
in. At the same time, it also unlikely to find training data
from different domains which are classified to the exact
same classification schema we want to train our model to
(i.e. exactly the same classes). With the current transfer
learning approaches, this problem cannot be faced. The
approach is an extension of the PLSA method [1], and it is
based on previous work on Dual-PLSA [3].

The rest of the paper is organized as follows: In section
II, we present related work, focusing on the types of transfer
learning that are most relevant for our work. In section III,
we present the preliminaries and the problem formulation
and in section IV the proposed approach is presented. Then,
in section V we evaluate the proposed approach and present
experimental results. Finally, section VI concludes this paper
and presents some future directions.

II. RELATED WORK

Despite its importance, the transfer learning problem
only gained sufficient attention in the machine learning
community recently. There have been a number of studies
on solving specific transfer learning problems or addressing
the problem from various perspectives. However, transfer
learning is not yet completely understood, and there are no
dominating methods that are used widely. Below, we present
some of the approaches in the literature which fall into the
two first types of transfer learning, that are most relevant to
our work.

Inductive transfer learning: TrAdaBoost [4] is an
extension of the AdaBoost algorithm. TrAdaBoost assumes
that the source and target domain data use exactly the same
set of features and labels, but the conditional probability
distributions between the domains are different. It also
assumes that there are labeled data in both source and
target domain data. It attempts to iteratively reweight
the source domain data to reduce the effect of the “bad”
source data while encouraging the “good” source data to
contribute more for the target domain. In the same vein, a
heuristic method was proposed in [5], in order to remove
“misleading” training examples from the source domain
based on the difference between conditional probabilities
between domains. Some approaches in inductive transfer
learning, try to find new feature representations in order to
minimize domain divergence. For example, in [6], a convex
optimization algorithm for this scope is presented. The idea
is to simultaneously learn metapriors and feature weights
from an ensemble of related prediction tasks. The metapriors

can be transferred among different tasks. Another method
[7] uses features from source and target domains to construct
an augmented feature space. However, despite its simplicity,
a formal theoretical analysis is clearly missing. Some other
approaches try to take advantage of the labeled data from
the target domain using active learning techniques. To this
end, [8] proposed a method where active learning is used
for word sense disambiguation in a transfer learning setting.
Their active learning setting is pool-based whereas [9],
propose a similar method but in a streaming (online) setting,
as a result there is not the requirement of an initial pool
of labeled target domain. Nevertheless, both methods are
applicable when labeled data exist also in the target domain.

Transductive transfer learning: Many approaches of
this type are motivated by importance sampling. Their
motivation is to add weights to instances, using the prob-
ability density ratio (i.e. the difference of the source and
target distributions). For example, kernel-mean matching
(KMM) algorithm is proposed in [10], to learn directly the
density ration, by matching the means between the source
and the target domain data in a reproducing-kernel Hilbert
space (RKHS). In the same vein, an algorithm known as
Kullback-Leibler Importance Estimation Procedure (KLIEP)
is proposed in [11], in order to estimate the difference
of the source and target distributions directly, based on
the minimization of the Kullback-Leibler divergence. In
[5], the proposed approach uses instance weighting, by
adding instance-dependent weights to the loss function.
Another family of transductive transfer learning approaches
are the feature-representation-transfer ones. For example,
a structural correspondence learning (SCL) algorithm is
proposed in [12], to make use of the unlabeled data from the
target domain and extract some relevant features that may
reduce the difference between the domains. The effect of
representation change for domain adaptation is also analyzed
in [13]. Also, a co-clustering based approach is presented in
[14], aiming to propagate the class information from the
target to source domain, by identifying word clusters shared
among the two domains. Transfer learning via dimension-
ality reduction was proposed in [15]. They exploited the
Maximum Mean Discrepancy Embedding (MMDE) method,
originally designed for dimensionality reduction, to learn
a low-dimensional space that reduces the difference of
distributions between different domains. However, MMDE
has been proved computationally expensive. Thus, in [16],
Transfer Component Analysis (TCA) is proposed, which
uses an efficient feature exctration algorithm. In [17], an
approach based on a mixture model is presented. Their key
idea is to assume that source domain data are drawn from a
mixture of two distributions: a truly “in-domain” distribution
and a “general domain” one. Similarly, the target domain
data is treated as if drawn from a mixture of “out-of-domain”
distribution and the “general domain” distribution, as the



source domain data.

