
Event Processing for Intelligent Resource Management

Alexander Artikis1 and Robin Marterer2 and Jens Pottebaum2 and Georgios Paliouras1

Abstract. The need for intelligent resource management (IRM)
spans across a multitude of applications. To address this requirement,
we present EP-IRM, an event processing system recognising com-
posite events given multiple sources of information in order to sup-
port IRM. EP-IRM has been deployed in two real-world applications.
Moreover, with a small effort it may be used in a wide range of appli-
cations requiring IRM. We present an evaluation of the system, and
discuss the lessons learnt during its development and deployment.

1 Introduction
Organisations collect data in various formats, but they cannot fully
utilise these data to support their resource management. It is evi-
dent that the analysis and interpretation of the collected data need
to be automated, so that large data volumes can be transformed into
operational knowledge. Events are particularly important pieces of
knowledge, as they represent activities of special significance for and
within an organisation. Therefore, the processing and, in particular,
the recognition of events, is of utmost importance.

Systems for event recognition (‘event pattern matching’) accept as
input time-stamped simple, derived events (SDE). A SDE (‘low-level
event’, ‘short-term activity’) is the result of applying a computational
derivation process to some other event, such as an event coming from
a sensor [9]. Using SDE as input, event recognition systems identify
composite events (CE) of interest—collections of events that satisfy
some pattern. The ‘definition’ of a CE (‘high-level event’, ‘long-term
activity’) imposes temporal and, possibly, atemporal constraints on
its subevents (‘members’), that is, SDE or other CE.

We present an event processing system recognising CE for intelli-
gent resource management (IRM). The need for IRM spans across
many applications. In emergency rescue operations, for example,
there is a pressing need for real-time decision support that facilitates
the fastest possible completion of the operation with the minimum
possible casualties. An operation manager needs to be aware of a
dynamically evolving emergency and decide, in real-time, how to
deploy and manage a rescue team in order to complete a rescue oper-
ation. Additionally, there is a need for off-line retrospective analysis
of operations for debriefing and training sessions.

In the proposed system, hereafter EP-IRM, data is constantly ac-
quired, synchronised and aggregated from various types of sensor in-
stalled in the infrastructure of the end user (for example, fire brigade),
and from various modes of interaction between the actors of the
application in hand (for instance, fire brigade officers). The aggre-
gated data is analysed and enhanced with spatial information in or-
der to extract SDE. Then, event recognition techniques are applied
on the SDE streams in order to recognise, in real-time, CE. Given a
SDE stream concerning the interactions of rescue workers and cli-
mate sensor data, for instance, the criticality of a rescue operation
1 NCSR Demokritos, Greece, email: {a.artikis, paliourg}@iit.demokritos.gr
2 Universität Paderborn, C.I.K., Germany, email: {marterer,

pottebaum}@cik.uni-paderborn.de

is automatically detected for the benefit of the operation manager,
responsible for resource management. A user-friendly IRM compo-
nent provides an interface to EP-IRM which is used to support the
decision-making process at that level.

EP-IRM, therefore, seamlessly integrates various types of novel
event processing component for real-time CE recognition given mul-
tiple sources of information. EP-IRM has been deployed, in the con-
text of the PRONTO project3, in two very different application do-
mains: management of emergency rescue operations and city trans-
port. Furthermore, the evaluation of EP-IRM shows that it may sup-
port real-time decision-making in most application domains.

2 Demonstration Cases

EP-IRM has been used for supporting city transport management
(CTM) in Helsinki, Finland. Buses and trams are equipped with in-
vehicle units that send GPS coordinates, acceleration information,
in-vehicle temperature and noise level to a central server providing
information about the current status of the transport system (for ex-
ample, the location of buses and trams on the city map). Given the
SDE extracted from such sensors, and from other data sources such
as digital maps, CE are recognised related to the punctuality of a ve-
hicle, passenger and driver comfort, passenger and driver safety, and
passenger satisfaction. The recognised CE are made available to the
transport control centre in order to facilitate decision-making.

