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Abstract. We present a method for modeling user navigation on a web
site using grammatical inference of stochastic regular grammars. With
this method we achieve better models than the previously used first
order Markov chains, in terms of predictive accuracy and utility of rec-
ommendations. In order to obtain comparable results, we apply the same
grammatical inference algorithms on Markov chains, modeled as proba-
bilistic automata. The automata induced in this way perform better than
the original Markov chains, as models for user navigation, but they are
considerably inferior to the automata induced by the traditional gram-
matical inference methods. The evaluation of our method was based on
two web usage data sets from two very dissimilar web sites. It consisted
in producing, for each user, a personalized list of recommendations and
then measuring its recall and expected utility.

1 Introduction

In this work we are concerned with modeling the behavior of users on the web. We
are specifically interested in discovering interesting navigation patterns by means
of grammatical inference methods. When a user requests a page from a specific
web site, this transaction is recorded in various places like the browser’s history,
the web server log file and intermediary devices such as proxies. These trans-
actions are generally called web usage data and the research discipline whose
purpose is the discovery of patterns in these data is called Web Usage Mining.
In our scenario we examine web usage data in the form of a web server log file.
From these data we try to discover interesting patterns by assuming that the
user’s navigation is governed by the rules of an unknown formal language. To
infer the language’s grammar, each sequence of web pages that a user requests
during an interaction with the web site, is treated as a positive example of a
string belonging to the unknown language.

The motivation in choosing a grammar to model the navigation behavior of
the users of a web site lies in the sequential nature of browsing. The users usually
begin from a page, spend some time reading it and then select the link which
they think will satisfy their informational needs. The process is then repeated,
producing a sequence of pages that each user has requested. Thus, the use of
formal languages seemed natural since they are very well suited for modeling



sequences and also because of their strong theoretical foundation. For example,
formal languages have already been used to model biological sequences with very
good results [13]. To our knowledge, existing techniques towards our direction
have not so far utilized grammatical inference methods to build the model of user
navigation behavior. Popular approaches include Markov models, usually of first
order [2–4, 8, 16, 17], or ad-hoc methods [18]. However, these approaches result
either in difficult to interpret models or they do not have a sound theoretical
background.

The rest of the paper is organized as follows. In the next section we summarize
the major research directions in the field of user modeling and web usage mining.
In section 3 we analyze the inference methods that were used and the necessary
adaptations that were made for this specific problem. In section 4, we describe
the framework in which the experiments were conducted and we interpret the
results. Finally, in section 5 we draw our conclusions and suggest some directions
for further work.

2 Related Work

Web Usage Mining is a relatively new research field inspired by the recent growth
in the WWW and on-line information sources. Web usage mining, aims at dis-
covering interesting usage patterns, by analyzing Web usage data such as those
kept in the log file of a web server. The research work on Web Usage Mining is
very extensive and covers aspects both related to traditional data mining issues
as well as difficulties inherent in this specific area, such as the reliability of the
usage data. Two thorough surveys on the field of Web Usage Mining can be
found in [15] and [19].

An approach that has been employed for extracting patterns from web us-
age data is sequential pattern discovery. Markov chains have been extensively
used for this purpose due to their ability to model sequential processes, such as
browsing a web site. One of the earliest approaches was presented in [4]. In this
work, a first order Markov model was employed in order to predict the subse-
quent link that a user might follow. A more elaborate approach is proposed in
[2] in which the previous model is enhanced with the use of a hybrid prediction
model. This model consults four simple Markov chains to select which document
the user might request. In [17] first order Markov chains are used to accomplish
four tasks: prediction of HTTP requests, adaptive navigation, automatic tour
generation and locating personalized “hubs” and “authorities”. In addition, the
method presented in [8] exploits a mixture of first order Markov models, each one
corresponding to the navigational behavior of users with similar behavior. This
work is extended in [3] where an algorithm that recommends shortcut links to the
user is presented. This can help users find the information they are looking for
more quickly, which is especially interesting in the case of users with low band-
width devices. Finally, in [16], the authors try to reduce the complexity of the
previously used Markov model while maintaining a comparable predictive accu-
racy. This is achieved by calculating the most important navigation patterns and



removing everything else which is considered as noise. Generally, Markov chains
produce simplistic models for the users navigation behavior, simply aggregating
the information in the data, without involving any inference procedure.

