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F RAN Ç O I S PORTE T 3 and GEORGIOS PALIOURAS1

1Institute of Informatics and; Telecommunications, NCSR ‘‘Demokritos’’, Athens 15310, Greece;

e-mail: paliourg@iit.demokritos.gr, anskarl@iit.demokritos.gr;
2Department of Information and Communication Systems Engineering, University of the Aegean, Greece;
3Laboratoire d’Informatique de Grenoble, CNRS/UJF/INPG/UPMF UMR 5217, F-38041 Grenoble, France;

e-mail: Francois.Portet@imag.fr

Abstract

Today’s organizations require techniques for automated transformation of their large data volumes

into operational knowledge. This requirement may be addressed by using event recognition systems

that detect events/activities of special significance within an organization, given streams of ‘low-level’

information that is very difficult to be utilized by humans. Consider, for example, the recognition of

attacks on nodes of a computer network given the Transmission Control Protocol/Internet Protocol

messages, the recognition of suspicious trader behaviour given the transactions in a financial market

and the recognition of whale songs given a symbolic representation of whale sounds. Various event

recognition systems have been proposed in the literature. Recognition systems with a logic-based

representation of event structures, in particular, have been attracting considerable attention,

because, among others, they exhibit a formal, declarative semantics, they have proven to be efficient

and scalable and they are supported by machine learning tools automating the construction and

refinement of event structures. In this paper, we review representative approaches of logic-based

event recognition and discuss open research issues of this field. We illustrate the reviewed approaches

with the use of a real-world case study: event recognition for city transport management.

1 Introduction

Today’s organizations collect data in various structured and unstructured digital formats, but they

cannot fully utilize these data to support their resource management. It is evident that the analysis

and interpretation of the collected data need to be automated, in order for large data volumes to

be transformed into operational knowledge. Events are particularly important pieces of knowl-

edge, as they represent activities of special significance within an organization. Therefore, the

recognition of events is of utmost importance.

Systems for symbolic event recognition—‘event pattern matching’, in the terminology of

Luckham (2002)—accept as input a stream of time-stamped low-level events (LLE). A LLE is

the result of applying a computational derivation process to some other event, such as an

event coming from a sensor. Using LLE as input, event recognition systems identify high-level

events (HLE) of interest—collections of events that satisfy some pattern1. Consider, for example,

the recognition of attacks on nodes of a computer network given the Transmission Control

1 Pottebaum and Marterer (2010) discuss the relationship between the terms ‘low-level event’ and ‘high-level

event’ and other terms proposed in the literature, including the glossary of the Event Processing Technical

Society (Luckham & Schulte, 2008).



Protocol/Internet Protocol messages, the recognition of suspicious trader behaviour given the

transactions in a financial market and the recognition of whale songs given a symbolic representation

of whale sounds.

Numerous event recognition systems have been proposed in the literature—see Luckham

(2002), Vu et al. (2003), Lv et al. (2005), Arasu et al. (2006), Hakeem and Shah (2007), Thonnat

(2008) and Etzion and Niblett (2010) for a few examples and Paschke and Kozlenkov (2009) and

Cugola and Margara (2011) for two recent surveys. Recognition systems with a logic-based

representation of event structures, in particular, have been attracting considerable attention. In

this paper, we will present representative approaches of logic-based event recognition.

Logic-based event recognition systems exhibit a formal, declarative semantics, in contrast to

other types of recognition system that often exhibit an informal and/or procedural semantics. As

pointed out in Paschke (2005), informal semantics constitutes a serious limitation for many real-

world applications, where validation and traceability of the effects of events are crucial. Moreover,

given that a declarative programme states what is to be computed, not necessarily how it is to be

computed, declarative semantics can be more easily applied to a variety of settings, not just those

that satisfy some low-level operational criteria. A comparison between, and a comprehensive

introduction to, logic-based and non-logic-based event recognition systems may be found in

Paschke (2005).

Non-logic-based event recognition systems have proven to be, overall, more efficient than logic-

based ones and, thus, most industrial applications use the former type of system. However, there

are logic-based event recognition systems that have also proven to be very efficient and scalable—

we will present such systems in this paper.

Furthermore, logic-based event recognition systems can be, and have been, used in combination

with existing non-logic-based enterprise event processing infrastructures and middleware. The

Prolog-based Prova2 system, for example, has been used in enterprise event processing networks.

The ‘definition’ of a HLE imposes temporal and, possibly, atemporal constraints on its sub-

events, that is, LLE or other HLE. An event recognition system, therefore, should allow for, at the

very least, temporal representation and reasoning. In this paper, we will review a Chronicle

Recognition System (CRS), the Event Calculus (EC) and Markov Logic Networks (MLNs). CRS

is a purely temporal reasoning system that allows for very efficient and scalable event recognition.

CRS has been used in various domains, ranging from medical applications to computer network

management. EC, which has also been used for event recognition, allows for the representation of

temporal as well as atemporal constraints. Consequently, EC may be used in applications

requiring spatial reasoning, for example. Finally, MLNs, unlike EC and CRS, allow for uncertainty

representation and are thus suitable for event recognition in noisy environments.

The manual development of HLE definitions is a tedious, time-consuming and error-prone

process. Moreover, it is often necessary to update HLE definitions due to new information about

the application under consideration. Consequently, methods for automatically generating and

refining HLE definitions from data are highly desirable. For this reason, we chose to review

approaches that are supported by machine learning techniques. The presentation of each

approach, therefore, is structured as follows: representation, reasoning and machine learning.

1.1 Running example: city transport management

To illustrate the reviewed approaches we will use a real-world case study: event recognition for city

transport management (CTM). In the context of the PRONTO project3, an event recognition

system is being developed with the aim to support the management of public transport—see

Figure 1. Buses and trams are equipped with in-vehicle units that send GPS coordinates to a

central server, offering information about the current status of the transport system (e.g. the

2 http://www.prova.ws
3 http://www.ict-pronto.org/
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location of buses and trams on the city map). Additionally, buses and trams are being equipped

with sensors for in-vehicle temperature, in-vehicle noise level and acceleration. Given the LLE that

will be extracted from these sensors and other data sources, such as digital maps, as well as LLE

that will be extracted from the communication between the drivers and the public transport

control centre, HLE will be recognized related to, among others, the punctuality of a vehicle,

passenger and driver comfort, passenger and driver safety and passenger satisfaction. A detailed

description of this case study may be found in Artikis et al. (2011).

2 Chronicle recognition

Chronicle recognition systems are temporal reasoning systems developed for efficient, run-time

HLE—chronicle—recognition. A chronicle is expressed in terms of a set of events linked together

by time constraints and, possibly, a set of context constraints. A number of implementations have

been developed for chronicle recognition. In this section, we will present the CRS of Dousson and

colleagues4 (Dousson, 2002; Dousson & Maigat, 2006, 2007). CRS is an extension of IXTET

(Ghallab & Alaoui, 1989; Dousson et al., 1993; Dousson, 1996; Ghallab, 1996), a version of which

was marketed and tested for the supervision of gas turbines, aircraft turbines and electrical power

networks. CRS has been applied to numerous application domains such as cardiac monitoring

(Callens et al., 2008), intrusion detection (Morin & Debar, 2003) and mobility management

(Dousson et al., 2007) in computer networks and distributed diagnosis of web services (Le Guillou

et al., 2008).

City Transport
Management
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Figure 1 Event Recognition for City Transport Management. IRM5 Intelligence Resource Management

4 http://crs.elibel.tm.fr
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In the following section, we present the input language of CRS; in Section 2.2 we present

various reasoning algorithms of this system; and in Section 2.3 we present techniques for auto-

matically constructing HLE definitions in the CRS language.

2.1 Representation

A chronicle can be seen as a HLE—as mentioned above, it is expressed in terms of a set of events

linked together by time constraints and, possibly, a set of context constraints. The input language

of CRS relies on a reified temporal logic, where propositional terms are related to time-points or

other propositional terms. Time is considered as a linearly ordered discrete set of instants. The

language includes predicates for persistence, event absence and event repetition. Table 1 presents

the CRS predicates. Variables start with an upper case letter, while predicates and constants start

with a lower-case letter. ? is the prefix of an atemporal variable. ‘Attributes’ represent context

information. Attributes and events (also called ‘messages’ in the CRS language) may have any

number of parameters. Details about the input language of CRS, and CRS in general, can be

found on the web page of the system (see footnote 4).

The code below, for example, expresses HLE related to vehicle (bus/tram) punctuality in the

CRS language:

(1) chronicle punctual [?Id, ?VehicleType] (T2) {

(2) event (stop_enter [?Id, ?VehicleType, ?StopId, scheduled], T1)

(3) event (stop_leave [?Id, ?VehicleType, ?StopId, scheduled], T2)

(4) T22T1 in [1, 2000]

(5) }

(6) chronicle non_punctual [?Id, ?VehicleType] (T1) {

(7) event (stop_enter [?Id, ?VehicleType, *, late], T1)

(8) }

(9) chronicle punctuality_change [?Id, ?VehicleType, non_punctual] (T2) {

(10) event (punctual[?Id, ?VehicleType], T1)

(11) event (non_punctual [?Id, ?VehicleType], T2)

(12) T22T1 in [1, 20000]

(13) noevent (punctual [?Id, ?VehicleType], (T111, T2))

(14) noevent(non_punctual [?Id, ?VehicleType], (T111, T2))

(15) }

The atemporal variables of a chronicle (HLE) and an event (LLE or HLE) are displayed in

square brackets. * denotes that a variable can take any value. Lines (1)–(5) of the above CRS code

express a set of conditions in which a vehicle of a particular type (represented by VehicleType)

Table 1 Predicates of the Chronicle Recognition System

Predicate Meaning

event(E, T) Event E takes place at time-point T
event(F:(?V1,?V2), T) An event takes place at time-point T changing the value of

attribute F from V1 to V2

noevent(E, (T1, T2)) Event E does not take place between [T1, T2)
noevent(F:(?V1,?V2), (T1, T2)) No event takes place between [T1, T2) that changes the value

of attribute F from V1 to V2

hold(F:?V, (T1, T2)) The value of attribute F is V between [T1, T2)
occurs(N, M, E, (T1, T2)) Event E takes place at least N times and at most M times

between [T1, T2)
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and Id is said to be punctual: the vehicle enters a stop and leaves the same stop (represented by

StopId) at the scheduled time. The time-stamp of the ‘punctual’ HLE is the same as that of the

‘stop leave’ sub-event (i.e. T2). The first and the last sub-event of the ‘punctual’ HLE, that is, ‘stop

enter’ and ‘stop leave’, must take place within 2000 time-points in order to recognize ‘punctual’

(see Line (4)). Lines (6)–(8) express one out of several cases in which a vehicle is said to be non-

punctual: the vehicle enters a stop after the scheduled time (i.e. it is late). ‘Non-punctual’

(respectively ‘punctual’) is defined as a disjunction of ‘stop enter’ and ‘stop leave’ LLE satisfying

certain conditions. Disjunction is expressed in the CRS language with the use of multiple

chronicles (explicit representation of disjunction is not allowed because it makes reasoning in

CRS NP-complete—a presentation of the reasoning techniques of CRS is given in the following

section). For simplicity, we do not show here the chronicles expressing the other cases in which a

vehicle is said to be non-punctual (respectively, punctual).

Lines (9)–(15) of the above code fragment express the ‘punctuality change’ HLE: punctuality

changes (to non-punctual) when a vehicle that was punctual at an earlier time now is not punctual.

Another HLE definition (similar to the one shown above) deals with the case in which a vehicle

was not punctual earlier and now is punctual.

Both quantitative and qualitative temporal constraints can be represented in the CRS language,

the latter being replaced by numerical constraints during compilation—for instance, a constraint

of the form T1.T0 is translated to T12T0 in [1,N). More details about the compilation stage

of CRS are given in the following section. Note that the CRS language allows events not to be

completely ordered. Consider the following code fragment:

event (abrupt_acceleration [?Id, ?VehicleType], T1)

event(sharp_turn [?Id, ?VehicleType], T2)

T22T1 in [23, 8]

According to the above constraints, ‘sharp turn’ may take place before, at the same time or after

‘abrupt acceleration’.

All events shown in the above code fragments are instantaneous. CRS does not allow for the

explicit representation of durative events. One may implicitly represent the interval/duration of

such an event in the CRS language by representing two instantaneous events, one indicating the

time-point at which the durative event starts taking place, and one indicating the time-point at

which it stops occurring. The CRS treatment of durative events allows the representation of the

interval relations of a restricted interval algebra (Vilain and Kautz, 1986; Nebel and Bürckert,

1995), but does not support all of Allen’s (1983) interval relations.

Often in the literature, durative events are not even implicitly represented—they are treated as if

they occur at an atomic instant. It has been pointed out (Paschke, 2005) that such a treatment

leads to logical problems and unintended semantics for several event algebra operators—such

operators facilitate the development of HLE definitions.