EP-IRM has also been used for supporting the emergency rescue
operations (ERO) of the Fire Department of Dortmund, Germany.
Input for CE recognition is gathered during regular daily business—
using fire detection systems and weather information services—as
well as in exceptional situations, that is, during an operation. An
emergency and its evolution are observed by smoke and gas detec-
tors. The emergency response is monitored by GPS, fuel and water
sensors mounted on the vehicles used in the response. The SDE de-
tectors operating on these sensors send data to control centres. Fur-
thermore, rescue officers perform reconnaissance actions and com-
municate results to command posts—commanders enter information
about the environment, the emergency and the response into support
systems. The communication channel and the interaction with such
systems are also used for SDE detection. The CE recognised on the
SDE streams concern changes in the need for operations and the crit-
icality of operations, among others—such CE allow decision-makers
to perform goal-oriented improvisation and disposition of resources.

Both ERO and CTM require event processing in critical, complex
situations that are characterized by the need for decisions, the ex-
istence of alternative options, high interdependencies between and
intransparency of system elements, irreversible actions and challeng-
ing time constraints [3]. Decision-makers are part of high reliability
organizations, managing assessable but unforeseeable risks. In the
case of an abnormal situation, such as an emergency, it is necessary

3 http://www.ict-pronto.org/

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-943

943

to recognise the events of interest, interpret the context, derive action
alternatives and make a decision. Due to time constraints, it is often
impossible to analyse the effects of each possible action. There is a
need, therefore, for CE recognition and decision support [7].

������

��	
��	����������	
�

����������
�	

������	����������	
�

������ ������

�����
	
�	���
������	
�

����
�����	���
������	
�

����
�����	���
������
�	

��
�	�
�������	������

��
�	� ��������!��
	��
���
������	
�

�
��	��
�	
�	��

��
�	�"��

�		��	����
��

���
��
��
	���

###

�����
	
�	���
������
�	

###

Figure 1. EP-IRM architecture.

3 System Architecture
EP-IRM is based upon the principles of event-driven, service-
oriented architectures [10]. It is divided into subsystems containing
one or more components—see Figure 1. Due to the modular de-
sign and loose coupling of EP-IRM, components written in various
programming languages can be added, replaced or removed with-
out much effort. All subsystems are connected through the Message-
Oriented Middleware (MOM). The MOM is based on HornetQ,
which is the JBoss application server implementation of the Java
Message Service (JMS) standard. Messages in the MOM represent
events communicated between subsystems.

EP-IRM includes components detecting SDE from audio, video,
text, location, temperature, acceleration, and vehicle engine data.
Following the publish-subscribe pattern, components may act as
event producers or event consumers. For example, the SDE detec-
tion components consume raw events coming from sensors (micro-
phones, cameras, GPS, etc) in order to produce SDE. The CE recog-
nition component consumes SDE in order to produce CE. All events
are logged in a semantic data store which is accessible via the MOM.

The application subsystem includes the web applications (‘apps’)
directly available to the user through a web-based interface. The
Statistics app, for example, calculates and visualises event-based sta-
tistical information, such as bus/tram fuel consumption in CTM.
To facilitate the communication between apps, an event bus is em-
ployed. Apart from web applications, the application subsystem is
open for integration with stand-alone software tools like ‘Observer’.
This tool supports post-operation use cases such as debriefings and
operating reports. The EP-IRM application subsystem and the user
interface are further discussed in Section 5.

The system is fully functional and integrated into the end-users’
infrastructures in Helsinki and Dortmund. The two installations do
not have exactly the same modules as in CTM and ERO there are
different types of sensor and user interaction. Next, we briefly present
the CE recognition component. Due to space limitations we cannot
present in detail the remaining EP-IRM modules.

4 Composite Event Recognition
Our component for CE recognition is a logic programming (Prolog)
implementation of an Event Calculus (EC) dialect. EC [8] is a logic

programming language for representing and reasoning about events
and their effects. The benefits of a logic programming approach to
CE recognition are well-documented [11]: such an approach has a
formal, declarative semantics, is highly expressive, has direct routes
to machine learning for automatically constructing CE definitions
(see, for instance, [6]), and has direct routes to reasoning under un-
certainty for addressing the issues of noisy SDE streams and im-
precise CE definitions (see, for example, [5]). The use of EC has
additional advantages: the process of CE definition development is
considerably facilitated, as EC includes built-in rules for complex
temporal representation and reasoning, including the formalisation
of inertia. With the of EC one may develop intuitive, succinct CE
definitions, facilitating the interaction between CE definition devel-
oper and domain expert, and allowing for code maintenance.