Except from Markov models, a few other techniques have been used to dis-
cover sequential patterns in web usage data. In [18], a system called Web Uti-
lization Miner is presented. This system provides an SQL-like language that can
be used to set the constraints that the mined patterns should satisfy. These
constraints can be highly elaborate since the language is very expressive. Unfor-
tunately, setting the right constraints requires a human expert which makes the
mining procedure semi-automatic. In [14] a method to discover interesting se-
quences using clustering is discussed. According to this method, the transitions
between pages, which were performed during a user’s single interaction with the
site are clustered to produce models, which correspond to the navigational be-
havior of users. Finally, the Clementine tool of SPSS also employs sequential
pattern discovery algorithm, known as CAPRI. CAPRI (Clementine A-Priori
Intervals) is an association rule discovery algorithm that apart from discovering
relationships between items, also finds the order in which these items have been
traversed. However, all these methods are generally ad-hoc and they usually do
not have any theoretical foundations.

3 Grammatical inference methods for sequence mining

In our work, we model user navigation on a web site as being governed by an
unknown stochastic regular language L. Each interaction of a user with the
web site can equivalently be expressed as a sequence of web pages the user
requests from the web site. These sequences are represented as strings belonging
to L. Thus, each web page that appears in the web server logs is represented
by a unique terminal symbol. A web site visitor is then implicitly providing a
string belonging to L by following the links on the web pages until the desired
information is found or the user leaves the web site.

In order to infer the language L, from the usage data, we applied the widely
used Alergia algorithm using the Hoeffding statistical test [9], and a slight
modification of it, using the proportions test [11]. Our contribution lies primarily
in the initial hypothesis with which these algorithms work. We tried starting from
the standard probabilistic prefix tree automaton (PPTA) as well as the so called
hypertext probabilistic automaton (HPA) [6]. The latter type of automaton has
been previously used in web usage mining to locate the most frequently accessed
paths in a web site [5] but not within the paradigm of grammatical inference.

The hypertext probabilistic automaton (HPA) was proposed as a compact
way to model the users’ interaction with a web site. This interaction is initially
recorded in the web server’s log file. Then, the sequence of web pages that each
user requests within a certain period of time, which is called a user session, is
extracted from it (see table 1) . Given a set of user sessions, a HPA is constructed
in the following way: For each page Ai that appears in the sessions a unique state
is created in the HPA. If a user requests the page Aj right after the page Ai,



Table 1. Sample user session set.

Session Page Sequence

1 A1 → A2 → A3 → A4

2 A1 → A5 → A3 → A4 → A1

3 A5 → A2 → A4 → A6

4 A5 → A2 → A3

5 A5 → A2 → A3 → A6

6 A4 → A1 → A5 → A3

a transition is created in the HPA from Ai to Aj , labeled with the symbol Aj .
Furthermore there is a starting state S and transitions from S to the states
that correspond to pages which appear first in at least one user session. Each
transition’s probability, as well as each state’s probability to be an accepting
one, is estimated straightforwardly from frequency data of the given set of user
sessions. For example, the HPA which models the sessions of table 1, is shown in
figure 1. The numbers inside each state denote the number of requests of each
page and the number of times this page was last in the session set. The number
on each transition Ai → Aj denotes the number of times the users followed a
link from Ai towards Aj . From this figure and the above description, it becomes
apparent that the HPA is equivalent to first order Markov chains, which have
been previously used for modeling the user behavior on the web. In the rest of
this work we will refer to HPAs and Markov chains interchangeably.

S[6,0] A6[2,2]A3[5,2]

A4[1]
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A5[2]
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A4[2]
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Fig. 1. The HPA that models the sessions in table 1.

The HPA approach reduces the space in which the search for the target
automaton is conducted. Furthermore, the HPA can be derived from a PPTA,
by merging together the states that correspond to the same web pages. As a
result, the HPA is a generalization of the corresponding PPTA. This means that



a large portion of the original search space, containing more general automata
than the PPTA but less general than the HPA, is excluded from the search
when using the HPA. Additionally, some automata that are more general than
the HPA may also be excluded from the new search space. In the next section the
overall quality of the hypotheses in this smaller search space will be illustrated.

Therefore, it is interesting to compare the effect of grammatical inference
starting from a HPA, rather than a PPTA. However, applying the existing
stochastic regular grammar inference algorithms, which were designed for the
PPTA, on an arbitrary automaton is not always feasible. This is due to as-
sumptions about the structure of the automaton in each step of the inference
procedure. For example, the Alergia algorithm, shown in table 2, avoids the
possibility of infinite recursion by specifying a sequence for the merging opera-
tions which ensures that one of the states is always the root of a subtree of the
PPTA. As a result, Alergia cannot be applied as is to an arbitrary automaton.
However, the HPA has an interesting property that allows the algorithm to be ap-
plied despite the automaton’s structure. As can be seen in figure 1, each symbol
Ai labeling a transition fully defines the destination state, independently of the
current state. The first consequence of this property is that state merging cannot
result in a non-deterministic automaton. Non-determinism can in principal occur
when merging two states which have transitions with the same symbol s towards
different states. The merged state will then be non-deterministic because there
will be two states to which s can lead. In order to remove non-determinism, the
states causing it are repeatedly merged together. In the case of the HPA, tran-
sitions with the same symbol always lead to the same state, so non-determinism
cannot occur. The other effect of the above property is that the compatibility
test is greatly simplified. To test for the compatibility of two states it is no longer
necessary to test the compatibility of all subsequent states, since these states are
now identical and thus guaranteed to be compatible.