III. PLSA-BASED TRANSFER LEARNING

The works that are most related to ours are presented in
[18] and [3]. They both belong to the transductive transfer
learning setting and extend the Probabilistic Semantic Anal-
ysis (PLSA) model [1]. Before giving more details about
them, we first describe the notations used in this paper, and
briefly review PLSA.

Notations
A domain D consists of two components: a feature space

F and a marginal probability distribution P (X ), where
X = x1, x2, . . . , xn ∈ X . As our task is multiclass text
classification, X is the space of all term vectors (i.e. all
documents), and xi is the ith term vector corresponding
to some document. In the transfer learning problem, we
suppose that we have two domains, namely the source (DS)
and the target (DT ) domains. Respectively, we consider a
common set of features F , and two sets of documents, XS

and XT , for the source and target domains respectively.

Our focus is on a particularly hard transfer learning
problem in which the two tasks are multiclass classification
ones and they share only a subset of classes. To this end,
we assume that each domain (source and target) has a set of
classes in which we want to classify the documents. We
denote with C = c1, c2, . . . , cj the set of shared classes
between the two domains, with CS = cS1 , cS2 , . . . , cSm

the classes of the source domain not in C and with CT =
cT1

, cT2
, . . . , cTl

the classes of the target domain not in C
(fig. 1).
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Figure 1. Only a subset of classes (C) are shared between the source and
the target domain.

A. PLSA

Probabilistic Latent Semantic Analysis (PLSA) [1] is
a probabilistic model which characterizes each word in
a document as a sample from a mixture model, where
mixture components are conditionally-independent multino-
mial distributions. It has been proposed as a probabilistic
version of the Latent Semantic Analysis (LSA) method
[19]. This model associates an unobserved latent variable

(called aspect, topic or component) k ∈ {k1, ..., kK} to
each observation corresponding to the occurrence of a word
f ∈ F within a document x ∈ X . One component or topic
can coincide with one class or, in another setting, a class
may be associated with more than one component. PLSA
models the co-occurrence matrix, whose elements represent
the frequency of word f appearing in document xi by using
a mixture model of latent topics (each topic is denoted by
k) as follows:

P (f, x) =
∑
k∈K

P (f | k)P (x | k)P (k) (1)

Figure 2 shows the graphical model for PLSA. The
parameters of P (f | k), P (x | k), and P (k) over all f , x, k
are obtained by EM estimation of the maximum likelihood.

𝒇 𝒌 𝑿 

Figure 2. Graphical model representation of PLSA. Latent variables are
indicated by dotted circles.

B. Dual-PLSA

In the PLSA model, documents and words share the
same latent topic k. However, documents and words usually
exhibit different organization and structure. Specifically, they
may have different kinds of latent topics, denoted by k for
a word topic and z for a document topic. To this end,
an extension of PLSA has been proposed in [20]. They
presented a framework, namely the probabilistic matrix tri-
factorization, where they consider two latent variables for
PLSA. Its graphical model is shown in Figure 3.

𝒇 𝒌 𝑿 𝒛 

Figure 3. Graphical model representation of Dual-PLSA. Latent variables
are indicated by dotted circles.

Given the word-document co-occurrence matrix, we ob-
tain a similar mixture model like in equation 1,

P (f, x) =
∑
k,z

P (f, x, k, z) =
∑
k,z

P (f | k)P (x | z)P (k, z)

(2)
The parameters of P (f | k), P (x | z), P (k, z) over all

f , x, k, z can also be estimated by EM.



This model was proposed in [20] for the clustering prob-
lem. Since the word topic and document topic are separated
in this model, the label information can be injected into
P (x|z), where x is a labeled instance and z is actually a
document class. This way this model can also be used for
semi-supervised classification.

C. Transfer learning approaches

This approach has been extended in [3], under the name
Collaborative Dual-PLSA, for document classification
in a transfer learning setting. The intuition behind this
approach is that the association between word topics and
document topics is usually stable across domains. The
method tries to capture the commonalities and differences
of the topics across the different domains. Their model has
two latent variables for word topics and document topics,
as Dual-PLSA [20]. It also introduce an additional variable,
which represents the different data domains, as their focus
is the transfer learning across multiple domains.