4.1 Representation
For the EC dialect presented here, ‘Event Calculus for Run-Time
reasoning’ (RTEC), the time model is linear and includes integers.
Where F is a fluent—a property that may have different values at dif-
ferent time-points—the term F =V denotes that fluent F has value
V . Boolean fluents are a special case in which the possible values
are true and false. Informally, F =V holds at a particular time-point
if F =V has been initiated by an event at some earlier time-point,
and not terminated by another event in the meantime (law of inertia).

Table 1. Main predicates of RTEC.

Predicate Meaning

happensAt(E, T) Event E is occurring at time T

initially(F =V) The value of fluent F is V at time 0

holdsAt(F =V, T) The value of fluent F is V at time T

holdsFor(F =V, I) I is the list of maximal intervals
for which F =V holds continuously

initiatedAt(F =V, T) At time T a period of time
for which F =V is initiated

union all(L, I) I is the list of maximal intervals
produced by the union of the lists
of maximal intervals of list L

intersect all(L, I) I is the list of maximal intervals
produced by the intersection of
the lists of maximal intervals of list L

relative I is the list of maximal intervals
complement all(I ′,L, I) produced by the relative complement

of the list of maximal intervals I′
with respect to
every list of maximal intervals of list L

An event description in RTEC includes axioms that define the
event occurrences (with the use of the happensAt predicates), the ef-
fects of events (with the use of the initiatedAt predicates), and the val-
ues of the fluents (with the use of the initially, holdsAt and holdsFor
predicates). Table 1 summarises the RTEC predicates available to the
CE definition developer. Variables, starting with an upper-case letter,
are assumed to be universally quantified unless otherwise indicated.
Predicates and constants start with a lower-case letter.

The city transport officials are interested in computing, for exam-
ple, the intervals during which a vehicle is (non-)punctual. This may
be achieved in RTEC as follows:

initially(punctuality(,)= punctual) (1)

initiatedAt(punctuality(Id ,VT)= punctual , T)←
happensAt(enter stop(Id ,VT ,Stop, scheduled),),
happensAt(leave stop(Id ,VT ,Stop, scheduled), T)

(2)

initiatedAt(punctuality(Id ,VT)= punctual , T)←
happensAt(enter stop(Id ,VT ,Stop, early),),
happensAt(leave stop(Id ,VT ,Stop, scheduled), T)

(3)

A. Artikis et al. / Event Processing for Intelligent Resource Management944

initiatedAt(punctuality(Id ,VT)=non punctual , T)←
happensAt(leave stop(Id ,VT , , early), T)

(4)

initiatedAt(punctuality(Id ,VT)=non punctual , T)←
happensAt(leave stop(Id ,VT , , late), T)

(5)

enter stop and leave stop are instantaneous SDE, determined from
sensor data and a database of timetable information. Id represents
the id of a vehicle, VT represents the type of a vehicle (bus or tram),
Stop is the code of a stop, and ‘ ’ is an ‘anonymous’ Prolog vari-
able. Initially, every vehicle is punctual. Thereafter punctuality is
affected by the enter stop and leave stop events. A vehicle is said
to be punctual if it arrives at a stop on or before the scheduled time,
and leaves the stop at the scheduled time. A vehicle is said to be
non-punctual if it leaves the stop before or after the scheduled time.
Computing the maximal intervals during which a vehicle is continu-
ously (non-)punctual is achieved by computing the maximal intervals
of punctuality using the built-in holdsFor predicate.

Transport officials are also interested in recognising punctuality
change. Consider the following formalisation:

happensAt(punctuality change(Id ,VT ,Value), T)←
holdsFor(punctuality(Id ,VT)=Value, I),
(T ,) ∈ I , T �= 0

(6)

This rule uses holdsFor to compute the maximal intervals for which
a vehicle is continuously (non-)punctual. Punctuality changes at the
first time-point of each of these intervals—see the penultimate con-
dition of rule (6).

