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Abstract. Determining the size of an ontology that is automatically
learned from text corpora is an open issue. In this paper, we study the
similarity between ontology concepts at different levels of a taxonomy,
quantifying in a natural manner the quality of the ontology attained.
Our approach is integrated in a recently proposed method for language-
neutral learning of ontologies of thematic topics from text corpora. Eval-
uation results over the Genia and the Lonely Planet corpora demonstrate
the significance of our approach.

1 Introduction

Ontology learning is a relatively new field of research, aiming to support the
continuous and low-cost development and maintenance of ontologies, especially
in fast evolving domains of knowledge. These tasks, when performed manually,
require significant human effort. Thus, automated methods for ontology con-
struction are very much needed.

Ontology learning is commonly viewed [1, 5, 13, 14] as the task of extending
or enriching a seed ontology with new ontology elements mined from text cor-
pora. Depending on the ontology elements being discovered, existing approaches
deal with the identification of concepts, subsumption relations among concepts,
instances of concepts, or concept properties/relations. Furthermore, we may clas-
sify existing ontology learning approaches to be either of the linguistic, statistical,
or machine learning type, depending on the specific techniques employed.

While much work concentrates on enriching existing ontologies, few approaches
deal with the construction of an ontology without prior knowledge. Among the
difficulties of such an endeavor, is the determination of the appropriate depth of
the subsumption hierarchy, given the text collection at hand. The benefit of be-
ing able to determine the appropriate depth of a taxonomy is that the hierarchy
captures accurately the domain knowledge provided by the texts, reducing the ex-
tent of overlap among concepts and providing a coherent representation of the do-
main. The determination of the appropriate hierarchy depth prohibits both over-
engineered representations and generic ones, since it constitutes a criterion for a
well-structured hierarchy. However, there is a strong dependence of such a method
to the corpus, since an imbalanced corpus could lead to a misleading decision for
the appropriate depth.
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In this paper, we propose an automated statistical approach to ontology learn-
ing, without presupposing the existence of a seed ontology, or any other type of
external resource, except the corpus of text documents. The proposed method
tackles the tasks of concept identification and subsumption hierarchy construc-
tion. Moreover, it tries to optimize the size of the learned ontology for the given
text collection.

In the proposed method, concepts are identified and represented as multino-
mial distributions over terms in documents1. Towards this objective, the Markov
Chain Monte Carlo (MCMC) process of Gibbs sampling [9] is used, following
the Latent Dirichlet Allocation (LDA) [4] model. To discover the subsump-
tion relations between the identified concepts, conditional independence tests
among these concepts are performed. Finally, statistical measures between the
discovered concepts at different levels of the hierarchy are used to optimize the
size of the ontology. The statistical nature of the approach guarantees language
independence.

In what follows, section 2 states the problem, refers to existing approaches that
are related to the proposed method, and motivates our approach. In section 3, we
present the new method, while section 4 describes the derivation of a criterion
for determining the appropriate depth of the hierarchy according to the corpus.
Section 5 presents experiments and evaluation results, and finally, section 6 con-
cludes the paper sketching plans for future work.

2 Problem Definition and Related Work

2.1 Problem Definition

In this paper we address three major problems related to the ontology learning
task:

1. The discovery of the concepts in a corpus.
2. The ordering of the discovered concepts by means of the subsumption rela-

tion.
3. The determination of the depth of the subsumption hierarchy.

In other words, assuming only the existence of a text collection, we aim to
(a) discover the concepts that express the content of documents in the corpus,
independently of the terms’ surface appearance, i.e. without taking into account
simple TF/IDF values or the order of words in the texts, (b) form the ontology
subsumption hierarchy backbone, using only statistical information concerning
the discovered concepts, and (c) explore how deep in the subsumption hierarchy
the text collection allows us to go, by measuring the similarity between the
discovered concepts.

1 “Terms” does not necessarily denote domain terms, but words that will constitute
the vocabulary over which concepts will be specified. In the following, we use “terms”
and “words” interchangeably.
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2.2 Related Work

Towards the automated learning of ontologies, much work concerns concept iden-
tification and taxonomy construction. In this paper we are interested in statis-
tical techniques, and thus, we discuss here related approaches.