A different extension of PLSA for transfer learning,
the so-called topic-bridged PLSA, has been proposed in
[18]. The idea is to exploit the common underlying topics
between two domains, and transfer knowledge across them
through a topic-bridge. Specifically, they conduct two topic
modelings over the source and target domains jointly, and
induce the supervision of the labeled source domain data
by the pair-wise constraints, similar to the must-link and
cannot-link constraints used in semi-supervised clustering.
The method has been applied to text classification.

Our approach extends the work in [20], in a significant
way. Our model has three latent variables, and our focus is
on a particularly hard transfer learning problem which, to
our knowledge, has not been studied in the literature so far:
the case where the target domain shares only a subset of its
classes with the source domain and only unlabeled data are
provided for the target domain.

IV. TL-PLSA

We propose an extension of the Dual-PLSA [20] towards
a different setting: the case where the target domain shares
only a subset of its classes with the source domain and
only unlabeled data are provided for the target domain.
This is a particularly hard setting, that, to our knowledge, is
not addressed by of the current transfer learning approaches.

Since our model has two latent variables, for word topic
and document topic, it can naturally include the supervision
from the source domain. In addition, in our approach we
assume that we have different document topics in the two
domains. As a result, we use two parameters to represent
the document topics, one for the source domain and one for
the target. Assuming that the document topics correspond

𝒇 𝒌 
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Figure 4. Graphical model representation of the TL-PLSA model. Latent
variables are indicated by dotted circles.

to document classes, there are some shared document
topics between the two domains (zST ), and some unshared
ones (zS for the source and zT for the target). In order
to determine which are the shared ones, after training the
model, we calculate the Kullback-Leibler (KL) divergence
[21] between the document topics in each domain. The
topics with the smaller divergence are chosen as the shared
one.

At this point, it is worth stressing that the only information
the algorithm needs is the number of common classes
and the number of source and target domain classes. For
example, the algorithm needs to know that there are 10
common classes, 4 additional classes in the source domain,
and 6 in the target domain. The algorithm identifies which
of the classes are the shared ones and which are not.

Hence, the model parameters are:

Ξ = {P (x | z), P (f | k), P (k, z)) : z ∈ Z, k ∈ K,x ∈ X , f ∈ F}
(3)

The above model parameters Ξ are obtained by max-
imizing the complete data log-likelihood, using the EM
algorithm:

L =
∑
f

∑
xS

n(f, xS) log
∑
k

∑
zS

P (xS |zS)P (f |k)P (k, zS)

+
∑
f

∑
xT

n(f, xT ) log
∑
k

∑
zT

P (xT |zT )P (f |k)P (k, zT )(4)

where n(f, x) denotes the frequency of the word f in
document x. The training procedure of this model using
EM is described in algorithm (1).

We can show that the maximum likelihood estimates of
the model parameters with respect to 4 are:

P (j+1)(x|z) ∝



∑
f

∑
k

n(f, xS)P (j)(k, zS |f, xS), for x ∈ XS

∑
f

∑
k

n(f, xT )P (j)(k, zT |f, xT ), for x ∈ XT

(5)



Algorithm 1 Training of TL-PLSA for multiclass text classifica-
tion

Input:
• Data from source and target domains XS and XT ,
• Random initial model parameters Ξ(0).
• j ← 0

repeat
• E-step: Estimate the latent class posteriors (equation (8))
• M-step: Estimate the new model parameters Ξ(j+1)

by maximizing the complete-data log-likelihood (equations
(5), (6) and (7))

• j ← j + 1
until convergence of the complete-data log-likelihood (4)
Output: A generative classifier with parameters Ξ(j)

P (j+1)(f |k) ∝
∑
XS

∑
zS

n(f, xS)P (j)(k, zS |f, xS)

+
∑
XT

∑
zT

n(f, xT )P (j)(k, zT |f, xT ) (6)

P (j+1)(k, z) ∝
∑
f

∑
XS

n(f, xS)P (j)(k, zS |f, xS)

+
∑
f

∑
XT

n(f, xT )P (j)(k, zT |f, xT ) (7)

where

P (k, z|f, x) =
P (x | z)P (f | k)P (k, z)∑

k′∈K,z′∈Z

P (x | z′)P (f | k′)P (k′, z′)
(8)

At the initialization of the model (Ξ(0)), the P (xS | zS)
is fixed as we know the classes of the source domain data.
All the rest are initialized with random values.