Briefly, to compute the maximal intervals during which
a fluent F has value V continuously, that is, to compute
holdsFor(F =V, I), we find all time-points Ts in which F =V is ini-
tiated, and then, for each Ts, we compute the first time-point Tf after
Ts in which F =V is terminated. The time-points in which F =V
is initiated are computed with the use of initiatedAt(F =V, T) rules.
The time-points in which F =V is terminated are computed with the
use of initiatedAt(F =V ′, T) rules where V �= V ′.

In addition to the domain-independent definition of holdsFor, an
event description may include domain-dependent holdsFor rules. Such
rules use interval manipulation constructs. RTEC supports three such
constructs: union all, intersect all and relative complement all (see Table
1). I in union all(L, I) is a list of maximal intervals that includes each
time-point of each list of L. I in intersect all(L, I) is a list of maximal
intervals that includes each time-point that is part of all lists of L. I
in relative complement all(I ′, L, I) is a list of maximal intervals that
includes each time-point of I ′ that is not part of any list of L. Three
example domain-dependent holdsFor rules are the following:

holdsFor(driving quality(Id ,VT)= high, I)←
holdsFor(driving style(Id ,VT)= uncomfortable, I ′),
holdsFor(driving style(Id ,VT)= unsafe, I ′′),
holdsFor(punctuality(Id ,VT)= punctual , I ′′′),
relative complement all(I ′′′, [I ′, I ′′], I)

(7)

holdsFor(driving quality(Id ,VT)=medium, I)←
holdsFor(driving style(Id ,VT)= uncomfortable, I ′),
holdsFor(punctuality(Id ,VT)= punctual , I ′′),
intersect all([I ′, I ′′], I)

(8)

holdsFor(driving quality(Id ,VT)= low , I)←
holdsFor(driving style(Id ,VT)= unsafe, I ′),
holdsFor(punctuality(Id ,VT)=non punctual , I ′′),
union all([I ′, I ′′], I)

(9)

punctuality was defined by rules (1)–(5), while the definition of

driving style is omitted to save space. High quality driving is recog-
nised when a vehicle is punctual and the driving style is neither un-
safe nor uncomfortable. Medium quality driving is recognised when
the driving style is uncomfortable and the vehicle is punctual. Low
quality driving is recognised when the driving style is unsafe or the
vehicle is non-punctual.

The use of interval manipulation constructs leads to a simple
representation of the CE concerning driving quality. In the ab-
sence of these constructs, one would have to adopt the traditional
style of EC representation, that is, identify all conditions in which
driving quality(Id ,VT)= high (respectively =medium , = low)
is initiated, all conditions in which this CE is terminated, and then
use the domain-independent holdsFor predicate to compute the max-
imal intervals of the CE. Such a formalisation would be more
complex than the representation of rule (7) (respectively, rules (8)
and (9)). In general, the use of RTEC constructs manipulating
intervals—union all, intersect all and relative complement all—may sig-
nificantly simplify the definitions of durative CE. With the use of
union all, for example, we are able to develop succinct representations
of most definitions of the durative CTM CE. The interval manipula-
tion constructs can also lead to much more efficient CE recognition.

4.2 Reasoning

Typically, CE recognition has to be efficient enough to support real-
time decision-making, and scale to very large numbers of SDE.
These SDE may not necessarily arrive at the CE recognition system
in a timely manner, that is, there may be a (variable) delay between
the time at which SDE take place and the time at which they arrive
at the CE recognition system. Moreover, SDE may be revised, or
even completely discarded in the future. Consider, for example, the
case where the parameters of a SDE were originally computed erro-
neously and are subsequently revised, or the retraction of a SDE that
was reported by mistake, and the mistake was realised later [1]. Note
that SDE revision is not performed by the CE recognition system, but
by the underlying SDE detection system. The effects of SDE revision
are computed by the CE recognition system, provided that the latter
supports such functionality.

RTEC performs run-time CE recognition by computing and stor-
ing the maximal intervals of fluents and the time-points in which
events occur. CE recognition takes place at specified query times
Q1, Q2, At each query time Qi only the SDE that fall within
a specified interval—the ‘working memory’ or ‘window’ (WM)—
are taken into consideration: all SDE that took place before or on
Qi−WM are discarded. This is to make the cost of CE recognition
dependent only on the size of WM and not on the complete SDE his-
tory. The size of WM, as well as the temporal distance between two
consecutive query times—the ‘step’ (Qi−Qi−1)—is chosen by the
user. Consider the following cases:

• WM<Qi−Qi−1. In this case, the effects of the SDE that took
place in (Qi−1, Qi−WM] will be lost.

