
ER Designer Toolkit: A Graphical Event Definition
Authoring Tool

Pythagoras Karampiperis

Giannis Mouchakis

George Paliouras

Vangelis Karkaletsis

Software and Knowledge Engineering Laboratory, Institute of Informatics and Telecommunications, National Center

for Scientific Research �“Demokritos�”
Agia Paraskevi Attikis, P.O.Box 60228, 15310 Athens, Greece

pythk@

iit.demokritos.gr
gmouchakis@

gmail.com
paliourg@

iit.demokritos.gr
vangelis@

iit.demokritos.gr

ABSTRACT
Currently there exist several tools for Complex Event
Recognition, varying from design platforms for business process
modeling (BPM) to advanced Complex Event Processing (CEP)
engines. Several efforts have been reported in literature aiming to
support domain experts in the process of defining event
recognition (ER) rules. However, few of them offer graphical
design environments for the definition of such rules, limiting the
broad adoption of ER systems. In this paper, we present a
graphical Event Definition Authoring Tool, referred to as the
Event Recognition Designer Toolkit (ERDT) with which, a
domain expert can easily design event recognition rules on
temporal data and produce standalone Event Recognizers.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; I.5
[Pattern Recognition]: Miscellaneous

General Terms
Design, Documentation.

Keywords
Authoring Tools, Complex Event Processing, Event Recognition.

1. INTRODUCTION
Today's organisations are able to collect data in various structured
and unstructured digital formats, but they do not have the
capability to fully utilise these data to support and improve their
resource management process. It is evident that the analysis and
interpretation of the collected data needs to be automated and
transformed into operational knowledge.

Events are particularly important pieces of knowledge, as they
represent the temporal nature of the processes taking place in an
organisation. Therefore, the recognition of events is of outmost
importance in resource management [7].

Currently there exist several tools for Complex Event
Recognition, varying from design platforms for business process
modeling (BPM) to advanced Complex Event Processing (CEP)

engines. Several efforts have been reported in literature aiming to
support domain experts in the process of defining event
recognition (ER) rules. However, few of them offer graphical
design environments for the definition of such rules.

In this paper, we present a graphical Event Definition Authoring
Tool with which, a domain expert can easily design event
recognition rules on temporal data and produce standalone Event
Recognizers.

The paper is structured as follows: First, we discuss the authoring
tools available in literature, which offer graphical design
environments. Then, we discuss the design requirements towards
a graphical authoring tool that supports domain experts in the
process of defining event recognition (ER) rules, and present the
architecture of our proposed tool. Finally, we discuss the
technologies used in the development of our tool and demonstrate
how the proposed tool can be used in practice.

2. ER AUTHORING TOOLS: A SHORT
SURVEY
In the literature, few systems have been proposed offering
graphical design environments for the definition of ER rules.
Below, we review these environments:

The Aleri Streaming Platform [1] is a system that offers a simple
graphical language to define event processing rules, by combining
a set of predefined operators. To increase the system's
expressiveness, custom operators can be defined using a scripting
language called Splash, which includes the capability of defining
variables to store past information items, so that they can be
referenced for further processing. Pattern detection operators are
provided as well, based on sequences. Pattern matching can take
place in the middle of a complex computation, and sequences may
use various attributes for ordering, other than timestamps. As a
consequence, the semantics of output ordering does not
necessarily reflect timing relationships between input items.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PETRA'11, May 25 - 27, 2011, Crete, Greece.

Copyright ©2011 ACM ISBN 978-1-4503-0772-7/11/05 ... $10.00

The platform is designed to scale by exploiting multiple cores on
a single machine or multiple machines in a clustered environment.
However, no information is provided on the protocols used to
distribute operators. Interestingly, the Aleri Streaming Platform is
designed to easily work together with other business instruments:
probably the most significant example is the Aleri Live OLAP
system, which extends traditional OLAP solutions [2] to provide
near real-time updates of information. Additionally, Aleri
provides adapters to enable different data formats to be translated
into flows of items compatible with the Aleri Streaming Platform,
together with an API to write custom programs that may interact
with the platform using either standing or one-time queries.

StreamBase [8] is a software platform that includes a data stream
processing system, a set of adapters to gather information from
heterogeneous sources, and a developer tool based on Eclipse. It
uses a declarative, SQL-like language for rule specification, called
StreamSQL [9]. Besides traditional SQL operators, StreamSQL
offers customizable time-based and count-based windows.
Additionally, it includes a simple pattern-based language that
captures conjunctions, disjunctions, negations, and sequences of
items. Operators defined in StreamSQL can be combined using a
graphical plan-based rule specification language, called
EventFlow. User-defined functions, written in Java or C++, can
be added as custom aggregates.