In order to find the shared classes that we are interested
in, we estimate the KL divergence between the resulted
document topics zS and zT . As the number of shared classes
C is known, we choose the C document topics zT which
have the smaller divergence compared with zS .

In particular:

dzT |zS = argmin
∑
zT

∑
zS

KL(P (k, zT )‖P (k, zS)) (9)

where the KL divergence is calculated as follows:

KL[P (k, zT )‖P (k, zS)] =
∑
k

P (k, zT ) log
P (k, zT )

P (k, zS)

(10)
Once the model is trained, we then classify the documents

in one of the classes using chain rule:

P (z | x) ∝ P (x | z)P (z) = P (x | z)
∑
k

P (k, z) (11)

We choose as label for each document, the one with the
highest probability, taking into account that there is a one-
to-one matching between document topics z and classes:

argmaxzP (z | x) (12)

In addition, as our model is a generative one, we can
run TL-PLSA for new documents (xnew) from the target
domain, using the calculated model (i.e. P (f |k)), in order
to learn the P (xnew|z).

It is worth mentioning, that the equation 12 can be applied
also for the non-shared classes, as the produced model, has
learned their parameters.

V. EXPERIMENTS

In order to evaluate the algorithm proposed in the
previous section, we performed experiments on three
different datasets. We first describe these datasets (section
V-A) and the evaluation measures (section V-B), then we
present the results we obtained in section V-C.

For all three datasets, we ran four algorithms, in order to
verify, how our approach behaves in comparison to non-
transfer learning approaches, and to another state-of-the-art
transfer learning approach:

• non-transfer learning approaches:
– PLSA [1]
– Dual-PLSA [20]

• transfer learning approaches:
– Collaborative Dual-PLSA [3]
– TL-PLSA (section IV)

A. Datasets

In our experiments, we used the following three datasets:
20Newsgroups: is a text collection of approximately

20, 000 newsgroup documents, partitioned across 20 differ-
ent newsgroups nearly evenly. Since this dataset is not origi-
nally designed for evaluating cross-domain classification, we
pre-processed the original data as follows. First, we observed
that the dataset has a hierarchical structure. In particular, it
contains six top categories. Under the 6 top categories, there
are 20 sub-categories (see table I). We focused on the task of
classifying documents into top-level categories. In particular,
we conducted experiments, in which only some of the
classes were shared (e.g. Computers and Recreation) and the
others contained documents from only one of the domains
(e.g. Science and Religion contain only source documents,
and Politics and Misc only target documents). Different
configuration of the classes were tested, and 10-fold cross
validation was used, to obtain the average performance of
the method.



‘

Computers Recreation Science Politics Misc Religion
comp.graphics rec.autos sci.crypt talk.politics.misc misc.forsale alt.atheism

comp.os.ms-windows.misc rec.motorcycles sci.electronics talk.politics.guns soc.religion.christian
comp.sys.ibm.pc.hardware rec.sport.baseball sci.med talk.politics.mideast talk.religion.misc

comp.sys.mac.hardware rec.sport.hockey sci.space
comp.windows.x

Table I
20NEWSGROUPS DATASET: CATEGORIES AND SUB-CATEGORIES

Dataset 20Newsgroups SYNC3 LSHTC

Source domain size 10161 1089 2297
Target domain size 8613 864 1917
# of shared classes 6 102 1044
Vocabulary size, |F| 61188 4092 74082

Table II
CHARACTERISTICS OF THE DATASETS. THE # OF SHARED CLASSES

CORRESPONDS TO THE MAXIMUM POSSIBLE (100% OVERLAP) SHARED
CLASSES BETWEEN THE DOMAINS. IN THE EXPERIMENTS, THIS VALUE

VARIES ACCORDING TO THE PERCENTAGES OF SHARED CLASSES.

SYNC3 gold corpus: is a manually annotated News
and Blogs corpus. This corpus was actually the main moti-
vation of our work. The experiments reported here used the
version released by the SYNC3 project1 in October 2011
and contains 864 blogs and 1089 news items, categorized
into 102 events. Similar to 20Newsgroups, we performed
different experiments, by considering different percentages
of shared classes. For example, in one of the experiments we
considered that 20% of the classes contain only news items,
another 20% only blog posts, and the rest 60% of the classes
contain both news items and blog posts. In order to keep the
number of blogs and news stable, we added to the dataset
irrelevant documents from other classes (different from the
102 ones).

