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Abstract. In this paper, we address the issue of uncertainty in event
recognition by extending the Event Calculus with probabilistic reason-
ing. Markov Logic Networks are a natural candidate for our logic-based
formalism. However, the temporal semantics of Event Calculus introduce
a number of challenges for the proposed model. We show how and un-
der what assumptions we can overcome these problems. Additionally, we
demonstrate the advantages of the probabilistic Event Calculus through
examples and experiments in the domain of activity recognition, using a
publicly available dataset of video surveillance.

1 Introduction

Symbolic event recognition has received attention in a variety of application
domains, such as health care monitoring, public transport management, activity
recognition etc [2]. The aim of a symbolic event recognition system is to recognise
high-level events (HLE) of interest, based on an input stream of time-stamped
symbols, that is low-level events (LLE).

HLE are defined as relational structures over other subevents, either HLE or
LLE. Logic-based methods, such as the Event Calculus [12], can naturally and
compactly represent relational HLE definitions [4]. These methods, however,
cannot handle uncertainty, which naturally exists in real-world applications.

In this paper, we present a probabilistic extension to Event Calculus [12],
using Markov Logic Networks [8]. Event Calculus (EC) is a formalism for repre-
senting events and their effects, with formal and declarative semantics. Markov
Logic Networks (MLN) is a statistical relational framework, which combines the
expressivity of first-order logic with the formal probabilistic semantics of graph-
ical models. Thus, MLN are a natural candidate for a probabilistic EC – see
[18] for a survey on first-order logic probabilistic models. However, the tempo-
ral semantics of EC introduce a number of challenges. We show how and under
what assumptions, the Event Calculus axioms can be efficiently represented in
MLN. Moreover, we show the effect of probabilistic modelling on some of the
most interesting properties of EC, such as the persistence of HLE.
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To demonstrate the proposed approach, we apply it to activity recognition,
a subfield of event recognition. The definitions of HLE are domain-dependent
rules that are naturally defined by humans. Each rule is expressed in first-order
logic using the EC language and is associated with a degree of confidence. The
knowledge base of the activity recognition system, consists of these domain-
dependent rules, as well as the domain-independent axioms of the EC. The
input of the system is a sequence of LLE. Probabilistic inference is performed,
to recognise HLE.

The remainder of the paper is organised as follows. First, we present a suc-
cinct description of the EC in first-order logic. Then in section 3, we show how
we can efficiently represent the EC axioms in MLN. In section 4, we explain
how the probabilistic nature of MLN affects the EC semantics. In section 5, we
demonstrate the benefits of probabilistic modelling, through examples and ex-
periments in the domain of activity recognition. In section 6, we present related
work. Finally, we outline directions for further research.

2 Event Calculus: A Succinct Presentation

The Event Calculus (EC), originally introduced by Kowalski and Sergot [12], is
a many-sorted first-order predicate calculus for reasoning about events and their
effects. A number of different dialects have been proposed and implemented using
either logic programming or classical logic — see [20,14] for a survey. Most EC
dialects, however, share the same ontology and core domain-independent axioms.
The ontology consists of timepoints, events and fluents. A timepoint represents
an instant of time. The underlying time model is often linear and it may represent
timepoints as real or integer numbers. A fluent is a property, whose value may
change over time. When an event occurs, it may change the value of a fluent.
The core domain-independent axioms define whether a fluent holds or not at a
specific timepoint. Moreover, the axioms incorporate the common sense law of
inertia, according to which fluents persist over time, unless they are affected by
the occurrence of some event.

In this work we model uncertainty in EC with the use of Markov Logic Net-
works (MLN), which employ first-order logic as a representation language. As
a result, we base our model on an axiomisation of EC in classical first-order
logic. As a starting point, we use a subset of the Full Event Calculus, pro-
posed by Shanahan [20]. For simplicity and without loss of generality the predi-
cate releases is excluded. This predicate, is domain-dependent and defines under
which conditions the law of inertia for a fluent is disabled. All fluents, therefore,
are subject to inertia at all times. Table 1 summarizes the elements of the EC
that we use. Variables (starting with an upper-case letter) are assumed to be
universally quantified unless otherwise indicated. Predicates, function symbols
and constants start with a lower-case letter. Fluents and events are represented
by functions and involve domain objects as variables. In the context of activity
recognition, for instance, the event that a person id1 is walking, is represented
by the function walking(id1 ). The domain of all variables and functions, that is
the domain of fluents F , events E and timepoints T , is finite.
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Table 1. Event Calculus predicates in classical logic