Oracle CEP [5] is an event-driven architecture suite embedding
BEA's WebLogic Event Server. It provides real-time information
flow processing, and uses CQL as its rule definition language.
Similar to StreamBase, it adds a set of relation-to-relation
operators designed to provide pattern detection, including
conjunctions, disjunctions, and sequences. An interesting aspect
of this pattern language is the possibility for users to program the
selection and consumption policies of rules.

Like in StreamBase, a visual, plan-based language is also
available inside a development environment based on Eclipse.
This tool enables users to connect simple rules into a complex
execution plan. Oracle CEP is integrated with existing Oracle
solutions, which includes technology for distributed processing in
clustered environment, as well as tools for analysis of historical
data.

Tibco Business Events [10] is another widespread complex event
processing system. It is mainly designed to support enterprise
processes and to integrate existing Tibco products for business
process management. To do so, Tibco Business Events exploits
the pattern-based language of Rapide, which enables the
specification of complex patterns to detect occurrences of events
and the definition of actions to automatically react after detection.
Interestingly, the architecture of Tibco Business Events is capable
of decentralized processing, by defining a network of event
processing agents: each agent is responsible for processing and
filtering events coming from its own local scope.

Other widely adopted commercial systems exist, for which,
unfortunately, documentation or evaluation copies were not
available. We mention here some of them.

IBMWebSphere Business Events: IBM acquired AptSoft CEP
system during 2008 and renamed it to WebSphere Business
Events [3]. Today, it is fully integrated inside the WebSphere
platform, which can be deployed on a clustered environment for
faster processing. IBM WebSphere Business Events provides a
graphical front-end, which helps users writing rules in a pattern-

based language. Such a language allows detection of logical,
causal, and temporal relationships between events, using an
approach similar to the one described for Tibco Business Events.

Progress Apama Event Processing Platform: The Progress Apama
Event Processing Platform [6] has been recognized as a market
leader for its solutions and for its strong market presence [4]. It
offers a development tool for rule definition, testing and
deployment, and a high performance engine for detection.

3. DESIGN REQUIREMENTS FOR ER
AUTHORING TOOLS
From the review of the ER Authoring Tools, we can observe that
all of them use either a query-based or a rule-based ER language
approach. Moreover each of them supports a single ER language.

Table 1. Features of the examined Authoring Tools

ER
Authoring

Tool

Query-
based

Rule-
based

User
Opera
tors

Multi
ple

Lang.

Open
Source

Cross-
platform

Aleri - - - -

Apama - N/A - - -

IBM WSBE - N/A - -

OracleCEP - - -

Streambase - - -

Tibco - - - -

Furthermore, not all the tools support the definition of user-
defined operators. As a result the flexibility in the design is
limited. Although most systems are cross-platform, none of them
is open source. Thus, their wide adoption is restricted by the
business strategies of their vendors. These observations are
summarized in Table 1.

As a result, our tool should meet the following design
considerations:

 Provide a graphical user interface, that is simple and user
friendly. This will help a domain expert to design event
rules without having to be familiar with the details of the
ER language in use.

 Provide the ability to generate ER rules using both query
and rule-based ER languages. This can make the tool
interoperable in many different ER platforms.

 Support user-defined operators, in order to increase the
tool�’s flexibility.

 Be cross platform and open source, so that it can be shared
with the community, maximizing its impact and possible
extension.

4. AUTHORING TOOL ARCHITECTURE
By taking the above mentioned design considerations into
account, we defined the architecture of the ER Authoring Tool.

The architecture of the tool has been specified so as to be
adaptable to specific requirements resulting from the Event
Recognition language in use, as well as, to be extendable to
support new Event Recognition languages and user-defined Event
Recognition building blocks (operators). Moreover, the tool uses
cross-platform technologies, which maximize the potential of its
use.

The architecture consists of the following main components, as
depicted in Figure 1:

 The Design Engine. This is where the rules are created in
the form of a directed acyclic graph of operators. The engine
is the result of the combination of a Graphical Domain
Model with a Validation Model. The Graphical Domain
Model provides the engine with all the information needed
to design a model. It uses a pool of available operators
(constructs) and the Palette Model which provides the
different figures for the representation of the constructs and
the type of connections between them. The Validation
Model is a set of integrity constraints that the generated
graph should meet, e.g. the graph should be acyclic, two
constructs cannot have the same name property etc.