On the task of concept identification with statistical techniques, the authors
in [2] extend an ontology with new concepts considering words that co-occur
with each of the existing concepts. The method requires that there are several
occurrences of the concepts to be classified, so that there is sufficient contextual
information to generate topic signatures. The work reported in [1] follows similar
research directions. In [5], the authors apply statistical analysis on Web pages
in order to identify word clusters that are proposed as potential concepts to
the knowledge engineer. In this case, the ontology enrichment task is based on
statistical information of word usage in the corpus and the structure of the
original ontology.

More sophisticated schemes include the use of TF/IDF weighting in conjunc-
tion with Latent Semantic Indexing (LSI) [6], towards revealing latent topics
in a corpus of documents. A classification task assigns words to topics, mak-
ing each topic a distribution over words. Probabilistic Latent Semantic Indexing
(PLSI) [10] extends LSI assuming that each document is a probability distribu-
tion over topics and each topic is a probability distribution over words. Although
PLSI provides more accurate modelling than LSI, it must be pointed out that
this model is prone to overfitting (being corpus specific), involving a large num-
ber of parameters that need to be estimated [4]. Latent Dirichlet Allocation
(LDA) [4] improves on PLSI, providing a model that samples topics for each
word that appears in each document.

Hierarchical extensions have also been proposed to the above models. Hierar-
chical Probabilistic Latent Semantic Analysis (HPLSA) has been proposed in [7],
in order to acquire a hierarchy of topics, by enabling data to be hierarchically or-
ganized based on common characteristics. Hierarchical Latent Semantic Analysis
(HLSA) has been introduced in [12] to identify hierarchical dependencies among
concepts by exploiting word occurrences among concepts (latent topics). This ap-
proach actually computes relations among topics, based on the words that they
contain. Different topics might share common words, and therefore these words
are collected at a higher level. Both of these methods, inherit known problems
of PLSI, such as overfitting.

Moreover, the method of hLDA [3], a hierarchical extention of LDA, has been
proposed to deal with the problem of the hierarchical organization of topics.
However, this method assumes that each document is a mixture of topics along
a path from the root topic to a leaf, making this way a document to comprise
only one specific topic and its abstractions. Finally, the model of hPAM [11] deals
with some limitations of hLDA. It allows multiple inheritance between topics,
but on the other hand the fixed-depth hierarchy that produces and the need for
predefining the number of topics are its basic limitations. In general, determining
the appropriate depth of the hierarchy still remains to our knowledge an open
issue.
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In this paper we address the problems of concept identification and taxonomy
construction using statistical and machine learning techniques. The statistical
nature of the proposed method assures that the method is not dependent on the
language of the corpus, but only on the statistical information that the corpus
provides, i.e., the word frequencies. In addition, having no prior knowledge, we
aim to determine statistically the depth of the hierarchy.

3 The Method

As depicted in figure 1, given a corpus of documents, the method first extracts
the terms. The extracted terms constitute the term space, over which the latent
topics are defined. In the second step, feature vectors are constructed for each
document, based on term frequency. Next, the latent topics are generated as dis-
tributions over vocabulary terms according to the documents in the corpus and
the terms observed. Through an iterative process, latent topics are discovered
and organized into hierarchical layers until the criterion for appropriate depth
is satisfied.

Fig. 1. The proposed ontology learning method

More specifically, the stages followed by the proposed method are as follows:
(1) Term Extraction - From the initial corpus of documents, treating each

document as a bag of words, we remove stop-words using statistical techniques.
The remaining words constitute the vocabulary, forming the term space for the
application of the topic generation model.

(2) Feature Vector Creation - This step creates a Document - Term matrix,
each entry of which records the frequency of each term in each document. This
matrix is used as input to the topic generation model.

(3) Discover Topics - In this step, the iterative task of the learning method
is initiated. To generate the topics we follow the Latent Dirichlet Allocation
(LDA) [4] approach. LDA belongs in the family of Probabilistic Topic Models
(PTMs). These models are based on the idea that documents are mixtures of
thematic topics, which are represented by means of probability distributions over
terms. PTMs are based on the bag-of-word assumption, assuming that words
are independently and identically distributed in the texts, given the thematic
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topics of each text. PTMs are generative models for documents: they specify
a probabilistic procedure by which documents are generated as combinations
of latent variables, i.e. topics. Generally, this procedure states that topics are
probability distributions over a predefined vocabulary of words and according to
the probability that a topic participates in the content of each document, words
are sampled from the corresponding topic in order to generate the documents.