Predicate Meaning

happens(E ,T ) Event E occurs at time T
initiallyP(F ) Fluent F holds from time 0
initiallyN (F ) Fluent F does not hold from time 0
holdsAt(F ,T ) Fluent F holds at time T
initiates(E ,F ,T ) Event E initiates fluent F at time T
terminates(E ,F ,T ) Event E terminates fluent F at time T
clipped(F ,T0 ,T1 ) Fluent F is terminated some time in the interval [T0, T1]
declipped(F ,T0 ,T1 ) Fluent F is initiated some time in the interval [T0, T1]

The axioms that determine when a fluent holds, are defined below:

holdsAt(F, T )←
initiallyP (F ) ∧
¬clipped(F, 0, T )

(1)

holdsAt(F, T )←
happens(E, T0) ∧
initiates(E, F, T0) ∧
T0 < T ∧
¬clipped(F, T0, T )

(2)

According to axiom (1), a fluent holds at time T if it held initially and has not
been terminated in the interval 0 to T . Alternatively, in axiom (2), a fluent holds
at time T if it was initiated at some earlier time T0 and has not been terminated
between T0 and T .

The axioms that determine when a fluent does not hold, are defined below:

¬holdsAt(F, T )←
initiallyN(F ) ∧
¬declipped(F, 0, T )

(3)

¬holdsAt(F, T )←
happens(E, T0) ∧
terminates(E, F, T0) ∧
T0 < T ∧
¬declipped(F, T0, T )

(4)

Axiom (3) defines that a fluent does not hold at time T if it did not held initially
and has not been initiated in the interval 0 to T . Axiom (4) defines that a fluent
does not hold at time T if it was terminated earlier at T0 and has not been
initiated between T0 and T .

The auxiliary domain-independent predicates clipped and declipped , are de-
fined as follows:

clipped(F, T0, T1)↔
∃ E, T happens(E, T ) ∧

T0 ≤ T ∧ T < T1 ∧
terminates(E, F, T )

(5)
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declipped(F, T0, T1)↔
∃ E, T happens(E, T ) ∧

T0 ≤ T ∧ T < T1 ∧
initiates(E, F, T )

(6)

According to axiom (5), a fluent is clipped when the occurrence of an event
terminates the fluent in the interval T0 to T1. In the same manner, axiom (6)
defines that a fluent is declipped when the occurrence of an event initiates the
fluent in the interval T0 to T1.

3 Event Calculus in Markov Logic Networks

Event Calculus (EC) can compactly represent complex event relations, but as a
logic-based formalism cannot handle uncertainty. A knowledge base of EC axioms
and high-level event (HLE) definitions is defined by a set of first-order logic for-
mulas. Each formula imposes a (hard) constraint over the set of possible worlds,
that is, Herbrand interpretations. A missed or an erroneous low-level event (LLE)
detection can have a significant effect on the event recognition results.

Markov Logic Networks (MLN) [8] soften these constraints by associating a
weight value wi to each formula Fi in the knowledge base. The higher the value of
wi, the stronger the constraint represented by Fi. In contrast to classical logic, all
worlds in MLN are possible with a certain probability. The main concept behind
MLN, is that the probability of a world increases as the number of formulas it
violates decreases. A knowledge base in MLN, however, may contain both hard
and soft-constrained formulas. Hard-constrained formulas are associated with an
infinite weight value and capture the knowledge which is assumed to be certain.
Therefore, an acceptable world must at least satisfy these hard constraints. Soft
constraints capture imperfect knowledge in the domain, allowing for the existence
of worlds where this knowledge is violated. The domain-independent axioms of
EC need to be specified as hard constraints, in order to ensure that all acceptable
worlds in the set of possible worlds satisfy them.