• WM=Qi−Qi−1. In this case, no information will be lost, pro-
vided that all SDE arrive at RTEC in a timely manner, and there is
no SDE revision. If SDE do not arrive in a timely manner, then the
effects of SDE that took place before Qi but arrived after Qi will
be lost. Furthermore, if SDE are revised, the effects of the revision
of SDE that took place before Qi and were revised after Qi will
be lost.

• WM>Qi−Qi−1. In the common case that SDE arrive at RTEC
with delays, or there is SDE revision, it is preferable to make WM
longer than the step. In this way, it will be possible to compute,

A. Artikis et al. / Event Processing for Intelligent Resource Management 945

at Qi, the effects of SDE that took place in (Qi−WM, Qi−1], but
arrived at RTEC after Qi−1. Moreover, it will be possible to com-
pute, at Qi, the effects of the revision of SDE that took place in
(Qi−WM, Qi−1] and were revised after Qi−1.

Even when WM>Qi−Qi−1 information may be lost. The effects of
SDE that took place before or on Qi−WM and arrived after Qi−1

are lost. Similarly, the effects of the revision of SDE that took place
before or on Qi−WM and were revised after Qi−1 are lost. To reduce
the possibility of losing information, one may increase the size of
WM; in this case, however, recognition efficiency will decrease.

RTEC is the most appropriate EC dialect for run-time CE recog-
nition as, among others, it is the only EC dialect operating on WM ,
being therefore independent of the complete SDE history. A detailed
account of our CE recognition component and a comparison with
related (EC-based) approaches are given in [2].

When SDE arrive with a variable delay, or when SDE are revised
by the SDE detection components, some of the CE intervals com-
puted and stored at an earlier query time may be, partly or com-
pletely, retracted at the current or a future query time. Depending
on the requirements of the application under consideration, RTEC
may report to the user:

• CE as soon as they are recognised, even though the intervals of
these CE may be partly or completely retracted in the future.

• CE whose intervals may be partly, but not completely, retracted in
the future.

• CE whose intervals will not be, even partly, retracted in the future.

5 Evaluation
By far the most computationally expensive EP-IRM component is the
CE recognition component. Moreover, CTM proved to be more com-
putationally demanding than ERO with respect to CE recognition.
Therefore, we present experimental results concerning CE recogni-
tion for CTM. The experiments were performed on a computer with
Intel i7 950@3.07GHz processors and 12GiB RAM, running Ubuntu
Linux 11.04 and YAP Prolog 6.2.0.

Figure 2 shows the results of experiments concerning CE recog-
nition at rush hour in Helsinki. At most 1050 vehicles, that is, 80%
of the total number of available vehicles, operate at the same time in
Helsinki during rush hour. Due to the unavailability of real datasets
at that scale, we simulated rush hour operations using synthetic
datasets. Experts estimate that no more than 350 SDE can be de-
tected per second on the 1050 operating vehicles. We were thus able
to test RTEC under the maximum expected frequency of SDE.

Figure 2 presents the recognition times of RTEC in CPU millisec-
onds (ms) concerning three sets of experiments. First, we used a sin-
gle processor to perform CE recognition for all 1050 vehicles. In this
case, the intervals of 21000 CE (1050 vehicles × 20 CE per vehi-
cle) are computed and stored. Second, we used four processors in
parallel. Each instance of RTEC running on a processor performed
CE recognition for one quarter of all operating vehicles, that is, 263
vehicles, computing and storing the intervals of 5260 CE. Third, we
used all eight processors of the computer in parallel. Each instance
of RTEC running on a processor performed CE recognition for one
eighth of all operating vehicles, that is, 132 vehicles, and computed
and stored the intervals of 2640 CE.

In all sets of experiments the input was the same: SDE coming
from all 1050 vehicles. In other words, there was no filtering of SDE
in these experiments to restrict the input relevant for each processor.