CRS is a temporal reasoner and, as such, it does not support mathematical operators on the

constraints of atemporal variables. It is not possible to compute the distance between two entities

given their coordinates, for example. In the CTM HLE definition concerning passenger safety, for

instance, we cannot express that a vehicle accident or violence within a vehicle is more severe when

the vehicle is far from a hospital or a police station. Moreover, the CRS language does not support

universally quantified conditions. In CTM, for instance, we cannot define HLE using LLE coming

from all vehicles (of a particular route).

Although the CRS language is limited in the aforementioned ways, it has proven to be expressive

enough for numerous application domains, some of which were mentioned in the beginning of Section 2.

2.2 Reasoning

Each HLE definition expressed in the CRS language is typically translated to a Temporal Constraint

Network (TCN; Dechter et al., 1991; Dousson, 1996; Ghallab, 1996; Dousson & Maigat, 2007;
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see Choppy et al. (2009), however, for a Petri-Net-based semantics of the CRS language). Each

sub-event of a HLE definition corresponds to a node in the TCN, whereas the temporal con-

straints between two sub-events determine the edge between the nodes expressing the sub-events.

Figure 2(a), for example, shows the TCN expressing the CTM HLE ‘uncomfortable driving’. The

sub-events of this HLE are ‘approach intersection’, ‘abrupt deceleration’, ‘sharp turn’ and ‘abrupt

acceleration’. The temporal constraints on these events that, if satisfied, will lead to the recognition

of ‘uncomfortable driving’, are expressed by the edges of the TCN. For example, ‘abrupt

deceleration’ should take place, at the earliest, 2 time-points after the ‘approach intersection’ LLE

and, at the latest, 5 time-points after this LLE. Briefly, a vehicle is said to be driven in an

uncomfortable manner if, within a specified time period, it approaches an intersection, and then

decelerates abruptly, turns sharply and accelerates abruptly. (There are other ways of defining

‘uncomfortable driving’. This example is presented simply to provide a concrete illustration.) The

CRS code of this simplified definition of ‘uncomfortable driving’ may be found below:

(1) chronicle uncomfortable_driving [?Id, ?VehicleType] (T4) {

(2) event(approach_intersection [?Id, ?VehicleType], T1)

(3) event(abrupt_deceleration [?Id, ?VehicleType], T2)

(4) event(sharp_turn [?Id, ?VehicleType], T3)

(5) event(abrupt_acceleration [?Id, ?VehicleType], T4)

(6) T2–T1 in [2, 5]

(7) T4–T2 in [1, 5]

(8) T4–T3 in [0, 8]

(9) T4–T1 in [0, 10]

(10) T2 ,5T3

(11) }

During the off-line compilation stage, CRS propagates the constraints of a TCN using an

incremental path consistency algorithm (Mackworth & Freuder, 1985), in order to produce the

least constrained TCN expressing the user constraints. Figure 2(b), for example, shows the TCN

for ‘uncomfortable driving’ after constraint propagation. In this example, the edge between

‘abrupt deceleration’ and ‘sharp turn’, and that between ‘sharp turn’ and ‘abrupt acceleration’,

becomes [0, 5] due to the temporal constraint [1, 5] between ‘abrupt deceleration’ and ‘abrupt

acceleration’. The constraint [3, 10] (dashed in Figure 2(b)) is removed because it is redundant with

respect to the two other constraints [2, 5] and [1, 5] from which it can be completely deduced.

The use of the incremental path consistency algorithm allows for checking the consistency of

the temporal constraints of a TCN—see Dousson (1996) for details. CRS, therefore, detects

inconsistent HLE definitions at compile-time and reports the inconsistencies to the user.

Once the least constrained TCNs expressing the user constraints have been compiled, HLE

recognition may commence. The recognition process of CRS is illustrated in Figure 3—this figure

shows the process of recognizing ‘uncomfortable driving’. The left part of Figure 3 shows the

effects of the arrival of ‘approach intersection’ at time-point 6, while the right part of this figure
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Figure 2 Temporal Constraint Network
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shows the effects of the arrival of ‘abrupt deceleration’ at time-point 10. The arrival of ‘approach

intersection’ creates an instance of ‘uncomfortable driving’, that is, a partial instantiation of the

definition of this HLE. The horizontal grey lines in Figure 3 show the temporal windows of the sub-

events of ‘uncomfortable driving’, that is, the possible times in which a sub-event may take place

without violating the constraints of the ‘uncomfortable driving’ instance. Upon the arrival of

‘approach intersection’, the temporal window of ‘abrupt deceleration’ becomes [8, 11] because,

according to the TCN of ‘uncomfortable driving’ (see Figure 2(b)), ‘abrupt deceleration’ must take

place 2 time-points after the ‘approach intersection’ LLE at the earliest, and, at the latest, 5 time-

points after this LLE. Similarly, the temporal window of ‘sharp turn’ becomes [8, 16], while that of

‘abrupt acceleration’ becomes [9, 16]. The occurrence of ‘abrupt deceleration’ at time-point 10 is

integrated into the displayed instance of ‘uncomfortable driving’, as it complies with the con-

straints of the instance (i.e. ‘abrupt deceleration’ takes place within its temporal window), and

constrains further the temporal windows of the (yet) undetected sub-events of ‘uncomfortable

driving’ (see the right part of Figure 3).

Using this type of recognition, CRS may report to the user not only a fully recognized HLE,

but also a partially recognized one, that is, a pending HLE instance. Moreover, CRS may report

the events that need to be detected in order to fully recognize a HLE. These types of information

have proven to be very helpful in various application domains (see, e.g. Gao et al., 2009).

Figure 3 shows the evolution of one HLE instance. For each HLE definition more than one

instance may be created. Figure 4 illustrates the instance management of CRS using the example

of the ‘uncomfortable driving’ HLE. The occurrence of ‘approach intersection’ at time-point 1

creates a new instance of ‘uncomfortable driving’. CRS computes the temporal windows of
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the forthcoming events—for example, ‘abrupt deceleration’ is expected between [3, 6]. The

occurrence of the second ‘approach intersection’ LLE at time-point 4 creates a new instance of

‘uncomfortable driving’. Moreover, the passing of time results in constraining the temporal

windows of the forthcoming events of the first instance. For example, the temporal window of

‘abrupt deceleration’ becomes [4, 6]. Upon the arrival of ‘abrupt deceleration’ at time-point 7,

CRS makes a copy of the second instance of ‘uncomfortable driving’, thus creating a third instance

of this HLE, and integrates ‘abrupt deceleration’ into the third HLE instance. CRS keeps the

second instance because another ‘abrupt deceleration’ LLE may take place in the future (more

precisely, between 7 and 9), which may lead to another recognition of ‘uncomfortable driving’.

The first instance of ‘uncomfortable driving’ is killed at time-point 7, because no ‘abrupt

deceleration’ LLE was detected between [4, 6], and thus it is not possible to satisfy the constraints

of this instance any more.

In the examples presented in this section, we assume that events arrive in a timely manner. Such

an assumption is made to simplify the presentation. We will discuss shortly the consequences of

the delayed arrival of events.

Table 2 illustrates event recognition in CRS using a larger LLE narrative. More precisely, this

table shows an example LLE narrative concerning a particular vehicle, and the ‘uncomfortable

driving’ HLE that are recognized given this narrative. By time-point 19, all sub-events of

the ‘uncomfortable driving’ HLE are detected. However, this HLE is not recognized because the

detected LLEs do not satisfy the temporal constraints of the HLE definition. The occurrence

of ‘abrupt acceleration’ at time-point 19 is too late; at that time there are no pending instances of

‘uncomfortable driving’ (the last instance was killed at time-point 14).

The first recognition of ‘uncomfortable driving’ takes place at time-point 39. The occurrence of

‘abrupt acceleration’ at that time is integrated into the pending instance of ‘uncomfortable driving’

that consists of the occurrence of ‘approach intersection’ at time-point 36, ‘abrupt deceleration’

and ‘sharp turn’ at time-point 38. This instance is duplicated before integrating the occurrence of

‘abrupt acceleration’ at 39 because it may lead to another recognition of ‘uncomfortable driving’

in the future. Indeed, at time-point 42 ‘uncomfortable driving’ is recognized again: the occurrence

of ‘abrupt acceleration’ at time-point 42 is integrated into the aforementioned pending instance.

Unlike the occurrences of ‘abrupt acceleration’ at time-points 39 and 42, the occurrence of this

LLE at time-point 55 does not lead to the recognition of ‘uncomfortable driving’. At this time-

point there is no pending instance of ‘uncomfortable driving’, as the last pending instance was

killed at time-point 44.

Table 2 Event Recognition in the Chronicle Recognition System

Input LLE Output HLE

event(approach_intersection [b5, bus], 5)

event(abrupt_deceleration [b5, bus], 7)

event(sharp_turn [b5, bus], 8)

event(stop_enter [b5, bus, s8, scheduled], 15)

event(stop_leave [b5, bus, s8, late], 17)

event(abrupt_acceleration [b5, bus], 19)

event(approach_intersection [b5, bus], 36)

event(abrupt_deceleration [b5, bus], 38)

event(sharp_turn[b5, bus], 38)

event(abrupt_acceleration [b5, bus], 39) event (uncomfortable_driving[b5, bus], 39)

event(abrupt_acceleration [b5, bus], 42) event (uncomfortable_driving[b5, bus], 42)

event(abrupt_acceleration [b5, bus], 55)
y

LLE5 low-level events; HLE5 high-level events.
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CRS stores all pending HLE instances in trees, one for each HLE definition. At the arrival of

a new event, and at a clock update, CRS traverses these trees in order to further develop, or

kill, some HLE instances. For K HLE instances, each having n sub-events, the complexity of

processing each incoming event or a clock update is OðKn2Þ.
To allow for the delay in the information exchange between distributed components, such as

the LLE detection component and the HLE recognition component, CRS processes LLEs arriving

in a non-timely manner—the user specifies the maximum allowed delay for LLE. In this way, CRS

may process LLEs arriving in a non-chronological order, that is, process LLEs that happened

(were detected) before some of the already acquired LLEs. This feature, however, affects the

efficiency of CRS: CRS delays the time at which a pending HLE instance must be killed due to the

possibility of a late arrival of a sub-event of the HLE. In other words, the number K of HLE

instances reduces at a slower rate.

Various techniques have been proposed for reducing the number K of HLE instances that

are generated, and thus improving the efficiency of CRS. Bounding the temporal distance between

the first sub-event and the last sub-event of a HLE (see, e.g. the definition of punctual in

Section 2.1) is one way to reduce HLE instance duplication. Moreover, there may be HLEs that

cannot have two completed instances overlapping in time or share the occurrence of an event. In

this case, when a HLE instance is completed (the HLE is recognized) all its pending instances must

be removed.

A recently developed technique for reducing the number of generated HLE instances, and,

therefore, improving the efficiency of CRS, is called temporal focusing (Dousson & Maigat, 2007).

This technique can be briefly described as follows. Let us assume that, according to the definition

of HLE G, event er should take place after event ef in order to recognize G, er is a very rare event

and ef is a frequent event. The frequency of events is determined by an a priori analysis of

the application under consideration. In this case, CRS stores all incoming ef events and starts the

recognition process, that is, creates a new instance of G, only upon the arrival of an er event—the

new instance will include er and a stored ef that satisfies the constraints of G. In this way

the number of generated HLE instances is significantly reduced.

Temporal focusing significantly improves the efficiency of recognizing ‘uncomfortable driving’,

for example, as ‘approach intersection’ is a very frequent LLE, ‘abrupt deceleration’ is a rare LLE,

and ‘abrupt deceleration’ should take place after ‘approach intersection’ in order to recognize

‘uncomfortable driving’.

Empirical analysis has shown that CRS can be very efficient and scalable (Dousson & Maigat,

2007).

Although the CRS language is fairly comprehensible, synthesizing and generalizing expert

temporal knowledge, which can be highly application-dependent, is not a trivial task. Therefore,

methods for automatically generating and refining HLE definitions from data are highly desirable.

In the following section, we review machine learning techniques that have been used for constructing

HLE definitions in the CRS language.

2.3 Machine learning

Various approaches have been proposed in the literature for the automated construction of HLE

definitions expressed in the CRS language. One of the earliest approaches is the automata-based

learning method of Ghallab (1996). Briefly, this method, which is inspired from learning techniques

used in syntactical pattern recognition, learns automata from positive and negative HLE examples.

Based on the learnt automata, discriminative ‘skeleton models’ are generated, containing only events

and constraints, without context information. These skeleton models have to be completed by the

human user with context information as well as quantitative temporal constraints.

