
J. Darzentas et al. (Eds.): SETN 2008, LNAI 5138, pp. 371 – 376, 2008.
© Springer-Verlag Berlin Heidelberg 2008

MyCites: An Intelligent Information System for
Maintaining Citations

George Papadakis1,2 and Georgios Paliouras1

1 Institute of Informatics and Telecommunications,
National Centre for Scientific Research “Demokritos”, Athens, Greece

2 Department of Electrical and Computer Engineering,
National Technical University of Athens, Greece

{gpapad,paliourg}@iit.demokritos.gr

Abstract. The evaluation of their research work and its effect has always been
one of scholars’ greatest concerns. The use of citations for that purpose, as pro-
posed by Eugene Garfield, is nowadays widely accepted as the most reliable
method. However, gathering a scholar’s citations constitutes a particularly labo-
rious task, even in the current Internet era, as one needs to correctly combine in-
formation from miscellaneous sources. There exists therefore a need for
automating this process. Numerous academic search engines try to cover this
need, but none of them addresses successfully all related problems. In this paper
we present an approach that facilitates to a great extent citation analysis by tak-
ing advantage of new algorithms to deal with these problems.

Keywords: information extraction, citation matching, name disambiguation,
mixed citation problem, split citation problem, string distance metrics.

1 Introduction

In the last decade there has been a strong interest and considerable effort in develop-
ing on-line services that provide access to academic databases. These attempts have
culminated in the development of search engines that specialize in scholarly literature.
The most notable of them are Scopus1, Web of Science (WoS)2 and Google
Scholar(GS)3, which are based on huge academic databases gathered from numerous
sources. Some of these engines (e.g. Scopus and WoS) use structured sources, such as
databases of publishers, in order to warrantee the precision of the provided informa-
tion. Others (e.g. GS) emphasize on retrieving as much information as is available,
automatically from unstructured data, such as Web sites. To the best of our knowl-
edge there is currently no engine that addresses adequately both aspects of the
problem.

One of the most valuable features of academic search engines is citation analysis,
that is looking for papers that refer to a specific publication. In this way they automate

1 http://www.scopus.com/scopus/home.url
2 http://scientific.thomson.com/products/wos/
3 http://scholar.google.com/

372 G. Papadakis and G. Paliouras

a laborious yet essential task of scholars, that of gathering citations in order to evalu-
ate the influence of their research work. High recall engines, particularly GS, seem to
gain in popularity, but there is still enough room for improvement, as they usually
contain a relatively large portion of duplicate data and noise. The following problems
are particularly important and hard to solve:

Definition 1. Citation Matching (CM) is the problem where, given two lists of
publications, X and Y, the goal is to find for each x (∈ X) a set of y1, y2, ..., yn (∈ Y)
such that both x and yi (1 ≤ i ≤ n) in fact pertain to the same publication. Among the
main causes of CM are the lack of a fixed format for citations, the various names that
are attributed to a single author and errors in the parsing software.

Definition 2. Mixed Citation (MC) [1] is the problem where, given a collection of
publications, C, by an author, ai, the goal is to accurately identify publications by
another author aj in C, when ai and aj have identical name spellings.

Definition 3. Split Citation (SC) [2] is the problem where given two lists of author
names and associated publications, X and Y, the goal is to find for each author name
x (∈ X) a set of author names, y1, y2, ..., yn (∈ Y) such that both x and yi (1 ≤ i ≤ n)
are name variants of the same author.

We should point out that the MC and SC problems are so closely related to each other
that are rarely succinctly distinguished. They are regarded as a single problem called
name disambiguation or name equivalence identification. Along with the CM prob-
lem they belong to the broader Identity Uncertainty Problem or Record Linkage.

In this paper we propose new methods that deal with these problems and are em-
bedded in a simple information system intended to automate the maintenance of cita-
tions for scholars and research groups through a user-friendly interface.

2 Related Work

Two teams have primarily worked on the SC and MC problems. The first one concen-
trated on the MC problem and tested supervised classification ([3]) and unsupervised
clustering ([4],[5]) methods, concluding that the latter generally perform better, while
not requiring processed datasets for training. Their clustering approaches presume
though a predefined number of clusters, thus limiting their applicability. The second
research group addresses both the MC ([1]) and SC ([1],[2]) problems, primarily con-
centrating on the scalability of their algorithms. The proposed matching methods are
generally based on common features of publications: co-authors’ names, paper and
conference/journal title, with the first proving to be the most robust one.

As far as the CM problem is concerned, the term was initially coined in [6] and [7]
by the creators of Citeseer, where they also presented four different methods based on
simple string matching methods. In [8] another method is proposed, based on rela-
tional probability models (RPMs), while in [9] an innovative algorithm is presented
based on conditional random fields (CRFs). It is worth noting that all of these meth-
ods were applied to the same dataset and are thus directly comparable, with the last
one achieving the best performance.