The datasets used for evaluation include SDE that are not chrono-
logically ordered. The step is set to 1 sec (350 SDE), while WM

0

50

100

150

200

250

300

350

400

450

Ti
m

e
(m

s)

Working Memory

1 processor 4 processors 8 processors

Figure 2. Total RTEC time: CE recognition during rush hour in Helsinki,
step set to 1 sec = 350 SDE.

ranges from 4 sec (1400 SDE) to 25 sec (8750 SDE). We found (in
experiments not presented here due to lack of space) that reducing
the step size reduces recognition times very slightly. Given the cur-
rent infrastructure in Helsinki, a 10 sec WM is sufficient, that is, a
delay in the arrival of a SDE is expected to be less than 10 sec. Other
CTM infrastructures may require different WM sizes.

Figure 2 shows that we can achieve a significant performance gain
by running RTEC in parallel on different processors. Such a gain is
achieved without requiring SDE filtering.

Apart from quantitative evaluation, we performed qualitative,
user-oriented evaluation—we estimated the impact of EP-IRM on
the end user organisations by means of interviews. Qualitative eval-
uation is related to questions of effectiveness (does EP-IRM fit to
its intended purpose?), efficiency (does EP-IRM facilitate quick task
conduction?) and user satisfaction (do users feel comfortable using
EP-IRM?). In what follows, we briefly discuss the qualitative evalu-
ation of EP-IRM on ERO. This type of evaluation was considerably
aided by the visualisation capabilities of EP-IRM—see Figure 3. Use
cases are implemented by several apps which build the integrated
user interface. Each of the apps is represented by a window. Real-
time information, including the CE and SDE recognised at each time,
is continuously updated without user interaction (push paradigm). A
user bar allows the configuration of apps and views. On the left hand
side, each app can be switched on or off by a button. On the right
hand side, different views for different user roles and operation con-
text can be selected.

The IRM app, for example, shows a logical view of the system’s
status. For example, in ERO the IRM app displays a tree view of the
rescue operation command structure current at each time. Moreover,
it shows the list of dangers of an operation, highlighting new ones in
order to enable a commander to react to them. The MAP app presents
a geo-based view of the system’s status. For example, it displays po-
sitions of vehicles (fire brigade vehicles in ERO and buses and trams
in CTM) and additional vehicle information or marked zones. Inter-
actions between vehicles and spatial entities (such as an emergency
area in ERO or a a dangerous intersection in CTM) are prominently
highlighted. All apps are connected to each other (via an event bus).
For instance, when a new danger occurs and is shown in the IRM
app, the user can click on it and its position as well as related infor-
mation (such as a photo of the danger location) will be presented on
the MAP app. Apps act as event consumers—for instance, the Event
Visualisation app consumes SDE and CE in order to display them in

A. Artikis et al. / Event Processing for Intelligent Resource Management946

Figure 3. The EP-IRM user interface for the real-time use cases.

a time-line to the user. Moreover, apps act as event producers. Con-
sider, for example, the case in which a rescue operation commander
creates an operational section using the IRM app in order to better
manage the operation. In this case the event ‘section created’ will be
produced and published in the MOM so that other components, such
as the CE recognition component, may consume it. Similarly, when
a commander drags & drops tactical symbols onto the map to denote
a danger, the ‘danger occurred’ event is transmitted to the MOM.

The main goal of the qualitative evaluation is to estimate the user
satisfaction. We correlate user satisfaction with the added value per-
ceived by practitioners when using EP-IRM. All fire officers an-
swered questions targeting the added value offered by EP-IRM. For
real-time decision support, as well as debriefing and training ses-
sions, users assessed the innovation with respect to known informa-
tion management solutions. All interviewees acknowledged the po-
tential of CE recognition in large-scale operations. These operations
are characterised by a high number of influencing elements (for ex-
ample, danger events, resources performing actions and communica-
tion) with complex relations. Interviewees stated that the recognised
CE add significant value to domain-specific, state-of-the-art infor-
mation management tools. Not surprisingly, higher-level officers saw
increased added value than lower-level officers.

6 Lessons Learned
One of the challenges we had to face during the project concerns the
understanding and use of the term ‘event’. As an example, nearly
80% of ERO interviewees reduced the scope of ‘event’ to an emer-
gency (for example, dangers happening in a specific environment)—
they did not correlate this term with the emergency response (for
instance, forces starting fire fighting) which is prominent in the ERO
CE definitions. We found it impossible to introduce a shared under-

standing of ‘event’, and accepted the terminology divergence in our
interviews with end users concerning requirements specification, in-
cluding CE definition, as well as system evaluation. The researchers
conducting the interviews had to ensure that statements made by end
users were appropriately interpreted.