Another line of research for the automated construction of HLE definitions concerns the use of

unsupervised learning techniques. One such technique is the frequency-based analysis of sequences of

events—see, for example, Dousson and Duong (1999), Yoshida et al. (2000), Fessant et al. (2004);
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Hirate and Yamana (2006), Vautier et al. (2007) and Álvarez et al. (2010). Most of the approaches

adopting this technique rely on an extended version of the Apriori algorithm (Mannila et al., 1997)

to discover frequent sequences of events—the temporal distance between the events of a frequent

sequence is computed using lower and higher frequency thresholds. A well-known approach for

HLE definition discovery is the Frequency Analyser for Chronicle Extraction (FACE) system of

Dousson and Duong (1999). FACE uses an algorithm for incremental generation of definitions of

HLE that are frequent in event narratives/logs. Fessant et al. (2004) pointed out that FACE is very

memory consuming in the presence of large event narratives. To address this issue, Fessant et al.

proposed a pre-processing phase based on a Kohonen’s self-organizing map (Kohonen, 2001) to

extract the most ‘interesting’ sub-narratives of events before the data mining phase of FACE.

Frequency-based analysis is a promising approach for discovering unknown event patterns in

databases or logs. However, these approaches are limited to propositional learning. Moreover,

they may not be adapted to learning definitions of HLE that are not frequent in data—in some

applications the recognition of such HLE is of utmost importance.

A common technique for learning HLE definitions in a supervised manner concerns the use of

inductive logic programming (ILP; Muggleton, 1991)—see, for example, Carrault et al. (2003) and

Callens et al. (2008). ILP is well suited to the construction of HLE definitions expressed in the

CRS language because, among others, the CRS HLE definitions can be straightforwardly

translated into the logic programming representation used by ILP systems and vice-versa—this

translation is illustrated below. In what follows, therefore, we will present the use of ILP for

constructing HLE definitions for CRS.

To illustrate the translation of CRS HLE definitions into logic programming consider, for

example, the definition of ‘uncomfortable driving’ in logic programming (this definition was

presented in the CRS language in the previous section):

uncomfortable_driving (T4, Id, VehicleType) ’

approach_intersection (T1, Id, VehicleType),

abrupt_deceleration (T2, Id, VehicleType),

sharp_turn (T3, Id, VehicleType),

abrupt_acceleration (T4, Id, VehicleType),

T2–T1 .5 2, T2–T1 5, 5,

T4–T2 .5 1, T4–T2 5, 5,

T4 .5 T3, T4–T3 5, 8,

T4 .5 T1, T4–T1 5, 10,

T2 5, T3

A chronicle (‘uncomfortable driving’, in this example), as well as every event in the

definition of a chronicle (here ‘approach intersection’, ‘abrupt deceleration’, ‘sharp turn’ and

‘abrupt acceleration’), can be translated into a predicate whose arguments are the chronicle/

event occurrence time (T1, for example) and the chronicle/event parameters (e.g. Id and

VehicleType). Temporal constraints in the CRS language can be translated into arithmetic

expressions—for instance, T2–T1 in [2, 5] can be translated into T2–T1 .5 2, T2–T1 5, 5.

In general, any chronicle definition can be translated into a Horn clause whose head is the

predicate representing the chronicle, and whose body is the conjunction of predicates repre-

senting the events of the chronicle and arithmetic expressions constraining the occurrence of

these events.

ILP is the combination of inductive machine learning and logic programming. It aims at

inducing theories from examples in the form of a first-order logic program. It inherits, from

machine learning, the principle of hypothesis induction from data, but its first-order logic

representation allows the induction of more expressive theories than classical machine learning

approaches, which induce propositional hypotheses. Furthermore, a priori background knowl-

edge, such as human expertise, can easily be used to guide learning. ILP has proven adequate in

learning from very small data sets, especially in the presence of strong prior knowledge, while
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making good use of large volumes of data, where available. This also includes constructing

theories that capture exceptional cases in data sets, where exceptions are a small minority of a data

set. A detailed account of ILP may be found in Dzeroski and Lavrac (2001) and Konstantopoulos

et al. (2008), for example.

The logical elements involved in ILP can be defined as follows:

> A set of positive examples E1 and a set of negative examples E2. These are typically ground

facts.
> A hypothesis language LH , from which hypotheses H are constructed.
> A background knowledge base B. B and H are sets of clauses/rules of the form a’ l1,y, ln

where a is a ‘head’ literal and each li is a ‘body’ literal.

ILP searches for hypotheses H � LH , such that B ^H � Eþ (completeness) and B ^H ^ E�j&

(consistency; Muggleton & Raedt, 1994). The completeness condition guarantees that all positive

examples in E1 can be deduced from H and B. The consistency condition guarantees that no negative

example in E2 can be deduced from H and B.

Different ILP methods adopt different strategies to induce hypotheses H. A simple and

common approach starts by selecting a positive example e1 from E1, constructing a conjunctive

first-order clause h 2 LH that entails e1, with respect to the background knowledge B, but does

not entail any example from E2. All positive examples covered by h are then removed and the

same procedure is iterated over the remaining positive examples to produce a new clause. Learning

a clause h can be seen as walking through the space of clauses of LH that entail e1, with respect to

B. Such a space, also known as version space, is shown in Figure 5. The empty clause, that is, the

most general clause, is at the top of the space, and the most specific clause from LH that entails e1

with respect to B—the ‘bottom clause’—is at the bottom of the space. According to the strategy

that is adopted, the search may be general-to-specific or specific-to-general. In a general-to-specific

strategy, the search will start with the empty clause and will try to specialize it, for instance, by

adding conjuncts that cover the positive example and help exclude negative ones. The opposite

happens in a specific-to-general strategy that starts with the bottom clause. An exhaustive search is

usually impossible, due to the exponential complexity of the version space, and thus pruning and

heuristics must be used to guide the search. For instance, during the search, if a clause does not

cover the positive example under consideration (respectively, covers a negative example), then it is

meaningless to specialize (generalize, respectively) this clause further because it would not improve

its coverage. When using a search method that allows backtracking, such as best-first search, a

small list of the ‘best’ clauses generated so far is maintained, sorted according to their coverage. In

this manner, search can backtrack directly to the next best option and continue from that point in

the version space.

Reducing the version space and guiding more efficiently the search are two of the main

challenges of ILP. One way to address these challenges is by acting on inductive bias. In ILP,

∅

bottom clause

most general
clauses

most speci?c
clauses

Figure 5 Version Space
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three types of bias are used (Nédellec et al., 1996): the search bias, which specifies how the space is

walked; the validation bias, which determines the criteria according to which a candidate

hypothesis (clause) is evaluated; and the language bias, which restricts LH . A form of language bias

that is typically used in ILP is called mode declarations. This particular form of bias will be

illustrated presently.

Many ILP algorithms have been developed in the literature. These algorithms differ in,

among others, the way they perform the search, and the way they bias learning. Examples of

ILP algorithms include First-order Inductive Learner (FOIL) (Quinlan & Cameron-Jones, 1995),

PROGOL
5 (Muggleton & Bryant, 2000), Inductive Classification Logic (ICL)6 (Laer, 2002) and

A Learning Engine for Proposing Hypotheses (ALEPH)7. In what follows, we illustrate the use of

ALEPH—a frequently used ILP algorithm—for learning HLE definitions expressed in the CRS

language. A detailed example of learning CRS HLE definitions using ILP may be found in

(Carrault et al., 2003).

To learn hypotheses H expressing HLE definitions of ‘uncomfortable driving’, for example, we

use the following background knowledge B (only a fragment of B is shown here):

% LLE for bus b1

stop_enter(e1, init, pos1, 0, b1, bus, s8, scheduled)

stop_leave(e2, e1, pos1, 1, b1, bus, s8, late)

approach_intersection(e3, e2, pos1, 2, b1, bus)

abrupt_deceleration(e4, e3, pos1, 4, b1, bus)

sharp_turn(e5, e4, pos1, 6, b1, bus)

abrupt_acceleration(e6, e5, pos1, 8, b1, bus)

y

quantitative_distance(e2, e1, 1)

quantitative_distance(e3, e2, 1)

quantitative_distance(e4, e3, 2)

quantitative_distance(e5, e4, 2)

quantitative_distance(e6, e5, 2)

y

% domain_knowledge

qualitative_distance(X, Y, very_long) ’

quantitative_distance(X, Y, D),

D.120

qualitative_distance(X, Y, long) ’

quantitative_distance(X, Y, D),

D.10, D,121

qualitative_distance(X, Y, short) ’

quantitative_distance(X, Y, D),

D.5, D,11

qualitative_distance(X, Y, very_short) ’

quantitative_distance(X, Y, D),

D,6

B includes the event narrative used for learning the hypotheses and a set of rules expressing

domain knowledge. In this example, the narrative consists of a stream of detected CTM LLE.

Each predicate representing a LLE, such as approach_intersection, has the following

arguments: the first argument represents the id of the LLE, while the second argument represents

the id of the directly temporally preceding LLE. init that there is no temporally preceding LLE,

5 http://www.doc.ic.ac.uk/~shm/Software/progol5.0/
6 http://dtai.cs.kuleuven.be/ACE/
7 http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/
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that is, the LLE having init as the second argument is the first LLE of the sequence. The first two

arguments of LLE specify event chaining in a symbolic manner. Such a symbolic representation

of temporal relations between events is necessary because ALEPH does not perform numerical

reasoning. The third argument of a LLE predicate associates the LLE with a positive example

from E1 (such as the first positive example pos1) or a negative example from E2, while the fourth

argument represents the occurrence time of the LLE. The remaining arguments represent the

standard properties of the LLE.

The quantitative_distance facts included in B express the temporal distance between

two events. The qualitative_distance rules express domain knowledge: they translate the

numerical temporal distances into symbolic distances (for example, 2 becomes very_short).

This translation is necessary because, as mentioned earlier, ALEPH does not perform numerical

reasoning. The distance classification may be obtained by simple equal-frequency discretization on

a log of quantitative_distance facts, or by expertise if available.

Apart from the background knowledge B, we specify a set of mode declarations M—a type of

language bias—to restrict the version space. Consider the following declarations specified for

learning the definition of ‘uncomfortable driving’:

:- modeh (1,uncomfortable_driving(1ex))

:- modeb(1,stop_enter(2event,2event,1ex,2int,2id,2vehicletype,2stopid,

2timetablecompliance))

:- modeb(1,stop_leave(2event,2event,1ex,2int,2id,2vehicletype,2stopid,

2timetablecompliance))

:- modeb(1,approach_intersection(2event,2event,1ex,2int,2id,2vehicletype))

:- modeb(1,abrupt_deceleration(2event,2event,1ex,2int,2id,2vehicletype))

:- modeb(1,sharp_turn(2event,2event,1ex,2int,2id,2vehicletype))

:- modeb(1,abrupt_acceleration(2event,2event,1ex,2int,2id,2vehicletype))

:- modeb(*,qualitative_distance(1event,1event,#duration))

Amode declaration is either a head declaration modeh(r, s) or a body declaration modeb(r, s),

where s is a ground literal, the ‘scheme’, which serves as a template for literals in the head or body of

a hypothesis clause, and r is an integer, the ‘recall’, which limits how often the scheme is used. An

asterisk * denotes an arbitrary recall. The placemarkers 1, 2, # express, respectively, input terms,

output terms and ground terms. Any input term in a body literal must be an input term in the head or

an output term in some preceding body literal. A set M of mode declarations defines a language

LðMÞ � LH within which a hypothesis H must fall, that is, H � LðMÞ. A clause a’ l1,y, ln
belongs in LðMÞ if and only if the head literal a (respectively each body literal li) is obtained from

some head (respectively body) declaration in M by replacing all # placemarkers with ground terms,

all 1 placemarkers with input variables, and all—placemarkers with output variables. Given that

H � LðMÞ, the head of a hypothesis, in the presented illustration, is uncomfortable_driving,

while in the body of a hypothesis we may have a predicate expressing the LLE shown above, as well

as qualitative_distance expressing the temporal distance between these LLE. No other LLE

may be in the body of uncomfortable_driving (we set this constraint due to prior knowledge

about the sub-events of uncomfortable_driving).

Other types of bias may also be used, such as setting the maximum number of body literals that

a clause may contain.

Finally, to further guide the learning, we have set the following ‘integrity constraint’:

?’ hypothesis(-, Body,-),

broken_sequence(Body)

hypothesis is a built-in ALEPH predicate—the second argument of this predicate expresses the

body of the hypothesis clause currently under consideration. broken_sequence(Body) is a

user-defined predicate that is true when more than one literal (event) in the Body does not have its
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directly temporally preceding event in Body. The above integrity constraint, therefore, states that

any candidate hypothesis clause in which there is more than one event in the body that does

not have a directly temporally preceding event must be discarded. The absence of a temporally

preceding event is allowed only for the initial event of a hypothesis clause.