LSHTC: is a dataset provided by the 1st edition of
the Large Scale Hierarchical Text Classification (LSHTC)
Pascal Challenge2. The LSHTC Challenge is a hierarchical
text classification competition, using large datasets. The data
have been constructed by:

• crawling Web pages that are found in the ODP and
translating them into feature vectors (content vectors),

• translating into feature vectors the ODP descriptions of
Web pages and ODP categories (Web page and category
description vectors).

Two datasets were provided by the challenge: a large one
(12294 categories) and a smaller one (1139 categories).
As in the case of 20Newsgroups, the dataset was
preprocessed in order to create different domains and
different percentages of shared classes between the domains.

Table II summarizes the characteristics of these datasets.

1http://www.sync3.eu/
2http : //lshtc.iit.demokritos.gr/

B. Evaluation

In order to evaluate the performance of the various
algorithms, we used the microaveraged F-score measure.
For each classifier, Gf , we first compute its microaverage
precision P and recall R by summing over all the individual
decisions it made on the test set:

r(Gf ) =

∑K
k=1 θ(k,Gf )∑K

k=1(θ(k,Gf ) + ψ(k,Gf ))

p(Gf ) =

∑K
k=1 θ(k,Gf )∑K

k=1(θ(k,Gf ) + φ(k,Gf ))

where θ(k,Gf ), φ(k,Gf ) and ψ(k,Gf ) respectively denote
the true positive, false positive and false negative documents
in class k found by Gf . The F-score measure is then defined
as [22]:

F (Gf ) =
2p(Gf )r(Gf )

p(Gf ) + r(Gf )

C. Results

We compared the performance of the models on the
three datasets by varying the percentage of shared classes
between the domains and using 10-fold cross validation
(CV). We performed 10 runs for each of the folds and
we calculated the average F-score. As we initialize some
of the training hyper-parameters at random, we wanted
to get representative performance for multiple random
initializations. In order to evaluate the significance of the
observed differences in performance, we performed a t-test
at the 5% significance level.

Please note, that it is the algorithm that identifies which
of the classes are the shared ones and which are not. Only
the number of unshared classes is known. As a result, in
our experiments we are interested in the performance of
TL-PLSA for the shared classes only. This decision was
also taken due to the problem we are focusing on, which
was motivated by the SYNC3 dataset. In other words, we
are not evaluating the classification results of all target
domain data, but only of the ones that belong to the shared
classes. As mentioned in the previous subsection, in order
to keep the number of source and target domain data stable
as we reduce the number of shared classes, we add to the
dataset irrelevant documents from other classes (for which
we do not have the labels, and as a result, cannot evaluate).