A knowledge base L of weighted formulas together with a finite domain of
constants C can be transformed into a ground Markov network ML,C , which
defines a probability distribution over possible worlds. All formulas are converted
into clausal form and each clause is grounded according to the domain of its
distinct variables. The nodes in ML,C are Boolean random variables, each one
corresponding to a possible grounding of a predicate that appears in L. The
predicates of a ground clause, form a clique in the ML,C . Each clique is associated
with the corresponding weight wi and a Boolean feature, taking the value 1
when the ground clause is true and 0 otherwise. More formally, the probability
distribution over possible worlds is represented as follows:

P (X = x) = 1
Z exp

(∑|Fc|
i wini(x)

)
(7)

where x ∈ X represents a possible world, Fc is the set of clauses, wi is the
weight of the i-th clause and ni(x) is the number of true groundings of the
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i-th clause in x. Z is the partition function used for normalisation, that is,
Z =

∑
x∈X exp(

∑|Fc|
i wini(x)), where X is the set of all possible worlds.

For example, the EC axiom (1) produces one clause and has two distinct
variables F and T . Therefore, the number of its groundings is defined by the
Cartesian product of the corresponding variable-binding constants, that is F×T .
Assuming that the domain of variable F is relatively small compared to the
domain of T , the number of groundings of axiom (1) grows linearly to the number
of timepoints. Axioms (5) and (6), however, are triply quantified over timepoint
variables (T0, T1 and T ) and therefore, the number of their groundings has a
cubic relation to the number of timepoints. In addition, the variables E and
T are existentially quantified. During MLN grounding, existentially quantified
formulas are replaced by the disjunction of their groundings [8]. This leads to
clauses with a large number of disjunctions and a combinatorial explosion of
the number of clauses that are generated from axioms (5) and (6). Therefore,
representing the presented EC directly in MLN is not practical for real-world
event recognition, as its axioms lead to an unmanageably large Markov network.

To eliminate the triply quantified axioms that lead to an explosion of the num-
ber of groundings, a discrete version of EC [16] can be used instead. The Discrete
Event Calculus (DEC) has been proven to be logically equivalent with EC, when
the domain of timepoints is limited to integers [16]. In a similar manner to the
EC presented in section 2, we focus on the corresponding domain-independent
axioms of DEC. The axioms of DEC utilize a subset of the EC elements (Table
1), that is happens , holdsAt , initiates and terminates.

The axioms that determine when a fluent holds, are defined as follows:

holdsAt(F, T + 1)←
happens(E, T ) ∧
initiates(E, F, T )

(8)

holdsAt(F, T + 1)←
holdsAt(F, T ) ∧
¬∃ E happens(E, T ) ∧
teminates(E, F, T )

(9)

According to axiom (8), when an event E that initiates a fluent F occurs at time
T , the fluent holds at the next timepoint. Axiom (9) implements the inertia of
fluents, dictating that a fluent continues to hold unless an event terminates it.

The axioms that determine when a fluent does not hold, are defined similarly:

¬holdsAt(F, T + 1)←
happens(E, T ) ∧
terminates(E, F, T )

(10)

¬holdsAt(F, T + 1)←
¬holdsAt(F, T ) ∧
¬∃ E happens(E, T ) ∧
initiates(E, F, T )

(11)
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Axiom (10) defines that when an event E that terminates a fluent F occurs at
time T , then the fluent does not hold at the next timepoint. Axiom (11) specifies
that a fluent continues not to hold unless an event initiates it.

Compared to EC, DEC axioms are defined over successive timepoints. Addi-
tionally, the DEC axioms are quantified over a single timepoint variable. There-
fore the number of ground clauses is substantially smaller than EC. Axioms
(9) and (11), however, contain the existentially quantified variable E. Each
of these axioms will be transformed into 2|E| clauses, each producing F × T
groundings. Moreover, each ground clause will contain a large number of dis-
junctions, causing large cliques in the ground Markov network. To overcome
the creation of 2|E| clauses, we can employ the technique of subformula re-
naming [17], as it is used in [16]. According to this technique, the subformula
happens(E, T ) ∧ initiates(E, F, T ) in (11), is replaced by a utility predicate
that applies over the same variables, e.g. startAt(E, F, T ). A corresponding util-
ity formula, i.e startAt(E, F, T ) ↔ happens(E, T ) ∧ initiates(E, F, T ), is then
added to the knowledge base. With this replacement, the axiom produces a single
clause and the utility formula produces three clauses. However, the existential
quantification remains in the axiom, causing large cliques in the ground network.