To learn a hypothesis H concerning uncomfortable_driving, a set of positive examples

E1 and a set of negative examples E2 are given:

% E1

uncomfortable_driving(pos1)

y

% E1

uncomfortable_driving(neg1)

y

Using the background knowledge B, various types of bias, integrity constraints, positive

examples E1 and negative examples E2, ALEPH performs the following operations. First, it selects

an example from E1 to be generalized (such as uncomfortable_driving(pos1)). Second, it

generates the most specific clause that entails this example with respect to B. In the case of

uncomfortable_driving(pos1) the following clause is produced:

[bottom clause]

uncomfortable_driving(Ex) ’

stop_enter(E1, Init, Ex, T1, Id, VehicleType, StopId, TC1),

stop_leave(E2, E1, Ex, T2, Id, VehicleType, StopId, TC2),

approach_intersection(E3, E2, Ex, T3, Id, VehicleType),

abrupt_deceleration(E4, E3, Ex, T4, Id, VehicleType),

sharp_turn(E5, E4, Ex, T5, Id, VehicleType),

abrupt_acceleration(E6, E5, Ex, T6, Id, VehicleType),

qualitative_distance(E2, E1, very short),

qualitative_distance(E3, E2, very short),

qualitative_distance(E4, E3, very short),

qualitative distance(E5, E4, very short),

qualitative_distance(E6, E5, very short)

Third, ALEPH searches for a more general clause than that generated in the previous step,

aiming to cover as many positive examples from E1 as possible, without covering any negative

examples from E2. Fourth, it adds the clause to H, removing redundant clauses and restarting

with a new example from E1 until E1 is empty.

In practice, the examples used to induce a hypothesis H, as well as the event narrative that is

part of B, may be noisy. In order to facilitate learning under such conditions, ILP systems relax the

consistency and completeness requirements, allowing some negative examples to be deduced from

H and B and some positive ones to not be covered. An approach that has been specifically

developed for learning hypotheses in noisy environments is presented in Section 4.

The result of ILP, in this case, comprises the following:

[Rule 1]

uncomfortable_driving(Ex) ’

approach_intersection(E1, Init, Ex, T1, Id, VehicleType),

abrupt_deceleration(E2, E1, Ex, T2, Id, VehicleType),

sharp_turn(E3, E2, Ex, T3, Id, VehicleType),

abrupt_acceleration(E4, E3, Ex, T4, Id, VehicleType),

qualitative_distance(E2, E1, very short),

qualitative_distance(E3, E2, very short),

qualitative_distance(E4, E3, very short)
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The above clause is translated into the following CRS code:

chronicle uncomfortable_driving [?Id, ?VehicleType](T4) {

event(approach_intersection [?Id, ?VehicleType], T1)

event(abrupt_deceleration [?Id, ?VehicleType], T2)

event(sharp_turn [?Id, ?VehicleType], T3)

event(abrupt_acceleration [?Id, ?VehicleType], T4)

T2 – T1 in [0, 5]

T3 – T2 in [0, 5]

T4 – T3 in [0, 5]

}

The above CRS code represents a less accurate account of the numerical temporal constraints

than that of the definition presented in Section 2.2, but the HLE structure has been correctly

discovered, without adding any unnecessary sub-events such as stop_leave. Learning numerical

temporal constraints with the use of ILP is an issue of current research.

Learning HLE definitions that have other HLE as sub-events is performed in a similar manner.

In this case, however, one would have to add to the background knowledge base B a HLE

narrative, as opposed to a LLE narrative. To learn the definition of the punctuality_change

HLE, for example, B would have to include a narrative of punctual and non-punctual HLE.

3 The Event Calculus

The EC was introduced by Kowalski and Sergot (1986) as a logic programming framework for

representing and reasoning about events and their effects. Since then various alternative formalizations

and implementations have been developed. As Miller and Shanahan (2002) point out, EC has been

reformulated in various logic programming forms (for instance, Sadri & Kowalski, 1995; Chittaro &

Montanari, 1996; Denecker et al., 1996; Paschke, 2005), in classical logic (e.g. Miller & Shanahan,

1999; Shanahan, 1999; Cervesato et al., 2000; Mueller, 2006a), in modal logic (e.g. Cervesato et al.,

1997, 1998, 2000), and even in non-logic-based languages (such as Farrell et al., 2005).

EC has been frequently used for event recognition—to the best of our knowledge, only in a logic

programming form, as in Chittaro and Dojat (1997), Cervesato and Montanari (2000), Chaudet

(2006), Paschke (2005, 2006), Paschke et al. (2007), Paschke and Bichler (2008), Teymourian and

Paschke (2009) and Artikis et al. (2010b, 2011).

EC is related to other formalisms proposed in the literature of commonsense reasoning, such as

the Situation Calculus (McCarthy and Hayes, 1969; Reiter, 2001), the action language C1 (Akman

et al., 2004; Giunchiglia et al., 2004), the fluent calculus (Thielscher, 1999, 2001) and Temporal

Action Logics (Doherty et al., 1998; Kvarnström, 2005). Comparisons between formalisms for

commonsense reasoning and proofs of equivalence between some of them may be found in

Kowalski and Sadri (1997), Miller and Shanahan (2002), Mueller (2006a, 2006b), and Craven

(2006), for example. The advantages of EC over other formalisms for commonsense reasoning with

respect to event recognition are outlined in Paschke (2005) and Paschke and Kozlenkov (2009).

In the following section, we present a high-level review of the expressiveness of EC as a logic

programming language, in Section 3.2 we present a concrete implementation of this formalism, while

in Section 3.3 we present techniques for automatically constructing and refining an EC logic program.

3.1 Representation

In this section, we present features of typical EC dialects for event recognition (Cervesato &

Montanari, 2000; Paschke, 2005; Artikis et al., 2010b). The time model of EC is often linear and it

may include real numbers or integers. Where F is a fluent—a property that is allowed to have

different values at different points in time—the term F5V denotes that fluent F has value V.

Boolean fluents are a special case in which the possible values are true and false. Informally,
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F5V holds at a particular time-point if F5V has been initiated by an event at some earlier time-

point, and not terminated by another event in the meantime.

An event description in EC includes rules that define the event occurrences, the effects of

events and the values of fluents. Table 3 presents typical predicates of EC dialects for event

recognition. Variables start with an upper-case letter while predicates and constants start with a

lower-case letter.

An EC dialect for event recognition has typically built-in rules for holdsAt and holdsFor,

that is, for computing the value of a fluent at a particular time and for computing the maximal

intervals in which a fluent has a particular value (there are EC dialects with additional built-in

rules for more expressive temporal representation (Miller & Shanahan, 2002)). A partial specification

of holdsAt, for example, is given below:

holdsAtðF ¼ V ; TÞ  
initiatedAtðF ¼ V ; TsÞ;
TspT ;

not brokenðF ¼ V ; Ts; TÞ

ð1Þ

brokenðF ¼ V ; Ts; TÞ  
terminatedAtðF ¼ V ; TeÞ;
TspTepT

ð2Þ

not represents ‘negation by failure’ (Clark, 1978). The above rules state that F5V holds at T

if F5V has been initiated at Ts, where Ts<T, and not ‘broken’, that is, terminated in the meantime.

The events that initiate/terminate a fluent are represented in the body of initiatedAt and

terminatedAt—the definitions of these two predicates are specific to the domain under

consideration.

Alternatively, holdsAt may be defined in terms of holdsFor:

holdsAtðF ¼ V ; TÞ  
holdsForðF ¼ V ; IÞ;
ðTs;TeÞ 2 I ;

TspToTe

ð3Þ

For any fluent F, holdsAt(F5V, T) if and only if time-point T belongs to one of the maximal

intervals of I such that holdsFor(F5V, I). Intervals (Ts, Te) in the presented EC representation

correspond to [Ts, Te). Quite elaborate implementations of holdsFor have been proposed in the

literature. In the following section, we sketch an implementation of holdsFor. For alternative

implementations, the interested reader is referred to Cervesato and Montanari (2000) and Artikis

et al. (2010b).

Table 3 Main Predicates of the Event Calculus

Predicate Meaning

happensAt(E, T) Event E is occurring at time T

happensFor(E, I) I is the list of the maximal intervals during which event E takes place

initially(F5V) The value of fluent F is V at time 0

holdsAt(F5V, T) The value of fluent F is V at time T

holdsFor(F5V, I) I is the list of the maximal intervals for which F5V holds continuously

initiatedAt(F5V, T) At time T a period of time for which F5V is initiated

terminatedAt(F5V, T) At time T a period of time for which F5V is terminated
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To illustrate the use of EC for event recognition, below we present definitions of CTM HLE

concerning vehicle (bus/tram) punctuality:

happensAt ðpunctualðId;VehicleTypeÞ; DTÞ  
happensAt ðstop enterðId ; VehicleType; StopId; scheduledÞ; ATÞ;
happensAt ðstop leaveðId ;VehicleType;StopId ; scheduledÞ; DTÞ;
1pDT�ATp2000

ð4Þ

happensAt ðnon punctualðId;VehicleTypeÞ; ATÞ  
happensAt ðstop enterðId;VehicleType; ; lateÞ; ATÞ

ð5Þ

According to the above formalization, a vehicle is said to be punctual if it enters and leaves a stop

at the scheduled time. The LLE ‘stop enter’ and ‘stop leave’ must take place within 2000 time-

points in order to recognize ‘punctual’. A vehicle is said to be non-punctual if it enters a stop later

than the scheduled time. (These conditions are not the only ones in which a vehicle is said to be

punctual/non-punctual.) All events in the above rules are instantaneous and thus they are

represented by means of happensAt.

Punctuality change may be expressed in EC as follows:

initiallyðpunctualityð ; Þ ¼ punctualÞ ð6Þ
initiatedAtðpunctualityðId;VehicleTypeÞ ¼ punctual; TÞ  

happensAtðpunctualðId;VehicleTypeÞ; TÞ
ð7Þ

initiatedAtðpunctualityðId ;VehicleTypeÞ ¼ non punctual; TÞ  
happensAtðnon punctualðId;VehicleTypeÞ; TÞ

ð8Þ

happensAtðpunctuality changeðId;VehicleType;ValueÞ; TÞ  
holdsForðpunctualityðId;VehicleTypeÞ ¼ Value; IÞ;
ðT ; Þ 2 I ;

T 6¼ 0

ð9Þ

We defined an auxiliary fluent, punctuality, that records the time-points in which a vehicle is (non-)

punctual. The fluent punctuality is defined by rules (6)–(8). Initially, every vehicle is punctual.

Thereafter, punctuality is affected by the punctual and non_punctual HLE. Rule (9) expresses the

definition of the HLE punctuality_change. This rule uses the EC built-in implementation of holdsFor

to compute the list of the maximal intervals for which a vehicle is continuously (non-)punctual.

Punctuality changes at the first time-point of each of these intervals (see the last two lines of rule (9)).

Note that, depending on the requirements of the user (city transport officials, in the CTM example),

punctuality may itself be a HLE, as opposed to an auxiliary construct. In general, a HLE may not

necessarily be treated as an EC event. In some cases it is more convenient to treat a HLE as an EC

fluent. In the case of a durative HLE G, for example, treating G as a fluent and using the built-in

holdsFor to compute the intervals of G, may result in a more succinct representation than treating G

as an EC event and developing domain-dependent rules for happensFor to compute the intervals of G.

Of interest to city transport officials are two HLEs concerning driving quality—these are

defined as follows:

happensForðmedium quality drivingðId ;VehicleTypeÞ;MQDIÞ  
happensForðuncomfortable drivingðId ;VehicleTypeÞ; UCIÞ;
holdsForðpunctualityðId ; VehicleTypeÞ ¼ punctual; PunctualIÞ;
intersect allð½UCI ; PunctualI �;MQDIÞ

ð10Þ

happensForðlow quality drivingðId ; VehicleTypeÞ; LQDIÞ  
happensForðunsafe drivingðId ; VehicleTypeÞ; USIÞ;
holdsForðpunctualityðId ; VehicleTypeÞ ¼ non punctual; NPIÞ;
union allð½USI ; NPI �; LQDIÞ

ð11Þ
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happensFor represents the list of the maximal intervals during which an event takes place (see

Table 3). Note that in the case where an event E has not taken place, we have happensFor (E, []).

Similarly, if F5V is never the case, we have holdsFor (F5V, []). intersect_all computes

the intersection of a list of lists of maximal intervals. For example, intersect_all ([[(5, 20),

(26, 30)], [(28, 35)]], [(28, 30)]). Similarly, union_all computes the union of a list of lists of

maximal intervals. For example, union_all ([[(5, 20), (26, 30)], [], [(28, 35)]], [(5, 20), (26, 35)]).