The LDA model specifies a generative process, according to which, topics are
sampled repeatedly in each document. Specifically, given a predefined number
of topics K, for each document:

1. Choose N ∼ Poisson(ξ).
2. Choose θ ∼ Dirichlet(α).
3. For each of the N words wn:

– Choose a topic zn ∼ Multinomial(θ)
– Choose a word wn from p(wn | zn, β), a multinomial probability distri-

bution conditioned on the topic zn.

p(zn = i) stands for the probability that the ith topic was sampled for the
nth word and indicates which topics are important, i.e., reflect the content of a
particular document. p(wn | zn = i) stands for the probability of the occurrence
of word wn given the topic i and indicates the significance of each word for each
topic.

In this paper, we are not interested in the generative process per se, but rather
in the inverse process. Documents are known and words are observations towards
assessing the topics of documents, as combinations of words. Thus, we aim to
infer the topics that generated the documents and then organize these topics
hierarchically. In order to infer the latent topics, the proposed method uses the
Markov Chain Monte Carlo (MCMC) process of Gibbs sampling [8].

At each iteration of this step, sets of topics, that we call layers, are generated
by the iterative application of LDA. Starting with one topic and by incrementing
the number of topics in each iteration, layers with more topics are generated. A
layer comprising few topics attempts to capture all the knowledge of the corpus
through generic concepts. As the number of topics increases, the topics become
more focused, capturing more detailed domain knowledge. Thus, the method
starts from “general” topics, iterates, and converges to more “specific” ones.

(4) Determine Subsumption Relations - In each iteration, the method identi-
fies the subsumption relations that hold between topics of different layers. The
discovered topics are arranged in a hierarchical manner according to their con-
ditional independencies, determined by the following condition:

|P̂ (A ∩ B | C) − P̂ (A | C)P̂ (B | C)| ≤ th. (1)

Equation (1) is best explained through an information theoretic framework.
Specifically, since the generated topics are random variables, e.g. A and B, by
measuring their mutual information we obtain an estimate of their mutual de-
pendence. Therefore, given a third variable C that makes A and B (almost)
conditionally independent, the mutual information of topics A and B is reduced
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and C contains a large part of the common information of A and B, i.e., C is
a broader topic than the others. In this case we may safely assume that C sub-
sumes both A and B and the corresponding relations are added to the ontology.
We should also point out, that C has been generated before A and B. Thus,
it belongs in a layer that contains topics that are broader in meaning than the
ones in the layer of A and B.

In addition, we search for a topic C that makes topics A and B as much
conditionally independent as possible. Therefore, between two possible parent
topics C1 and C2 we will choose the one that maximizes the difference of the
following mutual informations:

Δ = I(A, B) − I(A, B | C) (2)

Therefore, equation (1) is not used as an absolute measure to judge the sub-
sumption relations between concepts, but as a relative way of finding the best
concept C that can be considered as the father of A and B.

In order to calculate the conditional independencies between topics, we use the
document-topic matrix generated by the LDA model. Each entry of this matrix
expresses the probability of a specific topic given a document. The estimation
of the probabilities of equation (1) is explained in [15]. Moreover, the threshold
th has been introduced to avoid small rounding problems at the calculations.
Therefore, it has a very small value near zero.

(5) Determine Ontology Depth - A significant contribution of the proposed
method is the determination of the appropriate depth of the hierarchy from the
given corpus of documents. As already mentioned, the topics are probability
distributions over the term space. We use a criterion based on the similarity of
these distributions that indicates the convergence towards the appropriate depth.
We thus improve on our recently proposed work [15] by proposing algorithm
1. The way in which the appropriate depth of the taxonomy is determined is
explained in the following section.

4 Measuring Similarity between Concepts

In the proposed method, concepts are represented as multinomial distributions
over terms in documents. In order to determine the depth of the subsumption
hierarchy we define a criterion based on the symmetric KL divergence between
concepts of different levels that participate in subsumption relations. The in-
tuition behind this is that the symmetric KL divergence between concepts that
belong in the top levels of the hierarchy should be higher than the KL divergence
between concepts that belong in the lower levels of the hierarchy. This is due
to the fact that the top concepts are broader in scope than lower ones and the
“semantic distance” between them and their children is expected to be higher
than this of more specific concepts and their children.