In order to eliminate the existential quantification and reduce further the num-
ber of variables, we adopt a similar representation as in [3], where the arguments
of initiation and termination predicates are only defined in terms of fluents and
timepoints — represented by the predicates initiatedAt and terminatedAt re-
spectively. As a result, the domain-independent axioms of DEC presented above
are universally quantified over fluents and timepoints.

The axioms that determine when a fluent holds are thus defined as follows:

holdsAt(F, T + 1)←
initiatedAt(F, T ) (12)

holdsAt(F, T + 1)←
holdsAt(F, T ) ∧
¬teminatedAt(F, T )

(13)

Axiom (12) defines that when a fluent F is initiated at time T , then it holds at
the next timepoint. Axiom (13) specifies that a fluent continues to hold unless
it is terminated.

The axioms that determine when a fluent does not hold, are defined similarly:

¬holdsAt(F, T + 1)←
terminatedAt(F, T ) (14)

¬holdsAt(F, T + 1)←
¬holdsAt(F, T ) ∧
¬initiatedAt(F, T )

(15)

Axiom (14) defines that when a fluent F is terminated at time T then it does
not hold at the next timepoint. According to axiom (15), a fluent continues not
to hold unless it is initiated.
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The predicates happens , initiatedAt and terminatedAt are defined only in
a domain-dependent manner. Specifically, the predicate happens provides the
input evidence, determining the occurrence of an event at a specific timepoint.
The predicates initiatedAt and terminatedAt , specify under which circumstances
a fluent is to be initiated or terminated at a specific timepoint. According to the
representation proposed by [3], a domain-dependent rule, e.g. the initiation of a
fluent fluent1 over objects X and Y , has the following general form:

initiatedAt(fluent1(X, Y ), T )←
happens(event1(X), T ) ∧ ... ∧
Conditions[X, Y, T ]

(16)

where Conditions[X, Y, T ] is a set of predicates that introduce further con-
straints in the definition, referring to time T and the domain-dependent objects
X and Y . The initiation and termination of a fluent can be defined by more
than one rule, each capturing a different initiation and termination case.

As an example, consider the following definition of the meeting activity be-
tween two persons. The rules represent the conditions under which the HLE meet
is initiated or terminated.

initiatedAt(meet(ID1, ID2), T )←
happens(active(ID1), T ) ∧
¬happens(running(ID2), T ) ∧
close(ID1, ID2, 25, T )

(17)

initiatedAt(meet(ID1, ID2), T )←
happens(inactive(ID1), T ) ∧
¬happens(running(ID2), T ) ∧
¬happens(active(ID2), T ) ∧
close(ID1, ID2, 25, T )

(18)

terminatedAt(meet(ID1, ID2), T )←
happens(walking(ID1), T ) ∧
¬close(ID1, ID2, 34, T )

(19)

terminatedAt(meet(ID1, ID2), T )←
happens(running(ID1), T ) (20)

terminatedAt(meet(ID1, ID2), T )←
happens(exit(ID1), T ) (21)

Predicate close is a preprocessed spatial constraint, stating that the distance
between the persons ID1 and ID2 at time T must be below a specified threshold
in pixels, e.g. in (17) the threshold is 25 pixels.

4 The Law of Inertia in Probabilistic Event Calculus

A knowledge base with domain-dependent rules in the form of (16), describes
explicitly the conditions under which fluents are initiated or terminated. It is usu-
ally impractical to define also when a fluent is not initiated and not terminated.
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However, the open-world semantics of first-order logic result to an inherent un-
certainty about the value of the fluent for many timepoints. In other words, if
at a specific timepoint no event that terminates or initiates a fluent happens, we
cannot rule out the possibility that the fluent has been initiated or terminated.
As a result, it cannot be determined whether a fluent holds or not, causing the
loss of the inertia.

This is also known as the frame problem and one solution for EC and DEC in
classical logic is the use of circumscription [13,19,7]. The aim of circumscription,
is to automatically rule out all those conditions which are not explicitly entailed
by the given formulas. Hence, circumscription introduces a closed world assump-
tion to first-order logic. We perform circumscription by predicate completion, as
in [19,16]. Technically, predicate completion is a syntactic transformation, in
which formulas are translated into logically stronger ones.