Medium quality driving is recognized when the driving style is uncomfortable, but the vehicle is

punctual. Low quality driving is recognized when the driving style is unsafe or the vehicle is non-

punctual. punctuality is defined by rules (6)–(8). To simplify the presentation we do not show here

the definitions of the uncofmortable_driving and unsafe_driving HLE (see Artikis et al., 2011) for

an extensive library of CTM HLE definitions formalized in EC).

The use of interval manipulation constructs, such as union_all and intersect_all, often

leads to a very concise HLE representation. Cervesato and Montanari (2000) have used interval

manipulation constructs in order to define a set of complex event operators in the context of EC.

These operators are expressed as follows:

m ::¼ e ðbasiceventÞ
jm1 ;Dd m2 ðsequencewith delay d toDÞ
jm1 þm2 ðalternativeÞ
jm1 jj m2 ðparallelismÞ
jml ðiterationÞ

The semantics of the above event operators is given in terms of a predicate that computes the

interval of a complex event given the intervals of its sub-events.

In a similar way, Paschke (2005) has formalized the following event operators in the context of

EC: sequence, disjunction, mutual exclusivity, conjunction, concurrency, negation, quantification

and aperiodicity.

The availability of the full power of logic programming is one of the main attractions of using

EC as the temporal formalism. It allows HLE definitions to include not only complex temporal

constraints, but also complex atemporal constraints. For example, it is straightforward to develop

in Prolog a predicate computing the distance between two entities.

The cited EC dialects for event recognition are not tied to a particular type of logic pro-

gramming semantics. In this way, a dialect may be directly implemented in various existing rule

languages (such as Prova).

Logic programming, not including an EC implementation, has been used frequently for event

recognition. A notable example is the work of Shet and colleagues (Shet et al., 2005, 2006, 2007). A

benefit of EC, in comparison with pure Prolog, is that EC has built-in rules for complex temporal

representation, such as the ones presented here, which help considerably the development of HLE

definitions.

3.2 Reasoning

Several implementations of the EC built-in rules have been proposed in the literature. Reasoning

in EC is often performed at query-time, that is, the incoming LLE are logged without processing,

and reasoning about the LLE log is performed when a query, concerning the recognition of HLE,

is submitted. To perform run-time event recognition using query-time reasoning—to recognize, for

example, at real-time incidents affecting the smooth operation of public transportation—one

would have to repeatedly query EC (say every 5 seconds). If the outcome of query computation

(the intervals of the recognized HLE) is not stored, reasoning would be performed on all detected

LLE, as opposed to the LLE detected between two consecutive query times. Consequently,

recognition time would substantially increase over time. (In retrospective recognition, such as the

recognition performed at the end of each day in order to evaluate the performance of public
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transportation, querying about the intervals of a HLE is performed once, so there is considerably

less need to store the outcome of query computation.)

To overcome the above limitation, a cached version of the EC has been proposed: the so-called

Cached Event Calculus (CEC; Chittaro & Montanari, 1996). Reasoning in CEC is not performed at

query-time, but at update-time: CEC infers and stores all consequences of LLE as soon as they arrive.

Query processing, therefore, amounts to retrieving the appropriate HLE intervals from the memory.

(Another EC dialect in which reasoning is performed at update-time may be found in Chesani et al.

(2009). We do not discuss this dialect here because its reasoning efficiency has not been evaluated yet.)

Note that caching does not necessarily imply update-time reasoning. Caching techniques may

be implemented for query-time reasoning.

Figure 6 shows the main modules of CEC. Each new LLE is entered into the database using

update. updateInit and updateTermin are then called to manage fluents that are initiated and,

respectively, terminated by the LLE. A fluent may represent a HLE or it may represent a context

variable used in the definition of a HLE. updateInit may call creatingI to create a new maximal

interval for a fluent. updateTermin may call breakingI to break a maximal interval of a fluent. The

modules propagateAssert and propagateRetract deal with the non-chronological arrival of LLE,

that is, the arrival of a LLE that happened (was detected) before some of the already acquired

LLE. When a maximal interval (or part of it) of a fluent is retracted, or asserted, as a result of the

occurrence of a LLE that arrived in a non-chronological order, the update has to be propagated to

the fluents whose validity may rely on such an interval. The retraction or assertion of an interval

[T1, T2] in which a fluent has a particular value modifies the context of events occurring at time-

points belonging to this interval, and possibly invalidates (or activates) the effects of these events.

propagateAssert and propagateRetract may recursively activate the process of creating or breaking

maximal intervals, by means of calling creatingI and breakingI. To avoid clutter in Figure 6,

however, we do not show the information flow between propagateAssert, propagateRetract and the

remaining CEC modules.

We will illustrate the way CEC deals with the non-chronological arrival of LLE with the use of

a simple example. Assume that we are interested in recognizing HLE related to vehicle punctuality

(see rules (4)–(9)) and passenger satisfaction, a partial definition of which is presented below:

initiatedAtðreducing passenger satisfactionðId;VehicleTypeÞ ¼ true; TÞ  
happensAtðpassenger density changeðId ;VehicleType;highÞ; TÞ;
holdsAtðpunctualityðId ;VehicleTypeÞ ¼ non punctual; TÞ

ð12Þ

According to the above formalization, passenger satisfaction concerning a vehicle is said to be

reducing when passenger density in that vehicle becomes high while the vehicle is non-punctual.

Recall that, for any fluent F, holdsAt(F5V, T) if and only if time-point T belongs to one of the

maximal intervals of I such that holdsFor(F5V, I)—see, for example, rule (3). Note that

reducing_passenger_satisfaction, like punctuality, is represented as a fluent.

updateInit

update

updateTermin

propagateAssert

breakingIcreatingI

propagateRetract

Figure 6 The Cached Event Calculus
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Table 4 shows an example LLE narrative concerning a particular vehicle and a set of HLE that

are recognized given in this narrative—more precisely, Table 4 shows the instantaneous punctual

and non_punctualHLE recognized at each time, the maximal intervals for which a vehicle is said to

be non-punctual, and the durative reducing_passenger_satisfaction HLE. A maximal interval (Ts,

inf) indicates that a fluent holds continuously since Ts. Moreover, as mentioned earlier, intervals

(Ts, Te) in the presented EC representation correspond to [Ts, Te). Two LLE, in this example,

arrive in a non-chronological order: stop_enter(b5, bus, s9, scheduled) and stop_leave(b5, bus, s9,

scheduled). These LLEs happened (were detected) before one of the already acquired LLEs:

passenger_density_change(b5, bus, high).

Upon the arrival of the first LLE of the narrative displayed in Table 4, CEC recognizes that bus

b5 is non-punctual. This is due to the fact that b5 entered stop s8 later than the scheduled time.

Passenger satisfaction is not affected at this time—the list of the intervals for which passenger

satisfaction is reducing remains empty. The arrival of the second LLE does not lead to the

recognition of a new HLE. b5 is still considered non-punctual. The following LLE, passenger_

density_change(b5, bus, high), leads to the recognition of reducing_passenger_satisfaction(b5, bus)

because, at that time, bus b5 is considered non-punctual (see rule (12)). The next two LLEs arrive,

as mentioned above, in a non-chronological order. They lead to the recognition of the punctual(b5,

bus) HLE, which is said to take place at time-point 14 (see rule (4)). This HLE breaks the interval

for which b5 is considered non-punctual. CEC, therefore, retracts the interval (14, inf) for which

punctuality(b5, bus)5 non_punctual.

Given that the retraction of the aforementioned fluent interval was due to LLE that arrived in a

non-chronological order, CEC has to propagate the retraction to the fluents whose validity relies

Table 4 Event Recognition in the Cached Event Calculus

Input LLE Output HLE

happensAt(stop_enter(b5, bus, s8, late), 5) happensAt(non_punctual (b5, bus), 5)
holdsFor(punctuality(b5, bus)5 non_punctual,

(5, inf)])

holdsFor(reducing_passenger_satisfaction
(b5, bus)5true, [])

happensAt(stop_leave(b5, bus, s8, late), 12) holdsFor(punctuality(b5, bus)5 non_punctual,

[(5, inf)])

holdsFor(reducing_passenger_satisfaction
(b5, bus)5true, [])

happensAt(passenger_density_change(b5, bus, high), 15) holdsFor(punctuality(b5, bus)5 non_punctual,

[(5, inf)])

holdsFor(reducing_passenger_satisfaction
(b5, bus)5true, [(15, inf)])

happensAt(stop_enter(b5, bus, s9, scheduled), 13) holdsFor(punctuality(b5, bus)5 non_punctual,

[(5, inf)])

holdsFor(reducing_passenger_satisfaction
(b5, bus)5true, [(15, inf)])

happensAt(stop_leave(b5, bus, s9, scheduled), 14) happensAt(punctual(b5, bus), 14)
holdsFor(punctuality(b5, bus)5 non_punctual,

[(5, 14)])

holdsFor(reducing_passenger_satisfaction
(b5, bus)5true, [])

y

LLE5 low-level events; HLE5 high-level events.

488 A . ART IK I S ET AL .



on this interval—in this example, to the fluent representing the ‘passenger satisfaction’ HLE (see

rule (12)). The retraction of the interval (14, inf) for which punctuality(b5, bus)5 non_punctual

modifies the context of the passenger_density_change(b5, bus, high) LLE that happened at time-

point 15—we now consider b5 punctual at that time-point. CEC, therefore, invalidates the effects

of passenger_density_change(b5, bus, high): it retracts the interval (15, inf) for which reducing_

passenger_satisfaction(b5, bus)5true.

The complexity of update processing (inferring and storing the consequences of an event) in

CEC is measured in terms of accesses to happensAt and holdsFor Prolog facts, where

happensAt facts represent the incoming LLE, while holdsFor facts represent cached fluent

intervals, including HLE intervals. On this basis, the complexity of update processing in CEC,

considering a particular fluent, is OðnðLfw þ 1Þþ 2Þ, where n is the number of initiating/terminating

events for the fluent into consideration, and Lfw is the maximum number of propagations of fluent

interval assertions and retractions—as shown above, such propagations are caused by LLEs

arriving in a non-chronological order. Note that if Lfw 5 0 then the complexity of update pro-

cessing is Oðn2Þ. The complexity of query processing (retrieving the cached maximal intervals of a

fluent) in CEC is OðnÞ. Details about the complexity analysis of CEC may be found in Chittaro

and Montanari (1996).

The efficiency of CEC has been reported to be adequate for certain application domains

(Chittaro & Dojat, 1997). In practice, where delayed LLEs are considered only if the delay does

not exceed a certain threshold, the complexity of update processing is considerably less than the

worst-case complexity presented above. Moreover, ways to improve the efficiency of CEC have

been identified (Artikis et al., 2011). Note, however, that caching in CEC concerns only HLE

represented as fluents, and thus needs to be extended to cater for HLE represented as EC events

(such as, e.g. medium_quality_driving—see Section 3.1).

3.3 Machine learning

Since EC event descriptions are typically expressed as logic programs, ILP methods are an obvious

candidate for constructing domain-dependent rules representing HLE definitions. As discussed in

Section 2.3, ILP can be used to induce hypotheses from examples. For instance, to learn the

definition of the HLE punctual, one has to provide positive examples E1 and negative examples

E2 for punctual using the happensAt predicate, and a background knowledge base B including a

LLE narrative. The learnt hypotheses will be of the form of rules (4) and (5). In general, learning

hypotheses for predicates for which examples are available (such as happensAt(punctual(Id,

VehicleType), T)), that is, ‘observation predicate learning’ (OPL; Muggleton & Bryant, 2000), may

be achieved using ILP techniques as shown in Section 2.3.

Automatically constructing an EC logic program often includes learning hypotheses for pre-

dicates for which examples are not available, which implies that induction cannot be directly

applied to produce the required hypotheses. Consider, for instance, the case in which we need to

learn the definition of the CTM HLE ‘reducing passenger satisfaction’, we require to represent this

HLE as a fluent in terms of initiatedAt (because, say, we expect that such a representation

would be succinct), and the available examples for learning this HLE are given only in terms of

holdsAt. In such a case, abduction may be combined with induction in order to produce the

required hypotheses—a description of abductive logic programming may be found at Kakas et al.

(1992) and Denecker and Kakas (2000, 2002), for example. Abduction may produce ground

initiatedAt rules, using the examples expressed by means of holdsAt and the EC built-in

rules, such as (1) and (2), relating initiatedAt and holdsAt. Then, induction may generalize

the outcome of abduction.

Various approaches have been proposed in the literature for combining abduction with

induction in order to learn a logic program—see Wellner (1999), Moyle (2002) and Tamaddoni-

Nezhad et al. (2006) for a few examples. In what follows we will briefly describe the XHAIL

system (Ray, 2009) that has been recently developed for this task, and has been used for learning
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EC programs. The learning technique of XHAIL is based on the construction and generalization

of a preliminary ground hypothesis, called a Kernel Set, that bounds the search space in accor-

dance to user-specified language and search bias. XHAIL follows a three-stage process. First,

abduction is used to compute the head atoms of a Kernel Set. Second, deduction is used to

compute the body literals of the Kernel Set. Third, induction is used to generalize the clauses of the

Kernel Set.