4 Experiments

Two data sets were used for the evaluation of our method. The first set was the
MSWeb3 data and the second was usage data from the web site “Information
Retrieval in Chemistry”4, hosted at NCSR “Demokritos”. The data used in the
experimental evaluation of our work were already split into sessions and some
amount of “denoising”, for example from bot sessions, had already taken place
[14]. This prevented any experimentation with different session timeouts. Recent
work that addresses the issue of session timeout can be found in [12]. In order to
distinguish between different sessions of the same user, the sessions of the sec-
ond data set were produced by constraining the time between two consecutive
requests from the same IP to sixty minutes. If the time between two consecutive
requests exceeded sixty minutes, the second request was considered as the begin-
ning of a new session. The MSWeb data were grouped according to the identity

3 Publically available from http://www.ics.uci.edu/∼mlearn/MLRepository.html
4 http://macedonia.chem.demokritos.gr



Table 2. The original Alergia algorithm. C(k) denotes the number of times state k

was visited while parsing the user sessions. C(k, #) denotes the number of times state k

was last in the user sessions. C(k, x) is the number of times that the terminal symbol x

was encountered in the sample when the automaton was in state k and δ(k, x) denotes
the state in which the automaton goes when it is in state k and x in encountered.

Alergia(S,α)
A = PPTA(S)
for j = 2 to |A| do

for i = 1 to j − 1 do
if Compatible(i, j, α)

Merge(i, j)
Determinize(A)

Compatible(i, j, α)
if Different(C(i), C(j), C(i, #), C(j, #), α)

return false
for each terminal t do

if Different(C(i), C(j), C(i, t), C(j, t), α)
return false

if not Compatible(δ(i, t), δ(j, t), α)
return false

return true

Different(ni, nj , fi, fj , α)

return
∣

∣

∣

fi

ni
−

fj

nj

∣

∣

∣
>

√

1

2
ln 2

α

(

1
√

ni
+ 1
√

nj

)

of the user, rather than simply the IP address. As a result the constraint on
the time between consecutive requests was not required. The MSWeb data set
contained around 38000 sessions while the chemistry data set contained 4500
sessions. For the experiments, two thirds of the sessions were used to infer the
automaton and the rest were used for its evaluation.

The tasks in which the inferred automata were assessed, were designed to
capture their ability as predictors of the user’s behavior and their ability as
good recommenders for the next page a user would request. After the training
phase, we hid the last page of each session in the test set and gave the automaton
the rest of the pages in each session. That would lead the automaton in a specific
state from which we could then construct a list of recommendations based on the
most probable transitions from that state. A successful prediction occurs when
the hidden page is among the most probable pages to request from the current
state.

For the assessment of a list of recommendations we used the metric of ex-
pected utility [7]. The expected utility of a recommended page is simply the
probability of requesting the page times the page’s utility. As in [7], the utility
vaj of a page j for a user a is one if j belongs in the pages of the session and
zero otherwise. The probability of requesting the ith page in a list was set to
decay exponentially with i. Thus the expected utility of a list of pages (sorted



in decreasing order of transition probability) is:

Ra =
l

∑

j=0

vaj

2j/h

where l is the ordinal number of the last page in the list and h is the viewing
halflife. Similar to other exponentially decaying phenomena, the viewing halflife
is the ordinal number of the page which has a 50-50 chance to be requested.
In our experiments, following [7], we set this chance to occur in the fifth page.
Finally, for a set of user sessions with the corresponding recommendation lists,
the expected utility is:

R = 100

∑

a Ra
∑

a Rmax
a

where Rmax
a is the maximum achievable utility if the top of the list contained

only pages with vaj equal to one. For example, if a recommended list of items
for a user a is the one shown in the second row of table 3 then the expected
utility is:

Ra =
1

20/4
+

1

22/4
+

1

25/4
+

1

26/4
= 2.48

where only items A, C, E and F belong in the user session (item utility one).
Furthermore, if we assume that there is one more item H whose utility equals
one then the maximum achievable utility is:

Rmax
a =

1

20/4
+

1

21/4
+

1

22/4
+

1

23/4
+

1

24/4
= 3.64

since H also contributes to the maximum achievable utility.

ordinal 0 1 2 3 4 5 6

item A B C D E F G

utility 1 0 1 0 0 1 1

Table 3. A sample recommendation list.