In order to validate this assumption, we have experimented with two golden
standard ontologies and the corresponding corpora:
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Data: Document - Term Matrix
Result: Subsumption hierarchy of topics
initialization;
start with number of topics K=1;
while Stop Criterion not achieved do

Generate a pair of topic layers in parallel (for current value of K and for
K+1);
for every topic i in 1st topic layer of pair do

for every pair of topics ( j, k) in 2nd topic layer do
if (conditional independence of j and k given i is the maximum
among other pairs) AND (satisfies the threshold th) then

i is parent of j and k
end

end
end
if Stop Criterion achieved then

end;
else

increase number of topics;
end

end

Algorithm 1. Constructing a subsumption hierarchy of appropriate depth

1. The Genia2 ontology comprises 43 concepts connected with 41 subsumption
relations, which is the only type of relation among the concepts. The corre-
sponding corpus consists of 2000 documents from the domain of molecular
biology.

2. The Lonely Planet ontology contains 60 concepts and 60 subsumption rela-
tions among them. The Lonely Planet corpus is a collection of about 300 Web
pages from the Lonely Planet Web site3, providing touristic information.

In order to measure the similarity of the concepts in the ontologies, we repre-
sented the concepts of each gold standard ontology as probability distributions
over the term space of the corresponding corpus, as shown in figure 2. This repre-
sentation allows the application of statistical measures concerning the similarity
between concepts.

To represent each concept as distribution over terms we have to measure the fre-
quency of the terms that appear in the context of each concept. In both corpora,
the concept instances are annotated in the texts, providing direct population of
the concepts in the golden standard ontologies with their instances. Since we have
populated each concept with its instances, it is possible to associate each docu-
ment to the concept(s) that it refers to, by counting the concept instances that
appear in the document. Thus, we are able to create feature vectors based on the
document in which each concept appears. These feature vectors actually form a
two-dimensional matrix that records the frequency of each term in the context
2 The GENIA project, http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
3 The Lonely Planet travel advise and information, http://www.lonelyplanet.com/
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Fig. 2. The process of representing the golden ontology concepts as probability distri-
butions over the term space

of each concept. That is, we have a “concept - term” matrix that represents each
concept as a distribution over the term space of the text collection.

For each concept, frequencies are normalized giving a probability distribution
over the term space. Since the goal is to measure the symmetric KL divergence
between concepts that participate in subsumption relations, we also performed
smoothing of the probability distributions to eliminate possible zero values of
unseen terms. For this purpose, we applied the Laplace law (3) on the probability
distribution of each concept.

P̂L(wi)
.=

P̂ (wi) + 1
N + 1

, ∀i, (3)

where N is the vocabulary size.
In order to measure the symmetric KL divergence between two concepts p and

q that are related with a subsumption relation, we used the following formula:

DKL =
1
2
[
∑

i

P (wi)log
P (wi)
Q(wi)

+
∑

i

Q(wi)log
Q(wi)
P (wi)

], (4)

where P (·) and Q(·) are the distributions corresponding to concepts p and q.
Small values of KL divergence indicate high similarity between concepts. Figure
3 depicts the results obtained by measuring the similarity between concepts that
participate in subsumption relations, in the case of the Genia and the Lonely
Planet gold standard ontologies.

Figure 3 confirms our assumption that concepts at the lower levels of the hi-
erarchy are more similar to their children than concepts at higher levels of the
hierarchy. For both corpora, KL divergence is minimized at the leaf level of the
ontologies.

Based on this approach of measuring the KL divergence of subsumed concepts,
we define a relative criterion that indicates how deep the hierarchy should be
according to the information provided by the corpus of documents. This criterion,
which corresponds to the stop criterion of Algorithm 1, is defined as follows:

1 − KLbottom

KLtop
< ε. (5)
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Fig. 3. Average KL Divergence of subsumed concepts in the Genia and the Lonely
Planet gold standard ontology

In equation (5), KLtop corresponds to the average symmetric KL divergence
between the concepts of level l and the concepts of level l + 1. KLbottom is the
average symmetric KL divergence between the concepts at level l + 1 and the
concepts of level l + 2. Values close to 0 indicate that the new level of concepts
added does not differ much from the parent concepts. Thus we are reaching
maximum “specificity” and therefore optimal depth. Values near 1 indicate that
the hierarchy can go deeper. Actually, the parameter ε, does not depend on the
application. It has a very small value very close to zero to avoid small rounding
errors during the computations.