 MyCites: An Intelligent Information System for Maintaining Citations 373

Finally, [10] summarizes, categorizes and compares the most robust and efficient
methods for string matching, that are at the heart of all the above-mentioned methods.

3 Application Use Cases

In this section we will analyze briefly the main functionality of the application that we
have developed, based on the proposed approach. We do this by going through the
steps that comprise a thorough search for a scholar.

1. Fetch all publications that contain the given scholar in their author list. This
is done by issuing the appropriate query to the GS search engine, gathering
and feeding the results to the wrapper we have developed for processing the
returned HTML pages. The wrapper identifies the html tags that define the
information of a single article and then the tags that encompass each attribute
of that specific paper (title, authors, URL etc).

2. Apply the Citation Matching algorithm for processing the gathered publica-
tions. There is considerable noise in the form of duplicate articles in GS re-
sults and, therefore, a pre-processing stage that refines the data gathered by
the initial query is indispensable. Otherwise the performance of the name
disambiguation algorithm would be substantially degraded by the duplicates.
Our method for solving this problem is presented in section 4.

3. Present the user with the results of the CM algorithm for verification. In this
stage, the user is given the chance to amend potential mistakes or omissions
of the CM algorithms. Specifically, the user is provided with all the neces-
sary information (title, authors, URLs etc) so as to be able to judge whether
two articles that were alleged to match are in fact different articles and thus
have to be dissociated or whether two separate publications are duplicates
and must be matched.

4. Apply the Name Disambiguation algorithm. This is the most critical step of
each search as it entails the identification of all separate scholars that con-
tribute to all papers maintained by our application, those already stored and
those acquired during the current search. We address this problem by the al-
gorithm presented in section 5.

5. Present the user with the results of Name Disambiguation for verification.
The purpose of this step is to amend once again the results of the automatic
processing so as to ensure that the data stored in the database is as accurate
as possible. This is a critical step since potential errors that are not detected
are perpetuated in subsequent runs of the name disambiguation algorithm,
thus degrading its performance. By the end of this process, every piece of in-
formation concerning the separate scholars is stored.

6. Search for citations. Having completed the previous steps, the user can now
search for the citations of a specific paper or start a new search for a different
scholar. Every new search goes through the above steps before giving the
user the chance to commence a new one.

374 G. Papadakis and G. Paliouras

4 Citation Matching

The most common forms of duplicate citations that appear in the results of GS and
thus need to be addressed by our algorithm are the following:

1. spelling mistakes
2. author’s names concatenated with paper title (usually preceding it)
3. conference/journal title concatenated with paper title (usually following it)
4. title swapped with another information field

In this context, our algorithm acts as follows:
1. It initially orders the retrieved papers by the number of citations, based on

the assumption that among the multiple appearances of a single paper, the
one with the most citations will probably contain the correct information, as
it is highly unlikely that a paper is cited more frequently in a wrong way than
in the right one. With this initial sorting we ensure that the more correct the
information of a paper, the fewer times it is compared to another one.

2. It then checks the contents of the database before processing each paper, so
as to avoid repeating the same process. We assume that the problem has been
resolved for the stored papers, since the user has verified the stored data.

3. For each paper that is not stored in the database, its title is compared with
that of its preceding ones, so as to find the most similar paper. The compari-
sons are done using the SoftTFIDF string distance metric in combination
with the Jaro metric [10], which has proven the most suitable metric for the
three first problems mentioned above, that is for matching strings that are
sets of words (tokens).

4. If the best matching does not exceed a user-defined threshold, the algorithm
checks whether the title has moved to another field of the paper’s description
(fourth case). This is done by forming a new string for each paper in the list,
comprising the paper title, co-author names and conference/journal title.
These strings are compared using again SoftTFIDF with Jaro and if their
similarity exceeds another threshold, they are considered identical.

5 Name Disambiguation

In this section we introduce a new clustering method for solving simultaneously both
the Mixed and the Split Citation problems. Our approach generally exploits the same
article features as other methods proposed in the literature: co-authors’ names, paper
title, URLs of the papers and the name of the scholar. However, what differentiates
our algorithm from the others is the range of its applicability. Our goal is to develop a
method that given any dataset of citations identifies all separate scholars it contains
without any prior knowledge about them. To achieve this goal the algorithm is based
on the following basic principles:

1. Every author of a single paper corresponds to a separate scholar.
2. Every scholar can match with only one author of a single paper.

 MyCites: An Intelligent Information System for Maintaining Citations 375

3. It is time and memory consuming to repeat the matching process for the au-
thors of the already stored publications. After all, the data stored in the data-
base has already been verified by the user and is thus assumed to be accurate.

Abiding by these principles our algorithm creates a graph of related authors, aim-
ing to partition the graph in its connected components. In this context, a new node is
initially added to the graph for each author of the stored papers. The nodes that corre-
spond to the same scholar are then directly connected, in order to ensure that they are
included in the same connected component after partitioning the graph.