Each stage of XHAIL, including the inductive stage, is specified as an executable abductive

logic programming task—see Ray, (2009) for details. In this way, all stages may be implemented

using an abductive logic programming reasoner, such as the A-system8, or a high-performance

answer set solver, such as clasp9.

We will illustrate the use of XHAIL by showing how it may be used to learn the definition of

the ‘reducing passenger satisfaction’ HLE. As mentioned above, we require to represent this HLE

as a fluent in terms of initiatedAt, while the available examples are given in terms of

holdsAt. The input to XHAIL for learning this HLE definition includes:

> A background knowledge base B containing the built-in EC rules and a LLE narrative.
> A set M of mode declarations (the language bias). Mode declarations in XHAIL are specified as

in typical ILP systems— see Section 2.3. Recall that a set M of mode declarations defines a

language LðMÞ within which the learnt hypotheses H must fall, that is, H � LðMÞ. We use M1

to denote the set of head declarations in M and M2 to denote the set of body declarations. In

the presented scenario, the head declaration in M1 states that the head of learnt clause must be

an initiatedAt predicate concerning the ‘reducing passenger satisfaction’ fluent, while the

body declarations in M2 state that a body literal of a learnt clause may be a predicate

representing any LLE, that is, we have no prior knowledge concerning what affects passenger

satisfaction, or a predicate representing any fluent expressing in-vehicle conditions such as noise

level, temperature and passenger density.
> A set of positive and negative examples E such as:

holdsAtðreducing passenger satisfaction ðb1;busÞ ¼ true; 8Þ
not holdsAtðreducing passenger satisfaction ðb1;busÞ ¼ true; 16Þ

The first phase of XHAIL, that is, the abductive phase, computes ground initiatedAt

atoms. The computed atoms D ¼
Sn

i¼1 ai are such that E is entailed by B and D, and each ai is a

well-typed ground instance of a clause in LðMþÞ. This is a standard abductive task. Below is an

atom produced by the abductive phase of XHAIL:

initiatedAtðreducing passenger satisfactionðb1;busÞ ¼ true; 8Þ

Recall that initiatedAt and holdsAt are related by the EC built-in rules (see rule (1), for

instance). Each abduced initiatedAt atom constitutes the head of a clause of the Kernel Set.

The second phase of XHAIL, that is, the deductive phase, computes a ground program K ¼Sn
i¼1 ai  d1i ; . . . ; d

mi

i such that every dji, where 1< i< n and 1< j<mi, is entailed by B and D, and

each clause in K is a well-typed ground instance of a clause in LðMÞ. n is the number of atoms

abduced in the previous phase of XHAIL, while each mi is less or equal to the number of body

declarations. In other words, the second phase of XHAIL adds body literals to the clauses of the

Kernel Set K. To compute K, each head atom computed in the previous phase is saturated with

body literals using a non-monotonic generalization of the Progol level saturation method

(Muggleton, 1995). To achieve this, the abductive system is made to behave as a deductive query

answering procedure by setting an empty set of abducibles. Briefly, the atoms dji of each clause ki

8 http://dtai.cs.kuleuven.be/krr/Asystem/asystem.html
9 http://www.cs.uni-potsdam.de/clasp/
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of the Kernel Set are computed by a deductive procedure that finds the successful ground instances

of the queries obtained by substituting a set of input terms into the 1 placemarkers of the body

declaration schemas. Below is a clause of the produced Kernel Set K:

initiatedAtðreducing passenger satisfaction ðb1;busÞ ¼ true; 8Þ  
happensAtðtemperature change ðb1;bus;very warmÞ; 8Þ;
holdsAtðpunctuality ðb1;busÞ ¼ non punctualÞ; 8Þ;
holdsAtðnoise level ðb1;busÞ ¼ highÞ; 8Þ

A temperature increase—more precisely, when the temperature becomes very warm—initiates a

period of time for which passenger satisfaction is reducing, provided that the vehicle in question is

non-punctual and the noise level inside the vehicle is high. Note that this clause concerns a

particular time-point (8).

The third phase of XHAIL, that is, the inductive phase, computes a theory H that subsumes K

and entails E with respect to B. Briefly, the Kernel Set K is translated into K0 in which all input and

output terms (recall that these are defined by means of mode declarations) are replaced by vari-

ables, and then as many literals and clauses as possible are deleted from K0 while ensuring coverage

of the examples in E. The resulting set of clauses constitutes H. Below is a clause of the computed

theory H:

initiatedAtðreducing passenger satisfactionðId ;VehicleTypeÞ ¼ true; TÞ  
happensAtðtemperature changeðId ;VehicleType;very warmÞ; TÞ;
holdsAtðpunctualityðId;VehicleTypeÞ ¼ non punctualÞ; TÞ

ð13Þ

In-vehicle noise level is not included in the above clause because it did not prove to be a deter-

mining factor of the reduction of passenger satisfaction. The above clause complements rule (12)

that was presented in Section 3.2.

The proposed combination of abduction and induction has been applied to small, in terms of

event narrative size, and noise-free applications (Ray, 2009). As mentioned in Section 2.3, the

examples (annotated HLE) used to induce a hypothesis, as well as the event narrative (annotated

or detected LLE or HLE) that is part of the background knowledge base, may be noisy. Next, we

present an approach that has been specifically developed for learning and reasoning about

hypotheses in noisy environments.

4 Markov logic

Event recognition systems often have to deal with the following issues (Shet et al., 2007; Artikis

et al., 2010b): incomplete LLE streams, erroneous LLE detection, inconsistent LLE and HLE

annotation and a limited dictionary of LLE and context variables. These issues may compromise

the quality of the (automatically or manually) constructed HLE definitions, as well as

HLE recognition accuracy. In this section, we review MLN that consider uncertainty in repre-

sentation, reasoning and machine learning, and, consequently, address, to a certain extent, the

aforementioned issues.

4.1 Representation

Probabilistic graphical models are often used in the literature to handle uncertainty. Sequential

graphical models, such as Dynamic Bayesian Networks (Murphy, 2002) and Hidden Markov

Models (Rabiner & Juang, 1989) are useful for modelling HLE definitions representing event

sequences. Reasoning with such models is usually performed through maximum likelihood

estimation on the LLE narratives. For large-scale applications with complex events that involve

long-range dependencies and hierarchical structure, sequential models have been extended to more
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complex variants (Hongeng & Nevatia, 2003; Nguyen et al., 2005; Kersting et al., 2006). However,

these models use a restricted temporal representation and most of them allow only for sequential

relations between events. Moreover, the majority of them cannot naturally incorporate domain-

specific knowledge.

On the other hand, logic-based formalisms, such as first-order logic, can compactly represent

complex event relations, but do not naturally handle uncertainty. Assume a first-order logic

knowledge base expressing HLE definitions. A possible world assigns a truth value to each possible

ground atom. Each formula in the knowledge base imposes constraints on the set of possible

worlds. A missed LLE or an erroneous LLE detection, violating even a single formula of the

knowledge base, may result in a zero-probability world.

The research communities of Statistical Relational Learning and Probabilistic ILP have pro-

posed a variety of methods that combine concepts from first-order logic and probabilistic models

(Getoor & Taskar, 2007; De Raedt & Kersting, 2008; De Salvo Braz et al., 2008). This approach is

adopted by Knowledge-Based Model Construction (KBMC) methods, where a logic-based lan-

guage is used to generate a propositional graphical model on which probabilistic inference is

applied (De Salvo Braz et al., 2008). MLN (Richardson & Domingos, 2006; Domingos & Lowd,

2009) is a recent and rapidly evolving KBMC framework, which provides a variety of reasoning

and learning algorithms10, and has recently been used for event recognition (Biswas et al., 2007;

Tran & Davis, 2008; Xu & Petrou, 2009; Helaoui et al., 2010; Kembhavi et al., 2010; Wu &

Aghajan, 2010, 2011). The main concept behind MLN is that the probability of a world increases

as the number of formulas it violates decreases. Therefore, a world violating formulas becomes less

probable, but not impossible as in first-order logic. Syntactically, each formula Fi in Markov logic

is represented in first-order logic and it is associated with a weight wi. The higher the value of the

weight, the stronger the constraint represented by Fi. Semantically, a set of Markov logic formulas

(Fi, wi) represents a probability distribution over possible worlds.

Consider, for example, the formulas below, expressing a simplified version of the definition of

the ‘uncomfortable driving’ CTM HLE:

abrupt movementðId ;VehicleType;TÞ  
abrupt accelerationðId;VehicleType;TÞ _
abrupt decelerationðId;VehicleType;TÞ _
sharp turnðId;VehicleType;TÞ

ð14Þ

uncomfortable drivingðId ;VehicleType;T2Þ  
approach intersectionðId;VehicleType;T1Þ ^
abrupt movementðId;VehicleType;T2Þ ^
beforeðT1;T2Þ

ð15Þ

Variables, starting with upper-case letters, are universally quantified unless otherwise indicated.

Predicates and constants start with a lower-case letter. The definition of uncomfortable_driving is

simplified here, in order to facilitate the presentation of reasoning techniques in the following

section. According to the above formulas, uncomfortable_driving is defined in terms of an auxiliary

construct, abrupt_movement, which is in turn defined in terms of the abrupt_acceleration,

abrupt_deceleration and sharp_turn LLE. before is a simple predicate comparing two time-points.

Formulas (14) and (15) are associated with real-valued positive weights.

MLN facilitate a mixture of soft constraints and hard constraints in a HLE knowledge base,

where hard constraints correspond to formulas with infinite weight values. Hard constraints can

be used to capture domain-specific knowledge or facts. For example, a bus is driven only by one

10 A system implementing MLN reasoning and learning algorithms may be found at http://alchemy.

cs.washington.edu/
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driver at a time. Soft constraints, on the other hand, can be used to capture imperfect logical

statements and their weights provide their confidence value. Strong weights are given to formulas

that are almost always true. For instance, we may assign a strong weight to formula (15), as it is

true most of the time. Respectively, weak weights may be assigned to formulas that describe

exceptions. For example, we may assign a weak weight to the formula stating that ‘unsafe driving’

is recognized when we have ‘abrupt movement’, as normally a ‘very abrupt movement’ is needed

for the recognition of ‘unsafe driving’.

4.2 Reasoning

A MLN L is a template that produces a ground Markov network ML,C by grounding all its

formulas F, using a finite set of constants C ¼ c1; . . . cjCj. More precisely, all formulas are

translated into clausal form, where the weight of each formula is equally divided among its clauses,

and then the produced clauses are grounded. For different sets of constants, the same MLN L will

produce different ground Markov networks, but all will have certain regularities in structure and

parameters—for example, all groundings of a clause will have the same weight. Each node in a

ML,C is represented by a Boolean variable and corresponds to a possible grounding of a predicate

that appears in L. Each subset of ground predicates, appearing in the same ground clause, are

connected to each other and form a clique in ML,C. Each clique is associated with the corre-

sponding weight wi of a clause and a Boolean feature. The value of the feature is 1 when the

ground clause is true, otherwise it is 0.

A ground Markov network ML,C, therefore, comprises nodes that correspond to a set X of

random variables (ground predicates). A state x 2 X of ML,C represents a possible world, as it

assigns truth values to all random variables in X. A probability distribution over states is specified

by the ground Markov network ML,C, and represented as follows:

PðX ¼ xÞ ¼ 1
Z exp

PjFyj

i

winiðxÞ
 !

ð16Þ

where Fy � F is the set of clauses, wi is the weight of the ith clause, ni(x) is the number of true

groundings of the ith clause in x and Z is the partition function used for normalization,

that is, Z ¼
P

x2X expð
PjFyj

i winiðxÞÞ, where X is the set of all possible states.

We will illustrate the process of producing a ground Markov network and computing the

probability of a state of such a network using the HLE definition expressed by formulas (14) and

(15). These formulas are first translated into clausal form:

1

3
w1 :abrupt accelerationðId; VehicleType; TÞ _ abrupt movementðId ; VehicleType; TÞ ð17Þ

1

3
w1 :abrupt decelerationðId; VehicleType; TÞ _ abrupt movementðId ; VehicleType; TÞ ð18Þ

1

3
w1 :sharp turnðId ; VehicleType; TÞ _ abrupt movementðId; VehicleType; TÞ ð19Þ

w2 :approach intersectionðId; VehicleType; T1Þ _ :abrupt movementðId ; VehicleType; T2Þ _
:beforeðT1;T2Þ _ uncomfortable drivingðId ; VehicleType; T2Þ

ð20Þ

where w1 is the weight of formula (14)—w1 is equally divided among the three clauses of this

formula—while w2 is the weight of formula (15).