A more significant challenge we had to face concerns CE defi-
nition. Although end users had initially some idea about the CE of
interest, the definitions of these CE were unclear. In other words, all
conditions in which a CE should be recognised were not clear. Con-
sequently, CE definitions were frequently updated during the lifetime
of the project, sometimes as a result of new sensor types that became
available at the end user infrastructure—SDE detected on the new
sensor types lead to more accurate CE recognition. The use of RTEC
facilitated considerably the interaction between CE definition devel-
opers (programmers) and end users. With the use of RTEC we could
produce succinct, intuitive CE definitions that could be understood,
and sometimes directly manipulated, by end users.

The biggest challenge we had to face concerns data collection and
annotation. Most CE represent ‘abnormal’ situations, such as emer-
gencies in ERO, that rarely take place. Consequently, the collection
of sufficient amounts of data including all anticipated CE required
a lot of time. Moreover, given the fact that end users were unclear
about the definitions of CE, data annotation (to provide the ground
truth for CE recognition) by this group of stakeholders was very chal-
lenging. Data annotation was also challenging due to the fact that CE
have relatively (very) short duration. To address these issues, we had
to carefully plan data collection (for instance, align with the training
exercise schedule of fire brigade officers). Moreover, we collected
data at many stages of the development of EP-IRM, in order to allow
for the refinement of this process—for example, give recommenda-

A. Artikis et al. / Event Processing for Intelligent Resource Management 947

tions to members of the end user organisations on how to improve
data collection and annotation. To allow for testing EP-IRM at the
early stages of the project where sufficient data were unavailable, we
developed data generators simulating CTM and ERO operations.

End users are not always able to quantitatively estimate event
recognition. Therefore we had to extend the validation approach of
[12] by allowing for qualitative evaluation. Users do not always think
of milliseconds—they sometimes think about the processes before
which a CE should be recognised. For example, the ‘demand for ad-
ditional resources’ ERO CE should be recognised anytime before the
following reconnaissance. One aspect that we did not anticipate con-
cerns the fact that end users do not always have high performance
requirements. For example, some rescue officers accepted delays up
to one minute concerning the recognition of some CE because they
would not be able to use this information (recognised CE) earlier.
This is supported by the fact that briefings, debriefings and operating
reports are highlighted as major use cases for EP-IRM in addition to
real-time event recognition and visualisation.

Concerning recognition accuracy, the assumption of perfect pre-
cision and recall was challenged by end users. A 95% accuracy is
acceptable by most users. The accuracy of EP-IRM, therefore, was
found acceptable. The interviews showed that the impact of false
negatives is diverse. In some cases, such as when a ‘resource de-
parted’ in order to participate in an emergency operation, but this CE
was not recognised, false negatives lead to an overestimation of the
necessary resources, but have no negative influence on an emergency.
The impact of false positives is much more critical up to ‘not accept-
able’. Only a few officers deviate from this judgement who would
double-check information provided by an event processing system.

End users benefit from, and often demand, explanation facilities
from the event processing system. When various recognised CE were
presented to the users, an explanation concerning CE recognition was
required (‘drill down’)—what are the occurrences of the subevents of
the CE that lead to the CE recognition? Such a feature is deemed nec-
essary both for run-time and off-line use of the system. Building upon
Prolog’s tracing facility, we can already offer a form of explanation
facility.

7 Summary & Transferability
We presented EP-IRM, an event processing system supporting intel-
ligent resource management. EP-IRM seamlessly integrates various
types of novel event processing component for CE recognition given
multiple sources of information, including various types of sensor
and modes of actor interaction. The complex CTM and ERO CE def-
initions enabled us to perform a realistic evaluation of the perfor-
mance of EP-IRM. According to the results of the use case survey
of the Event Processing Technical Society [4], in most application
domains there are at most 1000 SDE per second. Our experimental
evaluation showed that EP-IRM supports real-time decision-making
in such domains.

EP-IRM has been deployed in the two very different application
domains of ERO and CTM. Below we discuss what needs to be done
in order to use EP-IRM in other domains.