5 Evaluation

We have evaluated the proposed method on both corpora introduced in section 4.
The parameters that have been introduced in this paper are the parameter ε in
the stop criterion (5) and the threshold th for the significance of subsumption
relations. Both parameters are introduced in order to provide control over the
process, although the method is robust to the values of the parameters. Typically,
one would choose very small values for these parameters, independent of the
particular application.

The evaluation procedure that we followed uses the representation of the
golden standard concepts as probability distributions over the term space of the
documents, as explained in section 4. In addition, the concepts of the produced
hierarchy have exactly the same representation. They are probability distribu-
tions over the same term space. We can, thus, perform a one-to-one compari-
son of the golden concepts and the produced topics. More specifically, a topic is
matched to a concept if their corresponding distributions were the “closest” com-
pared to all the other and their KL divergence (4) was below a fixed threshold
thKL. Obviously, small values of KL divergence indicate high similarity between
golden concepts and discovered topics.
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The quantitative results have been produced using the metrics of Precision
and Recall. Regarding the concept identification, we define Precision as the ratio
of the number of concepts correctly detected to the total number of concepts
detected, and Recall as the ratio of the number of concepts correctly detected to
the number of concepts in the gold standard. Accordingly, for the subsumption
relations (SRs): Precision is the ratio of the number of SRs correctly detected
to the total number of SRs detected, and Recall is the ratio of the number of
SRs correctly detected to the number of SRs in the gold standard.

The choice of threshold thKL affects the quantitative results, since a strict
choice would force few topics to be matched with golden concepts, while a loose
choice would cause many topics to be matched with golden concepts. We have
chosen a value of thKL = 0.2 for the purposes of our evaluation, as we observed
relative insensitivity of the result for values between 0.2 and 0.4 and we opted
for the more conservative value in this plateau. Tables 1 and 2 depict the exper-
imental results in the case of the Genia and Lonely Planet corpora respectively.

Table 1. Evaluation results for the Genia corpus

Concept Identification
Precision Recall F-measure

94% 76% 84%
Subsumption Hierarchy Construction
Precision Recall F-measure

93% 75% 83%

Table 2. Evaluation results for the Lonely Planet corpus

Concept Identification
Precision Recall F-measure

62% 36% 44%
Subsumption Hierarchy Construction
Precision Recall F-measure

53% 35% 42%

In order to obtain a more detailed picture of the performance of the method,
we replaced the stopping criterion of Algorithm 1 with predefined depths for
the learned hierarchy and we experimented in both corpora. Figures 4 and 5
present the evaluation results in terms of the F-measure for various depths of
the hierarchy, using the same configuration (thKL = 0.2) for the evaluation
method.

Figure 4 depicts that for a predefined depth of 8 levels of the produced hierar-
chy, the F-measure is maximized compared to the Genia gold standard. Respec-
tively, in the case of the Lonely Planet corpus, the F-measure is maximized for a
predefined depth of 10 levels of the produced hierarchy (figure 5). Tables 1 and 2
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Fig. 4. F-measures for Concept Identification and Subsumption Hierarchy Construc-
tion for the Genia corpus

Fig. 5. F-measures for Concepts Identification and Subsumption Hierarchy Construc-
tion for the Lonely Planet corpus

confirm that the proposed method, using the stop criterion that we derived in
section 4, managed to achieve the best results in both corpora. Therefore, the
method determined correctly the appropriate depth in both corpora.

Concerning the quantitative results, in the case of the Genia corpus, where
the golden concepts were instantiated sufficiently in the documents, i.e. the texts
contain many concepts instances, the numerical results were higher than the
ones in the case of the Lonely Planet corpus, where half of the golden concepts
had only one instance and generally most of the concepts were insufficiently
instantiated. The difficulty of the model to retrieve some very specific concepts
in the Lonely Planet corpus is due to this fact.

6 Conclusions

In this paper, we have presented a method for concept identification and tax-
onomy construction that determines automatically the appropriate size of the
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subsumption hierarchy. We improved our recently proposed method that relies
on conditional independence tests between thematic topics, by incorporating a
statistical criterion that determines the appropriate depth of the produced hier-
archy. We have also experimented with two corpora, where we have showed that
the presented method managed to determine the most appropriate size for the
subsumption hierarchy, producing the best quantitative results.

Future work includes further experiments to validate the proposed method on
new ontologies and corpora.
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