In event recognition, the detected LLEs provide the constants C that are necessary for pro-

ducing ground Markov networks expressing a knowledge base of HLE definitions—see Figure 7.

Consider, for example, a narrative of LLE about tram tr0 taking place at time-points 100 and 101.

The constants involved in this narrative—tr0, tram, 100, 101—define the domain of the corresponding
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variables—Id, VehicleType, T, T1, T2. If more LLEs were included in the input narrative then the

variable domains would have been extended. The grounding procedure produces, in this example, 16

ground predicates and 10 ground clauses. For example, clause (17) is grounded as follows:

1

3
w1 :abrupt accelerationðtr0;tram;100Þ _ abrupt movementðtr0;tram;100Þ ð17aÞ

1

3
w1 :abrupt accelerationðtr0;tram;101Þ _ abrupt movementðtr0;tram;101Þ ð17bÞ

Similarly, clause (20) is grounded as follows:

w2 :approach intersectionðtr0;tram;100Þ _ :abrupt movementðtr0;tram;100Þ _
:beforeð100;100Þ _ uncomfortable drivingðtr0;tram;100Þ

ð20aÞ

w2 :approach intersectionðtr0;tram;100Þ _ :abrupt movementðtr0;tram;101Þ _
:beforeð100;101Þ _ uncomfortable drivingðtr0;tram;101Þ

ð20bÞ

w2 :approach intersectionðtr0;tram;101Þ _ :abrupt movementðtr0;tram;100Þ _
:beforeð101;100Þ _ uncomfortable drivingðtr0;tram;100Þ

ð20cÞ

w2 :approach intersectionðtr0;tram;101Þ _ :abrupt movementðtr0;tram;101Þ _
:beforeð101;101Þ _ uncomfortable drivingðtr0;tram;101Þ

ð20dÞ

The resulting ground Markov network is shown in Figure 8. Predicates appearing in the same

ground clause are connected to each other in the network and form a clique. Consider, for

instance, the clique created by ground clause (17a) consisting of abrupt_acceleration(tr0, tram, 100)

and abrupt_movement(tr0, tram, 100). The clique is associated with the weight of the corresponding

clause, that is, 1
3
w1, and a Boolean feature. In a state where abrupt_movement(tr0, tram, 100) is true,

the grounding (17a) of clause (17) is satisfied and therefore the value of the feature is 1.

We will illustrate how the probability of each state of a ground Markov network is computed

by calculating the probability of two possible states, x1 and x2, of the network shown in Figure 8.

Assume that both x1 and x2 assign the same truth values to all predicates except uncomfortable_

driving(tr0, tram, 101). More precisely, in both states approach_intersection(tr0, tram, 100),

abrupt_acceleration(tr0, tram, 101), abrupt_movement(tr0, tram, 101) and before(100, 101) are true.

All the other ground predicates are false, except uncomfortable_driving(tr0, tram, 101) being true in

x1 and false in x2. In this example, the weights w1 and w1 of formulas (14) and (15) are positive real

numbers. The number of satisfied groundings of clauses (17), (18) and (19) is the same in both x1
and x2, as the assignment of truth values to the predicates involved is the same. The number of

satisfied groundings of clause (20), however, differs between x1 and x2, because the truth

assignment of uncomfortable_driving(tr0, tram, 101) is different. As a result, in state x1 all ground

LLE

HLE
Knowledge

base

Grounding

Markov Logic Markov NetworkSensors

Figure 7 Ground Markov Network Construction for Event Recognition. HLE5 high-level events;

LLE5 low-level events
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clauses of (20) are satisfied, but in state x2 ground clause (20b) is not satisfied. Using Equation (16)

we compute the following:

PðX ¼ x1Þ ¼
1

Z
exp

1

3
w1 � 2þ 1

3
w1 � 2þ 1

3
w1 � 2þ w2 � 4

� �
¼ 1

Z
e2w1þ4w2

PðX ¼ x2Þ ¼
1

Z
exp

1

3
w1 � 2þ 1

3
w1 � 2þ 1

3
w1 � 2þ w2 � 3

� �
¼ 1

Z
e2w1þ3w2

According to the above results, a state (x1) in which the ‘uncomfortable driving’ HLE and its

sub-events have all been recognized is more probable than a state (x2) in which the sub-events of

‘uncomfortable driving’ have been recognized while this HLE does not hold.

Event recognition in MLN involves querying a ground Markov network about HLE. The set X

of random variables of a ground network can be partitioned as X ¼ Q [ E [H, where Q is the set

of ‘query variables’, E is the set of ‘evidence variables’ and H is the set of the remaining variables

with unknown value—also known as ‘hidden variables’. In event recognition, query variables

represent the HLE of interest, evidence variables represent the detected LLE, while hidden variables

represent auxiliary constructs of a HLE definition. Event recognition queries require conditional

inference, that is, computing the probability that a query variable holds given some evidence. For the

computation of conditional probabilities a variety of exact and approximate probabilistic inference

methods exist in the literature. Given a MLN and some evidence E5 e, a conditional query is

specified as follows:

PðQjE ¼ e;HÞ ¼ PðQ;E ¼ e;HÞ
PðE ¼ e;HÞ ð21Þ

where Q’s are the query variables andH’s are the hidden variables. The numerator and denominator

of this equation may be computed using Equation (16). We may be interested in finding out, for

instance, the trams that are driven in an uncomfortable manner, given a LLE narrative. In this case,

the set of query variables Q includes only uncomfortable_driving(Id, VehicleType, T), the set of

detected LLE that forms E may include, among others

approach intersection ðtr0;tram;100Þ
abrupt acceleration ðtr0;tram;101Þ
sharp turn ðtr24;tram;100Þ

and the set of hidden variables H includes, among others

abrupt movement ðtr0;tram;101Þ
abrupt movement ðtr24;tram;101Þ
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Figure 8 Ground Markov Network
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Given Equation (21), we may compute the probability of each grounding of uncomfortable_

driving(Id, VehicleType, T).

Complete grounding of MLN, even for simple HLE knowledge bases, results in complex and

large networks. For this reason, only the minimal required network is constructed to answer a

conditional query. In particular, query and evidence variables are used to separate the network

into regions, allowing some variables to be removed from the network, as they cannot influence

reasoning. For example, given the Markov network shown in Figure 8, we may be interested only

in the HLE uncomfortable_driving(tr0, tram, 101). The truth values of ground before predicates are

trivially known. Moreover, the truth values of LLE are given as evidence—see Figure 9(a). The

nodes for the ground predicates abrupt_movement(tr0, tram, 100), uncomfortable_driving(tr0, tram,

100), sharp_turn(tr0, tram, 100), abrupt_deceleration(tr0, tram, 100), before(100, 100) and

before(101, 100) can be omitted from the Markov network, as they cannot influence the reasoning

process concerning the HLE uncomfortable_driving(tr0, tram, 101). Therefore, the complete

Markov network, shown in Figure 9(a), will be reduced into the network shown in Figure 9(b).

Further efficiency can be gained by using (a) lazy inference methods that ground predicates as

and when needed (Singla & Domingos, 2006; Domingos & Lowd, 2009; Section 3.3) or (b) lifted

inference methods which can answer queries without grounding the entire network (Singla &

Domingos, 2008; Domingos & Lowd, 2009).
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Figure 9 (a) Complete Ground Markov Network and (b) Ground Markov Network Reduced for Event

Recognition. Nodes with a thick line represent query variables, shaded nodes represent variables with known

truth values and nodes with a dashed line represent variables that can be safely removed
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Sensors may detect LLE with certainty or with a degree of confidence. In the former case, the

LLEs are simple Boolean variables that are given directly to the MLN as evidence. In the latter

case, the detected LLEs are usually added to the MLN knowledge base as clauses having weights

proportional to their detection probability (Tran & Davis, 2008). For example, if the LLE

sharp_turn(tr0, tram, 20) is detected with some probability P(sharp_turn(tr0, tram, 20)), the unit

clause sharp_turn(tr0, tram, 20) will be added to the MLN with weight value

w ¼ log
Pðsharp turnðtr0;tram;20ÞÞ

1�Pðsharp turnðtr0;tram;20ÞÞ

The additional clauses, which represent the detected LLE with a degree of confidence, alter the

posterior distribution over possible worlds by introducing additional features in the ground

Markov network. In this manner, the detected LLEs propagate their degree of confidence to the

whole MLN.

Even in a very large state space, the computation of Equation (21) can be efficiently

approximated by sampling methods, such as Markov Chain Monte Carlo (MCMC) algorithms—

for example, Gibbs sampling. Markov Chains form graphs of possible states, over which a Monte

Carlo simulation takes a random walk and draws a set of sample states from the target dis-

tribution. In MCMC, a successive sample state depends only on the current state. In Gibbs

sampling, for instance, each sample state is produced by successively changing the truth value

assignment of its ground predicates. This reassignment of truth values is performed efficiently, as

the value of each predicate in the ground Markov network depends only on the truth values of its

neighbour predicates. The set of neighbouring predicates is called Markov blanket and represents

predicates that appear together in some grounding of a clause. For instance, the Markov blanket

of abrupt_movement(tr0, tram, 101) in the network shown in Figure 8 is composed of uncomfortable_

driving(tr0, tram, 101), before(100, 101), approach_intersection(tr0, tram, 100), sharp_turn(tr0, tram,

101), abrupt_acceleration(tr0, tram, 101), abrupt_deceleration(tr0, tram, 101), approach_intersection(tr0,

tram, 101) and before(100, 101). The conditional probability in Equation (21) can be computed by a

MCMC algorithm that rejects all moves to states where E5 e does not hold. Therefore, only the

variables that belong to Q and H are allowed to change in each sample. In each step, the MCMC

algorithm has the tendency to keep samples that represent states with high probability and, therefore,

often converges in local maxima. The estimated probability of the query variables, that is, the HLE of

interest, is the fraction of samples in which those variables are true. The more samples are generated,

the more accurate this estimation becomes.

Due to the combination of logic with probabilistic models, inference in MLN must handle both

deterministic and probabilistic dependencies. Deterministic or near-deterministic dependencies are

formed from formulas with infinite and strong weights, respectively. Being a purely statistical

method, MCMC can only handle probabilistic dependencies. In the presence of deterministic

dependencies, two important properties of Markov Chains, ergodicity and detailed balance, are

violated and the sampling algorithms give poor results (Poon & Domingos, 2006). Ergodicity is

satisfied if all states are aperiodically reachable from each other, while detailed balance is satisfied

if the probability of moving from state xi to state xj is the same as the probability of moving from

xj to xi. Ergodicity and detailed balance are violated in the presence of deterministic dependencies

because these dependencies create isolated regions in the state space by introducing zero-probability

(impossible) states. Even near-deterministic dependencies create regions that are difficult to cross,

that is, contain states with near zero-probability. As a result, typical MCMCmethods, such as Gibbs

sampling, get trapped in local regions. Thus, they are unsound for deterministic dependencies and

they find it difficult to converge in the presence of near-deterministic ones.

To overcome these issues and deal with both deterministic and probabilistic dependencies, MLN use

the MC-SAT algorithm (Poon & Domingos, 2006; Domingos & Lowd, 2009; Section 3.2), which is

a MCMC method that combines satisfiability testing with slice-sampling (Damlen et al., 1999).

Initially, a satisfiability solver is used to find those assignments that satisfy all hard-constrained
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clauses (i.e clauses with infinite weights). At each subsequent sampling step, MC-SAT chooses

from the set of ground clauses satisfied by the current state the clauses that must be satisfied at

the next step. Each clause is chosen with probability proportional to its weight value. Clauses

with infinite or strong weights, that represent, respectively, deterministic and near-deterministic

dependencies, will always be chosen with, respectively, absolute certainty and high probability.

Then, instead of taking a sample from the space of all possible states, slice-sampling restricts

sampling to the states that satisfy at least all chosen clauses. In this manner, MCMC cannot get

trapped to local regions, as satisfiability testing helps to collect samples from all isolated and

difficult-to-cross regions.

4.3 Machine learning

Learning a MLN involves estimating the weights of the network and/or the first-order rules

forming the network structure, given a set of training data, that is, LLE annotated with HLE. In

Section 4.3.1, we present approaches on weight learning while in Section 4.3.2 we discuss structure

learning.