As an example, consider a knowledge base of domain-dependent rules in
the form of (16), containing, among others, the definition of HLE meet (17)
- (21). The application of circumscription over the predicates initiatedAt and
terminatedAt will transform all domain-dependent rules into the following form:

initiatedAt(F, T )↔
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(active(ID1), T ) ∧
¬happens(running(ID2), T ) ∧
close(ID1, ID2, 25, T ) ) ∨
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(inactive(ID1), T ) ∧
¬happens(running(ID2), T ) ∧
¬happens(active(ID2), T ) ∧
close(ID1, ID2, 25, T ) ) ∨
...

terminatedAt(F, T )↔
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(walking(ID1), T ) ∧
¬close(ID1, ID2, 25, T ) ) ∨
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(running(ID1), T ) ) ∨
∃ ID1, ID2 (F = meet(ID1, ID2) ∧
happens(exit(ID1), T ) ) ∨
...

(22)

The resulting rules (22), define explicitly the unique condition, under which each
fluent is initiated or terminated. Any other event occurrence cannot affect any
fluent, as it is impossible to cause any initiation or termination. However, the
presence of existentially quantified variables causes combinatorial explosion to
the number of grounded clauses, as explained above.

To address this problem we make the assumption that every fluent of interest is
defined in terms of at least one initiation and one termination rule. Additionally,
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we assume that the variables that appear in the head of the initiatedAt and
terminatedAt rules are the only variables in these rules. Therefore, each domain-
dependent rule is implicitly universally quantified over these variables. These
assumptions are reasonable in event recognition applications. The assumptions
allow to compute the circumscription for each fluent separately, rather than
computing the circumscription of the entire knowledge base over the predicates
initiatedAt and terminatedAt . Furthermore, the knowledge base is enriched with
additional formulas.

For example, the domain-dependent rules about the initiation of meet (rules
(17) and (18)) are translated into the following form:

Σ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

initiatedAt(meet(ID1, ID2), T )←
happens(active(ID1), T ) ∧
¬happens(running(ID2), T ) ∧
close(ID1, ID2, 25, T )

initiatedAt(meet(ID1, ID2), T )←
happens(inactive(ID1), T ) ∧
¬happens(running(ID2), T ) ∧
¬happens(active(ID2), T ) ∧
close(ID1, ID2, 25, T )

Σ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

initiatedAt(meet(ID1, ID2), T )→
(happens(active(ID1), T ) ∧
¬happens(running(ID2), T ) ∧
close(ID1, ID2, 25, T ) ) ∨
(happens(inactive(ID1), T ) ∧
¬happens(running(ID2), T ) ∧
¬happens(active(ID2), T ) ∧
close(ID1, ID2, 25, T ) )

(23)

Compared to the rules in (22), the rules in (23) are simpler, as they do not involve
any existentially quantified variable. Compared to (17) - (21), the axioms in (23)
introduce additional formulas, indicated by Σ′, which eliminate the possibility
that worlds not described by the original knowledge base can satisfy the theory.

By assigning a weight to a formula in MLN it automatically becomes a soft
constraint, allowing some worlds that do not satisfy this formula to become
likely. This is desirable in event recognition, in order to allow for imperfect
HLE definitions. In the presence of soft constraints, however, the behaviour of
circumscribed formulas changes. To illustrate this, consider that a knowledge
base of domain-dependent rules, in the form of (23), is separated into a set
Σ of the original rules and a set of additional formulas Σ′ that result from
circumscription. By treating the formulas in these sets as either hard or soft
constraints, we may distinguish the following four general cases:

1. The formulas in both sets are hard-constrained. This will produce the same
results as crisp logic and there are no differences or benefits to be gained.
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Fig. 1. The probability of meet