Then, for each of the new papers, the most similar author name in the graph is
found. The similarity is calculated by the Jaro string matching method. If this similar-
ity exceeds the respective threshold, the value of the following formula is calculated
for the data of the current two publications:

Tot_sim = β * co-author similarity + γ * title similarity + δ * URL similarity
These similarities are calculated using again the combined SoftTFIDF with Jaro met-
ric. If the value of Tot_sim exceeds another threshold, the two authors are considered
identical and their nodes are connected with a new edge.

With the completion of this process, the graph is partitioned in its connected com-
ponents, each of which contains all information about a unique scholar: all variants of
a scholar’s name, along with all the papers the scholar has authored.

6 Experiments and Results

In order to measure the performance of our algorithms, we need to test them over a
fairly large dataset, covering various influential factors, such as the scientific field of
the papers, the nationality of the authors, etc. However due to time limitations, we
performed a limited set of initial experiments, using the work of one of the authors of
this paper as a seed, moving to the work of those who cite his papers, and so on. De-
spite its limited nature, the dataset included authors of various nationalities, some of
which (e.g. Korean names) amplify the mixed citation problem. The algorithms were
evaluated with the use of standard information retrieval criteria: precision4, recall5 and
f-measure (their harmonic mean), and the results are presented in Table 1.

Table 1. Evaluation of our algorithms

These initial results seem promising, but we need to acknowledge that the sample

for the citation matching algorithm is too limited to draw safe conclusions. Further-
more, the performance of the name disambiguation algorithm is degraded by the large

4 Precision = (proposed matches – false matches) / proposed matches
5 Recall = (true matches – missed matches) / true matches

376 G. Papadakis and G. Paliouras

portion of citing authors that appear only once in the dataset. Therefore, a large-scale
experiment may lead to different results.

7 Conclusions

We presented a new approach for addressing important problems in using academic
search engines for citation analysis, namely the citation matching and mixed and split
citation problems. The proposed methods were successfully embedded in an informa-
tion system that aims to facilitate the maintenance of citations for scholars. The meth-
ods were evaluated, giving initial encouraging results.

There is undoubtedly great potential in evolving our system. First of all, we plan to
add support for additional major academic search engines, such as Scopus and WoS.
Combining the contents of these on-line sources will significantly increase the com-
prehensiveness of our system, Furthermore, based on the aforementioned performance
of our methods there is evidently enough room for improvement. We primarily need
to refine our citation matching algorithm and generalize its applicability to other aca-
demic search engines.

References

1. Lee, D., On, B.W., Kang, J., Park, S.: Effective and Scalable Solutions for Mixed and Split
Citation Problems in Digital Libraries. In: Proceedings of the 2nd International Workshop
on Information Quality in Information Systems, pp. 69–76 (2005)

2. On, B.W., Lee, D., Kang, J., Mitra, P.: Comparative Study of Name Disambiguation
Problem using a Scalable Blocking-based Framework. In: Proceedings of the 5th
ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 344–353 (2005)

3. Han, H., Giles, L., Zha, H., Li, C., Tsioutsiouliklis, K.: Two Supervised Learning
Approaches for Name Disambiguation in Author Citations. In: Proceedings of the 4th
ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 296–305 (2004)

4. Han, H., Xu, W., Zha, H., Giles, C.: A Hierarchical Naive Bayes Mixture Model for Name
Disambiguation in Author Citations. In: Proceedings of the 2005 ACM Symposium on
Applied Computing, pp. 1065–1069 (2005)

5. Han, H., Zha, H., Giles, C.: Name Disambiguation in Author Citations using a K-way
Spectral Clustering Method. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference
on Digital Libraries, pp. 334–343 (2005)

6. Giles, C., Bollacker, K., Lawrence, S.: Citeseer: An Automatic Citation Indexing system.
In: Proceedings of the Third ACM Conference on Digital Libraries, pp. 89–98 (1998)

7. Lawrence, S., Giles, C., Bollacker, K.: Digital Libraries and Autonomous Citation
Indexing. IEEE Computer Society 32(6), 67–71 (1999)

8. Pasula, H., Marthi, B., Milch, B., Russel, S., Shpitser, I.: Identity uncertainty and citation
matching. In: Advances in Neural Information Processing Systems (NIPS), vol. 15 (2003)

9. Wellner, B., McCallum, A., Peng, F., Hay, M.: An Integrated, Conditional Model of
Information Extraction and Coreference with Application to Citation Matching. In:
Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 593–601
(2004)

10. Cohen, W., Ravikumar, P., Fienberg, S.: A Comparison of String Distance Metrics for
Name-Matching Tasks. In: Proceedings of International Joint Conferences on Artificial
Intelligence (IJCAI 2003) Workshop on Information Integration on the Web (2003)

	MyCites: An Intelligent Information System for Maintaining Citations
	Introduction
	Related Work
	Application Use Cases
	Citation Matching
	Name Disambiguation
	Experiments and Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