 The ER Rule Generator which processes the directed acyclic
graph and creates rules in an ER language-independent
form. It can also extend the pool of the available constructs
by transforming a rule to a new construct which can be used
in the Design Engine.

The ER Language Compiler. The compiler uses an extendable
pool of ER Language Libraries and transforms the generated rules
into Event Recognizers that use the preferred ER language.

Constructs

Extend
Constructs
Pool

ER
Language
Libraries

Directed
Acyclic

Graph of Constructs

Event
Recognizers

Design
Engine

Validation
Model

G
ra

ph
ic

al
D

om
ai

n
M

od
el

ER
Rule Generator
(Language Independent)

Palette
Model

ER
Language Compiler

Figure 1. Authoring Tool Architecture

5. AUTHORING TOOL TECHNOLOGIES
The ER Authoring Tool was developed in Eclipse Helios 3.6.1
and is written in Java SE 6. We used the Eclipse Graphical
Modeling Framework (GMF) which is a component of the Eclipse
Modeling Project and uses the Eclipse Modeling Framework
(EMF) and the Graphical Editing Framework (GEF). Below is a
brief description of those technologies:

 Graphical Modeling Framework (GMF): Released as part
of the Eclipse 3.2 Callisto in June 2006. It is a framework
for building modeling-like graphical Eclipse-based editors

such as UML editors, workflow editors, etc. The framework
can be divided into two main components: the tooling and
the runtime. The tooling consists of editors to create/edit
models describing the notational, semantic and tooling
aspects of a graphical editor, as well as a generator to
produce the implementation of graphical editors. The
generated plug-ins depend on the GMF Runtime component
to produce a world class extensible graphical editor.

 Graphical Editing Framework (GEF): An open source
framework which provides technology to create rich,
consistent graphical editors and views for the Eclipse
Workbench UI. It has been used to build a variety of
applications, such as state diagrams, activity diagrams, class
diagrams, GUI builders for AWT, Swing and SWT, and
process flow editors. It bundles three components:

 Draw2d: A layout and rendering toolkit for displaying
graphics on an SWT Canvas.

 GEF-MVC: An interactive model-view-controler
(MVC) framework, which fosters the implementation of
SWT-based tree and Draw2d-based graphical editors for
the Eclipse Workbench UI.

 Zest: A visualization toolkit based on Draw2d, which
enables implementation of graphical views for the
Eclipse Workbench UI.

 Eclipse Modeling Framework Project (EMF): A modeling
framework and code generation facility for building tools
and other applications based on a structured data model.
From a model specification described in XML, EMF
provides tools and runtime support to produce a set of Java
classes for the model, a set of adapter classes that enable
viewing and command-based editing of the model, and a
basic editor. Models can be specified using annotated Java,
XML documents, or modeling tools like Rational Rose,
which can then be imported into EMF. Most important of
all, EMF provides the foundation for interoperability with
other EMF-based tools and applications.

6. THE ER AUTHORING TOOL IN BRIEF
Let A and B two events. Let us also assume that when an event A
or B happens, those events are characterized by a value, as well as
a timestamp indicating the event start time and finish time.

The current version (v1.0) of the ER Authoring Tool supports the
following temporal operators (constructs) over these events:

 (A OR B) (B OR A): The resulting event occurs when
at least one of A, B occurs.

 (A AND B) (B AND A): The resulting event occurs
when A and B occur concurrently.

 (A MINUS B): The resulting event occurs when A
occurs and B doesn�’t. Similarly, (B MINUS A): The
resulting event occurs when B occurs and A doesn�’t.

 (A XOR B) (B XOR A): The resulting event occurs
when only one of the A, B event occur. In other words:
(A XOR B) (B XOR A) (A MINUS B) OR (B
MINUS A).

DetectChange(A): The resulting event occurs when the
value of event A has changed.

The results of these operators are demonstrated in Figure 2.

Figure 2. Use of Temporal Operators

The current version of the ER Authoring Tool also supports the
following logical operators:

 Filter(A, LogicalExpression): Returns the instances of
event A that meet some logical constraints

 LogAND(A, B, LogicalExpression): Returns an event if
A and B exist under some conditions

All the above-mentioned operators are available for the definition
of ER rules, via the tool�’s Graphical User Interface (Figure 3).
The GUI consists of: (a) the design canvas where the user designs
rules, (b) the design palette with the available operators, (c) the
design outline, where the user may observe the entire ER design
and (d) the property viewer where the user can define the
properties (e.g. name, conditions) of an operator in use (Figure 4).