2. Only the formulas in Σ are soft-constrained and thus worlds that violate
these constraints become probable. This situation reduces the certainty of
a fluent being initiated or terminated, when all the required conditions are
met. As a result, fluents hold with some probability, instead of absolute
certainty. Moreover, given a fluent that holds with some probability, when
the initiating conditions are met the probability increases. Similarly, when
the terminating conditions are satisfied, the probability that a fluent holds
decreases. At the same time, the worlds that violate the formulas in Σ′ are
rejected and therefore the inertia is retained. Consider, for example, that
the fluent meet holds at time 0 with some probability. At time 3, the fluent
is initiated by (18). Thereafter at time 10 it is initiated again by (17) and
finally at time 20 it is terminated by (19). The probability of meet will
increase at time 4. Since the inertia is retained, the probability of meet will
persist in the interval 4 to 10. Similarly, at time 11, the probability of meet
will increase again and persist until time 20. Thereafter, the probability that
meet holds will decrease (see figure 1).

3. Only formulas in Σ′ are soft-constrained. A fluent is initiated or terminated
with certainty when the corresponding conditions of the rules in Σ are satis-
fied by the evidence. The formulas imposed by circumscription, however, can
be violated. Therefore, the closed-world assumption is softened and the ini-
tiation or the termination of a fluent when irrelevant events happen becomes
likely. The lower the value of the weight on the constraint, the more proba-
ble worlds that violate the constraint become. As a result, the value of the
weight affects the persistence of inertia. In other words, strong weight values
in Σ′ cause the inertia to persist for longer time periods than weak ones.
Despite that the fluent in this case is initiated or terminated with certainty,
the softened formulas in Σ′ causes the fluent to hold with some probability.

4. All formulas are soft-constrained in both Σ and Σ′ sets. Fluents will be
initiated or terminated with some probability, as in the second case. Also
the persistence of inertia is controlled by the weight of the formulas in Σ′,
as in the third case.

In (23) we could have chosen a more compact representation, using equivalence,
as commonly done in circumscription. However, the expanded form of the rules
allows us to control separately our confidence level for each domain-dependent
rule and the inertia of each fluent.
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5 Application to Activity Recognition

To demonstrate our method (DEC-MLN)1, we present examples and experi-
ments2 from the domain of video activity recognition, using the publicly avail-
able dataset of the CAVIAR project3. The dataset comprises 28 surveillance
videos, where each frame is annotated by human experts, providing two levels
of activity information. The first level contains the low-level event (LLE) anno-
tation for individual objects or persons, using the tags active, inactive, walking
and running. The second level contains the high-level events (HLE) between peo-
ple and objects, using the tags meeting, moving, fighting and leaving an object.
The former level provides the input LLE for our approach, while the latter the
ground truth HLE. The aim of the experiments is to recognise HLE that occur
among people and objects, by providing a sequence of LLE as evidence. In EC
terminology, events and fluents correspond to LLE and HLE, respectively.

For comparison purposes, we use as a baseline method the activity recognition
method proposed in [4] (EC-LP). EC-LP implements EC using logic program-
ming and contains a knowledge base of HLE definitions for the CAVIAR dataset.
The experiments are performed using the same HLE definitions as EC-LP, trans-
lated into first-order logic syntax using the formulation proposed in section 3 (e.g.
formulas (17) - (21)) and computing the circumscription as presented in section
4. Details about the activity recognition application and a description of the
HLE definitions, can be found in [4].

The input to both DEC-MLN and EC-LP consists of a sequence of LLE, along
with their timestamps. Additionally, the first and the last time that a person
or an object is tracked is provided as the LLE enter and exit. The input to
EC-LP contains also the coordinates of the people tracked at each time-point.
In DEC-MLN, the value of the close predicates is precomputed.

The output of both methods consists of a sequence of ground holdsAt pred-
icates, indicating which HLE are recognised. EC-LP performs crisp reasoning,
and thus all HLE are recognised with absolute certainty. On the other hand,
DEC-MLN performs conditional probabilistic inference. Consequently, all recog-
nised HLE are associated with a probability. In the following experiments, we
consider any result with probability above 0.5 as a recognised HLE.

In the first experiment, we wanted to confirm that our method behaves like
a crisp EC method, if required. For this purpose, we assigned the same strong
weight value (high confidence) to each HLE definition in Σ and hard-constrained
the resulting formulas of circumscription in Σ′. As expected, DEC-MLN pro-
duced exactly the same results as EC-LP in this experiment.