The predictive accuracy of an inferred automaton is measured using the recall
of the list it recommends. The recall of an information retrieval system is defined
as the proportion of the totally available relevant documents retrieved by it. In
this case, the hidden page is considered to be a relevant one. To calculate the
recall, we compute the percentage of the user sessions in which the hidden page
belongs in the recommended list as a function of the length of the list. The
graph of this function gives a hint for the appropriate size of the list of pages
that should be recommended to the user.

In figures 2 and 3 the recall of the best automata is drawn. The legend
shows for each curve the initial hypothesis that was used, the algorithm that



was applied and the chosen value of α. With the term “prop test” we mean the
Alergia algorithm with the statistical test proposed in [11]. On the other hand
the term “alergia” refers to the original algorithm using the Hoeffding test.
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Fig. 2. Recall of some automata induced from the chemistry data set. The x axis
represents the length of the recommendation list.

From these graphs, the models that were induced with the PPTA as ini-
tial hypothesis are clearly superior over the models that were induced from a
Markov chain. The graph shows that traditional grammatical inference methods
can produce models with more than 90% recall in the top 4 pages of the recom-
mendation list. On the other hand, the automata induced from Markov chains
have poor recall which increases steadily with the length of the list. This implies
that their recommendations are actually guesses of the user behavior.

The expected utility of automata induced with different values of the α pa-
rameter is shown in figures 4 and 5. By inspecting the recall graphs, it was
decided to set the maximum length of the produced recommendation list to ten
items. As α increases, fewer states are merged and the automaton is less general.
This means that the expected utility should decrease when α increases. Again
the automata induced from Markov chains yield inferior models compared to the
automata induced from the conventional algorithms. Regarding the automata in-
ferred from the Markov chains, their expected utility seems to be greater from
what the initial Markov chain would produce. This conclusion is drawn because
for α equal to one we get the initial hypothesis, since no merging operations will
be done, and also because the expected utility is decreasing as α increases. How-
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Fig. 3. Recall of some automata induced from the MSWeb data set. The x axis repre-
sents the length of the recommendation list.

ever, the expected utility in the case of these automata is much lower than that
of the automata inferred from PPTAs and it also very sensitive to the changes
of α. The latter observation is evidence that good models are excluded from the
search space.

5 Conclusions

We evaluated two models for the navigation behavior of users in a web site. Both
can be seen as stochastic regular grammars, but one is inferred from the tradi-
tional prefix tree automaton while the other from the first order Markov chain
that has been previously used to model this navigation behavior. In this work
we present the results produced by the well known Alergia algorithm suitably
adapted to work with Markov chains as initial hypotheses. Two statistical tests
were used to decide if two states of the automaton should be merged, the Hoeffd-
ing test and the proportions test. The difference between the two tests is that
the latter is stricter than the former, leading to fewer state merging operations
and larger automata. This has two effects. On one side the Hoeffding test leads
to automata with better generalization ability which is reflected in the higher
recall and expected utility that it achieves. On the other side, the proportions
test is less likely to perform a bad merging, due to the inevitable presence of
noise in the data. When two incompatible states are merged, the resulting au-
tomaton can be very different from the target. This can lead to results that are
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very sensitive to the value of α. This is the reason why the expected utility in
figures 4 and 5 is predictably decreasing in the case of the proportions test. In
the case of the Hoeffding test however, the curve is very sensitive to the value
of α.

We have used data from two very different web sites. In both data sets the
automata that were induced from the prefix tree automaton achieved better
performance with respect to the metrics of recall and expected utility. This
suggests that, even though stochastic regular languages have not been previously
used in modeling the user navigation on the web, they are better suited for
this task than the previously used Markov chains. This is attributed to the
expressiveness of stochastic regular languages.

In addition to further empirical evaluation, we are interested in utilizing the
inferred automata in different ways. The merged states are virtually sets of web
pages that could be viewed as a clustering of the pages of a web site. Preliminary
experiments with the Msweb data set are promising since they have shown the
emergence of meaningful clusters. We are also looking into different criteria with
which the states could be merged. Since merging the web pages according to their
transition probabilities seems at first awkward, we are trying to adopt criteria
that would provide a more intuitive meaning to a merged state. Finally, we plan
to compare our results with those of well known sequential pattern discovery
algorithms [1, 10].
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