Figure 3. ER Authoring Tool GUI

In order to design a new rule, the user should select the desired
operators and connections from the design palette and create a
graph of events (from derived events to composite events). The
user may also define properties (e.g. name, conditions, etc.) of
these operators through the property editor. The next step is to
check if the defined ER rule is valid according to the Validation
Model. To do so, the user presses the �“Validate�” button from the

menu. If no errors come up the rule is valid. Finally, if for
example we want to generate a rule in SQL we have to press the
�“SQL Generation�” button. The rule is then produced and ready to
use after being compiled.

Figure 4. Properties Viewer for LogAnd

Below we present an example of an ER rule, and the
corresponding output of the ER Authoring Tool.

Assume that the user of the tool wants to define the following
event recognition rules:
Punctuality = �“Punctual�” when:
(StopEnter=�”Scheduled�” OR �“Early�”) AND
(StopLeave=�”Scheduled�”)

Punctuality = �”nonPunctual�” when:
(StopEnter = �”Late�”) OR
(StopLeave=�”Early�”) OR
(StopLeave = �”Late�”)

Version 1.0 of the ER Authoring tool supports the definition of
SQL-based rules. More precisely, for the above example the
following code that calls the related functions implementing the
SQL queries will be generated:
//========= SYNTAX EXPLANATION

FILTER(INPUT, OUTPUT, [HEADERS], [CONDITIONS]);

LogicAND(IN1, IN2, OUT, [HEADERS], [CONDITIONS]);

//========= Punctuality Value = Punctual

FILTER("StopEnter","OUT1",
 [VehicleID, StopCode, Value],
 [Value="Early" or "Scheduled"]);

FILTER("StopLeave","OUT2",
 [VehicleID, StopCode, Value],
 [Value="Scheduled"]);

LogicAND("OUT1","OUT2","Punctuality",
[VehicleID, StopCode, Value="Punctual"],
[(OUT1.VehicleID = OUT2.VehicleID) AND
(OUT1.StopCode = OUT2.StopCode]);

//========= Punctuality Value = NonPunctual

FILTER("StopEnter","Punctuality",
 [VehicleID,StopCode,Value="NonPunctual"],
 [Value="Late"]);

FILTER("StopLeave","Punctuality",
 [VehicleID,StopCode,Value="NonPunctual"],
 [Value="Early" or "Late"]);

Currently, we are in the process of extending the tool, to fully
support the Event Calculus language syntax in prolog.

7. CONCLUSIONS
Currently there exist several tools for Complex Event
Recognition, varying from design platforms for business process
modeling (BPM) to advanced Complex Event Processing (CEP)
engines. Several efforts have been reported in literature aiming to
support domain experts in the process of defining event
recognition (ER) rules. However, few of them offer graphical
design environments for the definition of such rules, limiting the
broad adoption of ER systems. In this paper, we present a
graphical Event Definition Authoring Tool, referred to as the
Event Recognition Designer Toolkit (ERDT) with which, a
domain expert can easily design event recognition rules on
temporal data and produce standalone Event Recognizers.

8. ACKNOWLEDGMENTS
This work has been supported by the EC-funded project
PRONTO (http://www.ict-pronto.org/)

9. REFERENCES
[1] Aleri. 2010. http://www.aleri.com/. Visited Feb. 2011.

[2] Chaudhuri, S. and Dayal, U. 1997. An overview of data
warehousing and olap technology. SIGMOD Rec. 26, 1, 65-
74.

[3] IBM. 2008. Business event processing white paper,
websphere software.

[4] Gualtieri, M. and Rymer, J. 2009. The Forrester WaveTM:
Complex Event Processing (CEP) Platforms, Q3 2009.

[5] Oracle. 2010.
http://www.oracle.com/technologies/soa/complex-event-
processing.html. Visited Feb. 2011.

[6] Progress-Apama. 2010. http://www.ict-pronto.org/. Visited
Apr. 2011.

[7] PRONTO. 2009. http://web.progress.com/it-need/complex-
event-processing.html. Visited Feb. 2011.

[8] Streambase. 2010a. http://www.streambase.com/. Visited
Feb. 2011.

[9] Streambase. 2010b.
http://streambase.com/developers/docs/latest/streamsql/index
.html. Visited Feb. 2011.

[10] Tibco. 2010. http://www.tibco.com/software/complex-event-
processing/ businessevents/ default.jsp. Visited Feb. 2011.