1 The HLE definitions of the method can be found in:
http://www.iit.demokritos.gr/~anskarl

2 For our experiments we used the open-source MLN framework Alchemy, which can
be found in: http://alchemy.cs.washington.edu

3 The CAVIAR dataset can be found in:
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

http://www.iit.demokritos.gr/~anskarl
http://alchemy.cs.washington.edu
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
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Table 2. Results for HLE “meet” using soft constraints. Number of True Positives
(TP), False Positives (FP), False Negatives (FN), Precision and Recall rates are mea-
sured per frame.

Method TP FP FN Precision Recall

EC-LP 3099 2258 525 0.578 0.855
DEC-MLNa 3048 1762 576 0.633 0.841
DEC-MLNb 3048 1154 576 0.725 0.841

In the second experiment, we demonstrate the effect of soft constraints on
event recognition. For this purpose, we adjusted the weight values for the HLE
meet and studied two cases. The first case (DEC-MLNa) demonstrates the ben-
efits of having soft-constrained domain-dependent definitions only in Σ. The
second case (DEC-MLNb) demonstrates a potential use of soft-constrained cir-
cumscription rules in Σ′, in addition to the soft-constrained rules of DEC-MLNa.
The evaluation results are presented in Table 2.

In the DEC-MLNa case, each initiation and termination rule in (17) - (21) is
associated with a weight value that indicates its confidence. More specifically,
the HLE meet is rarely initiated rule (18) and therefore this rule is assigned a
weak weight value, indicating low confidence. On the other hand, the initiation
rule (17), as well as the termination rules (19) - (21), are assigned weight values
that indicate high confidence, as they are tightly associated with the HLE. The
additional formulas that result from circumscription are hard-constrained, in
order to fully retain the inertia. Compared to EC-LP, the low confidence value
in rule (18) reduces significantly the number of false positives. The cost is a
small loss of true positives, as can be seen in Table 2. As a result, precision is
improved by 5.5 percentage points, while recall falls by 1.4 points, without any
effect on the recognition of other HLE.

As noted in [4], the definitions of HLE meet and move, share the same termi-
nation constraints in the knowledge base. As a result, the HLE meet and move
that are detected by EC-LP may overlap. According to the HLE annotation,
however, meet and move do not happen concurrently. Consider, for example, a
situation where two people meet for a while and thereafter they move together.
During the interval where move is detected, meet will also remain detected, as it
is not terminated and the law of inertia holds. However, there are no LLE that
initiate meet in this interval and its probability is not reinforced. By softening
the circumscription formulas for terminating meet in Σ′, worlds not satisfying
these rules will become likely. As a result, when there is no further evidence from
LLE that initiates meet, e.g. when move starts in the above example, the detec-
tion of meet will gradually become less likely as desired. As a side effect, this
change reduces the detection probability of meet in cases where meet is initiated.
To overcome this issue, we increased the weight values of the initiation rules in
Σ. In summary, in the DEC-MLNb case the circumscription of termination rules
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in Σ′ for HLE meet are soft-constrained, while the circumscription of initiation
rules remain hard-constrained and the weights of the initiation rules in Σ are
soft-constrained. Compared to EC-LP, the number of false positives is further
reduced, increasing the precision rate by 9.2 percentage points, without any loss
of recall or any effect on the recognition of other HLE.

The two cases presented here, DEC-MLNa and DEC-MLNb, illustrate the
benefits to be gained by softening the constraints and performing probabilistic
logical reasoning in event recognition.

6 Related Work

Symbolic methods can naturally and compactly represent high-level event (HLE)
definitions for event recognition and model complex event relations, such as con-
currency and persistency — see [2] for a list of applications. The chronicle recog-
nition system [9], for example, is a symbolic event recognition method that can
efficiently recognise HLE. Event Calculus (EC) is another logic-based formalism
that has been recently applied to event recognition [4,3]. The formal declarative
semantics of symbolic methods, allow the compact representation of structured
HLE, as well as the integration of background domain knowledge that helps to
improve the event recognition performance. However, symbolic methods cannot
handle uncertainty, which naturally exists in many real-world applications and
may seriously compromise the event recognition results. In our work, we combine
EC and Markov Logic Networks (MLN) in a method that supports the definition
of HLE in EC and performs probabilistic event recognition with MLN. Unlike
crisp-logic EC [4,3], our method allows to control the level of the persistency of
fluents. As noted in section 5, we have used the same HLE definitions as in [4],
preprocessed appropriately to fit the MLN representation and computation.