20 Newsgroups

PLSA TL-PLSA
% of common classes

Precision Recall F-Score Precision Recall F-Score
Difference

5 0.6713 0.6713 0.6713 0.6709 0.6709 0.6709 0.0%

4 0.5481 0.6105 0.5776 0.5614 0.6015 0.5808 0.3%

3 0.5012 0.6040 0.5478 0.5150 0.6132 0.5598 1.2%

2 0.4813 0.5821 0.5269 0.4993 0.5921 0.5418 1.5%

1 0.4315 0.5646 0.4892 0.4551 0.5701 0.5062 1.7%

SYNC3
PLSA TL-PLSA

% of common classes
Precision Recall F-Score Precision Recall F-Score

Difference

100 0.7831 0.7831 0.7831 0.7842 0.7842 0.7842 0.1%

80 0.7228 0.7701 0.7454 0.7332 0.7745 0.7533 0.8%

60 0.6629 0.7823 0.7163 0.7021 0.7733 0.7360 2.0%

40 0.6115 0.7660 0.6801 0.7055 0.7402 0.7224 4.2%

30 0.5822 0.7517 0.6562 0.6812 0.7208 0.7004 4.4%

20 0.5409 0.7475 0.6276 0.6385 0.7367 0.6841 5.6%

10 0.5309 0.7160 0.6097 0.6031 0.6921 0.6445 3.5%

LSHTC
PLSA TL-PLSA

% of common classes
Precision Recall F-Score Precision Recall F-Score

Difference

100 0.8192 0.8192 0.8192 0.8194 0.8194 0.8194 0.0%

80 0.7458 0.7994 0.7717 0.7580 0.8082 0.7823 1.1%

60 0.6654 0.7728 0.7144 0.7299 0.7668 0.7454 3.1%

40 0.5904 0.7413 0.6573 0.6522 0.7367 0.6919 3.5%

30 0.5457 0.7329 0.6256 0.5794 0.7394 0.6497 2.4%

20 0.4929 0.7461 0.5936 0.5898 0.7354 0.6546 6.1%

10 0.4881 0.7342 0.5632 0.5343 0.7411 0.6209 5.8%

Table III
PRECISION, RECALL AND F-SCORE FOR PLSA AND TL-PLSA, FOR ALL THREE DATASETS. DUAL-PLSA AND COLLABORATIVE DUAL-PLSA GIVE

THE SAME RESULTS AS THE SIMPLE PLSA

It is worth mentioning though, that our approach is able to
categorize all target domain data in all the target classes
(shared and unshared).

Table III and figure 5 present the results. As a general
comment, we can argue that the fewer shared classes the
two domains have, the more difficult the classification
problem is. In all three datasets, PLSA, Dual-PLSA and
Collaborative Dual-PLSA give similar results, without
statistically significant differences. For this reason, we
present only the results of PLSA in III. In two out of the
three datasets (SYNC3 and LSHTC), the proposed approach
outperforms the other three. In the 20Newsgroups dataset
there is small improvement compared with simple PLSA,
but with no statistical difference.

For 20Newsgroups dataset we varied the number of
shared classes between source and target domain, from 5
to 1. As the number of classes is small, the experiment
was repeated for different shared classes and averaged. Our
algorithm performs similarly to the other three algorithms
in this dataset. This is probably due to the fact that the
dataset has very few classes, with many documents in each
class. Nevertheless, the use of TL-PLSA does not hurt the
performance of PLSA.

The results for the SYNC3 dataset and LSHTC dataset
show that the fewer classes that are shared between the
source and target domains we have, the more our approach
outperforms the other three. TL-PLSA outperforms the
other three approaches, especially in terms of precision,
when there is a large percentage of unshared classes



Figure 5. Results for all four algorithms, for different percentages of shared classes, for SYNC3 and LSHTC datasets. We do not provide the same
diagram for 20Newsgroups as the results obtained are similar for all 4 algorithms.

between the two domains. This is also confirmed by the
fact that our approach significantly outperforms the others
(bold values in figure III), for 60% or less of shared classes.

Comparing the obtained results between the three
datasets, we can notice that our approach in SYNC3 and
LSHTC datasets achieves similar performance when
reducing the percentage of shared classes. In the
20Newsgroups however, our approach faces more diffi-
culties. This can be due to the fact that 20Newsgroups
categories seem to be closer to each other, and as a result,
the classifiers are not affected so much. The latter strengthen
also our intuition, that TL-PLSA can learn the shared and
unshared classes between domains, when few documents
per class exist, given a large number of classes (as in the
SYNC3 and LSHTC datasets).
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VI. CONCLUSIONS

In this paper, we presented TL-PLSA, a new approach
to transfer learning, based on PLSA. The motivation for
this work was to use transfer learning, when the source
and target domain share only a subset of classes. This
is a particularly hard setting that, up to our knowledge,
has not yet been studied in the literature. We conducted
experiments over three datasets. The evaluation shows
the difficulty of the task, as well as the promising results
achieved by the new method. Our approach outperforms
both the simple PLSA and Dual-PLSA methods, as well



as a transfer learning approach (Collaborative Dual-PLSA).
TL-PLSA seems particularly effective for multiclass text
classification tasks with a large number of classes (more
than 100) and few documents per class. The performance of
TL-PLSA is higher when the percentage of shared classes
of source and target domain is smaller.

Our immediate next target is to extend TL-PLSA with a
method for estimating the number of shared classes of the
two domains. An idea towards this direction, is the Bayesian
Information Criterion (BIC) [23], as it has been shown to
give a good approximation of the number of clusters (i.e.
classes) in PLSA.
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