4.3.1 Weight learning

Weight learning concerns the estimation of the weights of the clauses that represent a HLE

knowledge base—recall that the first-order rules of such a knowledge base are translated into

clausal form. Different clauses, derived from the same rule, may be assigned different weights. For

example, it may be estimated that the weights of the clauses derived from rule (14) are different:

wa :abrupt accelerationðId ;VehicleType;TÞ _ abrupt movementðId;VehicleType;TÞ ð22Þ

wb :abrupt decelerationðId ;VehicleType;TÞ _ abrupt movementðId;VehicleType;TÞ ð23Þ

wc :sharp turnðId;VehicleType;TÞ _ abrupt movementðId ;VehicleType;TÞ ð24Þ

Weight learning in MLN is performed by optimizing a likelihood function, which is a statistical

measure of how well the probabilistic model (MLN) fits the training data. In particular, weights

can be learned by either generative or discriminative estimation (Singla & Domingos, 2005; Lowd

& Domingos, 2007; Huynh & Mooney, 2008; Domingos & Lowd, 2009; Section 4.1). Generative

learning attempts to optimize the joint distribution of all variables in the model. In contrast,

discriminative learning attempts to optimize the conditional distribution of a set of outputs, given

a set of inputs.

Generative estimation methods search for weights that optimize the likelihood function, given a

HLE knowledge base and training data. Learning can be performed by a standard gradient ascent

optimization algorithm. However, it has been shown that computing the likelihood and its gra-

dient is intractable (Richardson & Domingos, 2006). For this reason, the optimization of the

pseudo-likelihood function is used instead, which is the product of the probabilities of the ground

predicates, conditioned on their neighbours in the network, that is, their Markov blanket. In

particular, if x is a state of a ground network and xl is the truth value of the lth ground predicate

Xl, the pseudo-likelihood of x, given weights w, is:

logPl
wðX ¼ xÞ ¼

Pn
l¼1

logPwðXl ¼ xljMBxðXlÞÞ ð25Þ

MBxðXlÞ represents the truth values of the ground predicates in the Markov blanket of Xl.

Thus, computation can be performed very efficiently, even in domains with millions of ground

predicates, as it does not require inference over the complete network.

The pseudo-likelihood function assumes that each ground predicate’s Markov blanket is fully

observed, and does not exploit information obtained from longer-range dependencies in the network.
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In some cases this assumption may lead to poor results. Consider, for example, formulas (14) and (15)

expressing, respectively, abrupt_movement and uncomfortable_driving, and a training data set

including a LLE narrative annotated only for uncomfortable_driving, that is, there is no annotation

for abrupt_movement. Figure 10 displays the resulting ground Markov network. As mentioned in

Section 4.2, the Markov blanket of abrupt_movement includes the sharp_turn, abrupt_acceleration

and abrupt_deceleration LLE. The Markov blanket of uncomfortable_driving includes

abrupt_movement. In this case, pseudo-likelihood may give poor results with respect to the

uncomfortable_driving HLE. This is due to the fact that it will only use information from the

Markov blanket of this HLE, making an assumption about the absent annotation of

abrupt_movement—usually a closed-world assumption. In other words, it will not exploit the

information provided by the abrupt_acceleration, abrupt_deceleration and sharp_turn LLE of the

training data set.

One way to address the aforementioned issue is to treat absent annotations as missing infor-

mation and use the expectation maximization algorithm of Dempster et al. (1977) in order to learn

from incomplete data (Poon & Domingos, 2008; Domingos & Lowd, 2009; Section 4.3).

In event recognition, we know a priori which variables form the evidence (LLE) and which ones

concern queries (HLE). In the usual case, where we aim to recognize the latter given the former, it

is preferable to learn the weights discriminatively by maximizing the conditional likelihood

function. In particular, if we partition the variables of the domain into a set of evidence variables E

and a set of query variables Q, then the conditional likelihood function is defined as follows:

logPðQ ¼ qjE ¼ eÞ ¼
P
i

winiðe; yÞ� logZe ð26Þ

where Ze normalizes over all states consistent with the evidence e, and ni(e, y) is the number of true

groundings of the ith clause in the training data set. In contrast to Q and E, the state of a hidden

variable, such as abrupt_movement, is unknown as, in most cases, the state of such variables is not

available in the training dataset. In the presence of hidden variables, therefore, the conditional

likelihood must be computed by marginalizing over the hidden variables. It has been shown that

learning weights discriminatively can lead to higher predictive accuracy than generative learning

(Singla & Domingos, 2005). This is partly due to the fact that, in contrast to the pseudo-likelihood

function, conditional likelihood can exploit information from longer-range dependencies. Similar

to the likelihood function, conditional likelihood requires inference. However, there is one key

difference: conditioning on the evidence in a Markov network reduces significantly the number of
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Figure 10 Ground Markov Network Produced from Partially Annotated Data set. The shaded nodes

represent predicates with known truth values as described in the annotated data set
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likely states. Therefore, inference takes place on a simpler model and the computational

requirements are reduced.

Weights in MLN are estimated using either first-order or second-order optimization methods.

First-order methods, for example, perform gradient ascent optimization in order to maximize an

evaluation function, such as the conditional likelihood function (26). Weights may be initialized to

zero, they may be given random values, or they may be given values according to other infor-

mation concerning the application under consideration. Then, weights are iteratively updated

according to the following equation:

wtþ1 ¼ wt þ Zg ð27Þ
where t indicates the current iteration of the optimization process, wt is a vector that contains

weight values of the current iteration for all clauses in the knowlege base, while wt11 is a vector

that contains the updated weight values. The constant h expresses the learning rate, defining the

extent of weight adjustment in each iteration. The vector g represents the gradient. This is com-

posed of the partial derivatives of function (26) with respect to the corresponding clause weights.

The value of a derivative defines the direction and the magnitude of a weight update. The com-

putation of the gradient requires inference, which can be efficiently approximated using MCMC

methods, as discussed in Section 4.2.

By iteratively adjusting the weights using Equation (27), the fit of the model to the HLE in the

data set is optimized. Assume, for example, that in a given training data set the abrupt_acceleration

LLE is rarely associated with the occurrence of the HLE uncomfortable_driving. On the

other hand, the abrupt_deceleration and sharp_turn LLEs are closely associated with the HLE

uncomfortable_driving. In this case, weight learning will assign a low weight value to clause (22)

and high weight values to clauses (23) and (24).

4.3.2 Structure learning

In addition to weight learning, the structure of a MLN can be learned from training data.

In principle, the structure of a MLN can be learned in two stages, using any ILP method, as

presented in Section 2.3, and then performing weight learning. However, separating the two

learning tasks in this way may lead to suboptimal results, as the first optimization step (ILP) needs

to make assumptions about the weight values, which have not been optimized yet. Better results

can be obtained by combining structure learning with weight learning in a single stage.

A variety of structure learning methods have been proposed for MLN. In brief, these methods

can be classified into top-down and bottom-up methods. Top-down structure learning (Kok &

Domingos 2005; Domingos & Lowd 2009; Section 4.2) starts from an empty or existing MLN and

iteratively constructs clauses by adding or revising a single predicate at a time, using typical ILP

operations and a search procedure. However, as the structure of a MLN may involve complex

HLE definitions, the space of potential top-down refinements may become intractable. For this

reason, bottom-up structure learning can be used instead, starting from training data and

searching for more general hypotheses (Mihalkova & Mooney, 2007; Domingos & Lowd, 2009;

Kok & Domingos, 2009, 2010; Section 4.2). This approach usually leads to a more specialized

model, following a search through a manageable set of generalizations.

5 Summary and open issues

We presented three representative logic-based approaches to event recognition. All approaches

assume as input a stream of time-stamped LLE—a LLE is created as a result of applying a

computational derivation process to some other event. Using such input, event recognition sys-

tems identify HLE of interest, that is, collections of events that satisfy some pattern. We illustrated

the use of the three reviewed approaches drawing examples from the domain of CTM.

Being based on logic, all three approaches benefit from a formal and declarative semantics, a

variety of inference mechanisms, and methods for learning a knowledge base of HLE definitions
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from data. As a result, compared with procedural methods, logic-based ones facilitate efficient

development and management of HLE definitions, which are clearly separated from the generic

inference mechanism. Moreover, compared with methods exhibiting informal semantics, logic-

based approaches support validation and traceability of results. At the same time, recent logic-

based methods appear to be sufficiently mature and scalable to be used in industrial applications.

The presented CRS has been specially developed for event recognition and is the choice of

preference for efficient, purely temporal recognition. CRS was developed with the aim to support

only temporal reasoning and thus a line of future work concerns its extension with atemporal

reasoning. The developers of CRS are currently making it open-source (C. Dousson, personal

communication), thus facilitating extensions of its reasoning engine.

The EC provides a more generic and expressive representation of HLE definitions, taking

advantage of the full power of logic programming on which it is based. Thus, EC supports

complex temporal as well as atemporal representation and reasoning. A line of further work

concerns the optimization of the reasoning of EC for run-time event recognition. Caching tech-

niques, in particular, should be investigated, supporting all types of HLE representation.

MLN combine the strengths of logical and probabilistic inference. Consequently, they may

address, to a certain extent, the issues of incomplete LLE streams, erroneous LLE detection,

inconsistent LLE and HLE annotation and limited dictionary of LLE and context variables. This

is in contrast to CRS and EC that do not consider uncertainty in representation and reasoning.

MLNs also offer a very expressive framework for HLE definition representation, as the full power

of first-order logic is available. The use of MLN for event recognition, however, has been limited

so far and there are many issues that need to be resolved still, such as the incorporation and use of

numerical temporal constraints in MLN inference.

Finally, a number of challenging issues remain open in learning HLE definitions. Examples of

such issues are the use of abduction to handle partial supervision in large data sets that is com-

monly available for event recognition, and the simultaneous optimization of numerical para-

meters—for example, weights and temporal constraints—and the logical structure of the

knowledge base expressing HLE definitions.
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Le Guillou, X., Cordier, M.-O., Robin, S. & Rozé, L. 2008. Chronicles for on-line diagnosis of distributed

systems. In Proceedings of the European Conference on Artificial Intelligence (ECAI), 194–198.

Lowd, D. & Domingos, P. 2007. Efficient weight learning for Markov logic networks. In Proceedings of the

Knowledge Discovery in Databases: PKDD 2007, 200–211.

Luckham, D. 2002. The Power of Events: An Introduction to Complex Event Processing in Distributed

Enterprise Systems. Addison-Wesley.

Luckham, D. & Schulte, R. 2008. Event Processing Glossary – Version 1.1. Event Processing Technical

Society. http://www.ep-ts.com/ .

Lv, F., Nevatia, R. & Lee, M. 2005. 3D human action recognition using spatio-temporal motion templates. In

Proceedings of the International Workshop on Computer Vision in Human-Computer Interaction (ICCV),

120–130.

Mackworth, A. & Freuder, E. 1985. The complexity of some polynomial network consistency algorithms for

constraint satisfaction problems. Artificial Intelligence 25, 65–74.

Mannila, H., Toivonen, H. & Verkamo, A.I. 1997. Discovery of frequent episodes in event sequences. Data

Mining and Knowledge Discovery 1(3), 259–289.

McCarthy, J. & Hayes, P. 1969. Some philosophical problems from the standpoint of artificial intelligence.

Machine Intelligence 4, 463–502.

Mihalkova, L. & Mooney, R. 2007. Bottom-up learning of Markov logic network structure, In Proceedings of

the International Conference on Machine learning (ICML). ACM, 625–632.

Miller, R. & Shanahan, M. 1999. The event calculus in a classical logic – alternative axiomatizations. Journal

of Electronic Transactions on Artificial Intelligence 3(A), 77–105.

Miller, R. & Shanahan, M. 2002. Some alternative formulations of the event calculus. In Computational

Logic: Logic Programming and Beyond – Essays in Honour of Robert A. Kowalski, Lecture Notes in

Arificial Intelligence 2408, 452–490. Springer.

Morin, B. & Debar, H. 2003. Correlation of intrusion symptoms: an application of chronicles. In Proceedings

of the 6th International Conference on Recent Advances in Intrusion Detection (RAID’03), Pittsburgh,

USA.

Moyle, S. 2002. Using theory completion to learn a robot navigation control program. In Inductive Logic

Programming, Lecture Notes in Computer Science 2583, 182–197. Springer.

Mueller, E. 2006a. Commonsense Reasoning. Morgan Kaufmann.

Mueller, E. 2006b. Event calculus and temporal action logics compared. Artificial Intelligence 170(11),

1017–1029.

Muggleton, S. 1991. Inductive logic programming. New Generation Computing 8(4), 295–318.

Muggleton, S. 1995. Inverse entailment and Progol. New Generation Computing 13(3–4), 245–286.

Muggleton, S. & Bryant, C. 2000. Theory completion using inverse entailment. In Inductive Logic Programming,

Lecture Notes in Computer Science 1866, 130–146. Springer.

Muggleton, S. & Raedt, L. D. 1994. Inductive logic programming: theory and methods. Journal of Logic

Programming 19/20, 629–679.

Murphy, K. 2002. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis,

University of California, Berkeley.

Nebel, B. & Bürckert, H.-J. 1995. Reasoning about temporal relations: a maximal tractable subclass of

Allen’s interval algebra. Journal of the ACM 42(1), 43–66.
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