Probabilistic graphical models, such as Hidden Markov Models and Dynamic
Bayesian Networks have been successfully applied to event recognition in a vari-
ety of applications where uncertainty exists (e.g. [6,22]). Compared to symbolic
methods, such models can naturally handle uncertainty but their propositional
structure provides limited representation capabilities. To model HLE that in-
volve a large number of domain objects (e.g. interactions between multiple per-
sons), the structure of the model may become prohibitively large and complex.
The lack of a formal representation language makes the definition of such HLE
complicated and the integration of domain background knowledge is very hard.

A logic-based method that handles uncertainty is presented in [21]. The
method incorporates rules that express HLE in terms of input low-level events
(LLE). Each HLE or LLE is associated with two uncertainty values, indicating
a degree of information and confidence respectively. The underlying idea of the
method is that the more confident information is provided, the stronger the be-
lief about the corresponding HLE becomes. Accordingly, in our work, the more
initiations (or terminations) we have, the higher (or lower) the probability that
the corresponding HLE holds. In contrast to that method, our work employs
MLN that provide formal probabilistic semantics, as well as EC to represent
complex HLE.
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Recently, MLN have also been used for event recognition. The method in
[5], uses MLN to combine the information from low-level classifiers, in order
to recognise HLE. A more expressive method that can represent persistent and
concurrent HLE, as well as their starting and ending points, is proposed in [10].
However, that method has a quadratic complexity to the number of timepoints.
Also, the methods in [5] and [10] focus on HLE that do not involve relations
among multiple domain objects. Additionally, they cannot handle situations
where nothing is happening, as their axioms require that at each timepoint at
least one HLE must occur. Due to those limitations, these methods are difficult
to scale up in real-world event recognition applications.

In [23,11] a knowledge base of common sense rules, expressing HLE, is defined
in first-order logic. Each rule is associated with a weight value that indicates its
confidence. Additionally, the method takes into account the confidence value
of the input LLE, which may be due to noisy sensors. Probabilistic inference
is performed by MLN, in order to recognise the HLE. Although, the method
represents HLE that involve relations among multiple domain objects, the HLE
definitions have a limited temporal representation. A more expressive method
that uses interval-based temporal relations, is proposed in [15]. The aim of the
method is to determine the most consistent sequence of HLE, based on the
observations of low-level classifiers. Similar to [23,11], the method expresses HLE
using common sense rules. However, it employs temporal relations that are based
on Allen’s Interval Algebra (IA) [1]. In order to avoid the combinatorial explosion
of possible intervals that IA may produce, as well as to eliminate the existential
quantifiers in HLE definitions, a bottom-up process eliminates the unlikely HLE
hypotheses. That process can only be applied to domain-dependent axioms, as
it is guided from the observations and the IA relations. In our work, we address
the combinatorial explosion problem in a more generic manner, by representing
the EC domain-independent axioms efficiently.

7 Conclusions

In this work, we address the issue of uncertainty that naturally exists in many
levels of event recognition, such as the input LLE and the imprecise HLE defi-
nitions. We propose a probabilistic extension of Event Calculus (EC) based on
Markov Logic Networks (MLN). The method has formal, declarative semantics
and inherits the properties of the EC. The domain-independent axioms of EC
are hard-constrained, while the domain-dependent HLE definitions can be asso-
ciated with a confidence level. Moreover, by exploiting the probabilistic nature
of MLN, we show how the persistency of fluents can be controlled. We place
emphasis on the efficiency and effectiveness of our approach to meet the re-
quirements of real-world applications, by simplifying the axioms of the EC and
therefore reducing the size of the underlying ground network built by MLN.

Due to the use of MLN, our method lends itself naturally to learning the
weights of event definitions from data. We believe this is an important next step,
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as the manual setting of weights is suboptimal and cumbersome. Furthermore,
we plan to perform additional experiments with other real-world datasets, in
order to demonstrate further the potential of our method.
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