If necessary, the MOM may be replaced by any JMS implementa-
tion. Many apps are generic and may be used in several application
domains (for example, the same MAP and Event Visualisation apps
are used both in CTM and ERO), while some are domain-specific.
The apps are independent and may be replaced, and new ones added,
seamlessly. Most SDE detection components may be easily reused
in any application domain. The audio SDE detection component, for
example, consists of a model-free approach that may work in many

fields without much adaptation. The video component for unusual
SDE detection may be employed in any domain in which there is
a need for monitoring (large) human crowds. Its sensitivity may be
adapted by adjusting only a small number of parameters. Moreover,
it is nearly independent from the camera viewpoint.

On the contrary, the speech detection component used in ERO has
to be adapted heavily for each new application domain. Currently it
is optimised for TETRA radio messages in German in the setting of
fire fighter operations. Changing these conditions needs major effort.

In some application domains it may be required to use a subset
of the EP-IRM modules—for example, there is no need for speech
detection in CTM. The modular design and loose coupling of EP-
IRM facilitates the process of removing/adding modules.

The reasoning algorithms of the CE recognition component are
generic and may de directly used in any application domain. If EP-
IRM is used for CTM or ERO using another transport or fire brigade
infrastructure, for example CTM in London, then the CE definition
library may need to be updated in order to meet the requirements of
the new infrastructure—consider, for instance, the use of different
SDE. In this case, transfer learning techniques may be used to port
the existing CE definition library to the new domain. In any case,
the techniques for incremental, supervised machine learning devel-
oped in the context of the project [6] may be used for the automatic
construction/refinement of CE definitions. These techniques use SDE
streams annotated with CE to continuously update the structure of
existing CE definitions or construct definitions of new CE. Apart
from members of the end user organisations, the annotation of SDE
streams with CE may be performed by the users of the application
under consideration—for instance, people using public transporta-
tion communicating when a particular vehicle is driven in an unsafe
manner, when passenger satisfaction is reducing, and so on.

ACKNOWLEDGEMENTS
This work has been funded by the EU PRONTO project (FP7-ICT
231738).

REFERENCES

[1] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, ‘Retractable com-
plex event processing and stream reasoning’, in RuleML Europe, pp.
122–137, (2011).

[2] A. Artikis, M. Sergot, and G. Paliouras, ‘Run-time composite event
recognition’, in Proceedings of DEBS. ACM, (2012).

[3] A. Bennet and D. Bennet, Handbook on Decision Support Systems,
chapter The Decision-Making Process for Complex Situations in a
Complex Environment, 3–20, Springer, 2008.

[4] P. Bizzaro. Results of the survey on event processing use cases. Event
Processing Technical Society, 2011.

[5] J. Filippou, A. Artikis, A. Skarlatidis, and G. Paliouras, ‘A probabilistic
logic programming event calculus’, Technical report, Cornell Univer-
sity Library, (2012). http://arxiv.org/abs/1204.1851v1.

[6] N. Katzouris, J. Filippou, A. Skarlatidis, A. Artikis, and G. Paliouras.
Final version of algorithms for learning event definitions. Deliverable
4.3.2 of PRONTO, 2012. Available from the authors.

[7] Gary A. Klein, ‘A recognition-primed decision (RPD) model of rapid
decision making’, in Decision Making in Action: Models and Methods,
138–147, Norwood: Ablex Publishing Corporation, (1993).

[8] R. Kowalski and M. Sergot, ‘A logic-based calculus of events’, New
Generation Computing, 4(1), 67–96, (1986).

[9] D. Luckham and R. Schulte. Event processing glossary. Event Process-
ing Technical Society, 2008.

[10] G. Mühl, L. Fiege, and P. R. Pietzuch, Distributed event-based systems,
Springer, 2006.

[11] A. Paschke and M. Bichler, ‘Knowledge representation concepts for
automated SLA management’, Decision Support Systems, 46(1), 187–
205, (2008).

[12] E. Rabinovich, O. Etzion, S. Archushin, and S. Ruah, ‘Analyzing the
behavior of event processing applications’, in DEBS, ACM, (2010).

A. Artikis et al. / Event Processing for Intelligent Resource Management948

