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Abstract. In this paper we explore the use of hidden Markov models on the
task of role identification from free text. Role identification is an important
stage of the information extraction process, assigning roles to particular types of
entities with respect to a particular event. Hidden Markov models (HMMs)
have been shown to achieve good performance when applied to information
extraction tasks in both semistructured and free text. The main contribution of
this work is the analysis of whether and how linguistic processing of textual
data can improve the extraction performance of HMMs. The emphasis is on the
minimal use of computationally expensive linguistic analysis. The overall
conclusion is that the performance of HMMs is still worse than an equivalent
manually constructed system. However, clear paths for improvement of the
method are shown, aiming at a method, which is easily adaptable to new
domains.

1. Introduction

Role identification is the subtask of information extraction, dealing with the
assignment of event-specific roles to the various entities mentioned in a piece of text
that describes an event. In the information extraction process, as defined in the
Message Understanding Conferences [8], role identification is part of the scenario
template-filling task, which is the ultimate goal of the information extraction process.
Thus, role identification is a hard task, often requiring significant use of
computationally expensive linguistic processing methods.

In this paper we investigate the problem of role identification using hidden Markov
models (HMMs). Hidden Markov modeling is a powerful statistical learning
technique with widespread application, mostly in the area of speech recognition [11].
HMMs have also been applied successfully to other language related tasks, including
part-of-speech tagging [2], named entity recognition [1] and text segmentation [15].
The main advantage of HMMs in language modeling is the fact that they are well
suited for the modeling of sequential data, such as spoken or written language.
Another serious motivation behind the use of HMMs for text-based tasks is their
strong statistical foundations, which provide a sound theoretical basis for the
constructed models. On the other hand, an important concern with the use of HMMs



is the large amount of training data required to acquire good estimates of the model
parameters.

Recent research has suggested the use of HMMs for the task of role identification
from either semistructured or free text. Leek in [7] designed HMMs to extract gene
locations from biomedical texts. Freitag & McCallum in [3] and [4], used HMMs for
information extraction both from newsgroups and a collection of Reuter’s articles.
The focus of that work was on techniques that either improve the estimation of model
parameters [3] or learn the model structure from training data [4]. However, the use of
HMMs for role identification from free text is largely unexplored territory and there
are many important issues to be examined.

In this paper we examine for the first time the use HMMs for role identification
from Greek texts. For this purpose, we have used a collection of Greek financial
articles describing company acquisitions, which was used in the MITOS R&D project
[5]. Unlike previous work on HMMs for role identification, we pay particular
attention to whether and how linguistic processing of textual data can improve the
extraction performance of HMMs. This is a difficult issue, because the initial intuition
that linguistic analysis is likely to help in extracting information from natural
language, has to face the reality of high computationally costs for using linguistic
analysis tools. Therefore, it is important to identify the minimum necessary linguistic
processing for improving the performance of information extraction, while
maintaining the computational efficiency of the process. Along this line of thought,
we performed various types of linguistic preprocessing to our dataset, and considered
different data representations, where linguistic information was represented as part of
the text in a sequential form. The motivation for the sequential representation is the
suitability of HMMs for modeling sequential data.

The rest of this paper is structured as follows. In section 2 we review the basic
theory of HMMs and discuss how HMMs can be used for role identification. In
section 3, we present experimental results on our dataset varying the use of linguistic
processing. Finally, we conclude in section 5, discussing potential improvements of
the method.

2. HMMs for Role Identification

2.1 Basic Theory

A hidden Markov model is an extension of a Markov process where the
observation is a probabilistic function of a state. The elements that characterize an
HMM are:

• A set of N individual states S = {s1 , s 2 , …, s N }, often interconnected in a way

that any state can be reached from any other state (ergodic model).

• A discrete vocabulary of M observation symbols V = {v1 , v 2 , …, v M }.

• An NxN state transition probability matrix A = {a ij }, indicating the probability of

transitioning from state i to state j. Here we deal with first-order HMMs, which



means that transitioning to the next state j at time t+1 depends only on the current

state i at time t, i.e., P[s j (t+1) | s i (t) s k (t-1)…] = P[s j (t+1) | s i (t)] = a ij .

• An NxM observation symbol probability matrix B = {b j (k)} indicating the

probability of observing symbol v k at state s j .

• An Nx1 initial state matrix π = {π i } = {P[s i (1)]}, indicating the probability of

being at state s i at time t=1.

An HMM is a probabilistic generative model, whereby a sequence of symbols,

denoted as O = {o 1 o 2 …o T }, is produced by starting from an initial state i (with

probability π i ), emitting an output symbol v k =o 1 (with probability b i (k)),

transitioning to a new state j (with probability a ij ) emitting a new symbol and so on

until reaching the final state at time T and emitting the output symbol o T . Here we

also deal with discrete output HMMs, meaning that O is a sequence of discrete
symbols, chosen from the vocabulary V.

The three classic issues with HMMs are the following [12]:

1. Given the parameters λ = (A, B, π) of an HMM and a sequence of symbols, how
can we efficiently compute the probability P(O | λ), that the observation sequence
was produced by the HMM? This is an evaluation problem, which allows us to
choose the model which best matches the sequence.

2. Given the parameters λ = (A, B, π) of an HMM and a sequence of symbols, how

can we efficiently compute the most likely state sequence Q={q 1 q 2 …q T }

associated with the symbol sequence? The state sequence Q is hidden and can be
observed only through the sequence O. This issue relates to the “uncovering” of the
hidden state sequence.

3. How can we efficiently estimate the parameters λ = (A, B, π) to maximize P(O | λ)
? This is the most difficult of the three problems, dealing with the training of an
HMM given a set of observation sequences.

The above three problems can be solved using the Forward-Backward, Viterbi and
Baum-Welch algorithms respectively, as described in [12].

A key insight into the use of HMMs for language related tasks is that state
transitions are modeled by a bigram model emitting label types from a N-length
discrete vocabulary (just as with traditional Markov models), while each state is a
label-specific unigram language model, emitting tokens from a M-length discrete
vocabulary.

2.2 Using HMMs for role identification

In order to train HMMs for the role identification task, we make the following
assumptions, inspired by related work in [3] and [4].



• An HMM models the entire document, thus not requiring any segmentation of the
document into sentences or other pieces of text. Each training document is
modeled as a sequence O, of lexical units (tokens). The discrete tokens of all the
training sequences constitute the discrete alphabet V of the HMM.

• A separate HMM is constructed for each role of the event. In this paper we deal
with a collection of Greek articles describing company acquisitions. For this event,
we are interested in four roles: the buyer company, the company that is acquired,
the acquisition rate and the acquisition amount. Thus, we construct four different
HMMs, one for each role.

• The structure of each HMM is set by hand, and follows the same basic form for
each of the four different roles. Each state of an HMM is associated with a specific
label type. The set of label types that is used, involve a start (S) label type that
models the first token of the document, an end (E) type that models the last token,
which is always the EOF (end of file) symbol, two target types (T1 and T2), which
model the tokens that were hand tagged as one of the four target roles, two prefix
(P1 and P2) and two suffix (S1 and S2) label types which model two tokens around
the target tokens, and finally a background (B) type that models all the other
tokens of the document which are of no particular interest. This set of label types is
used to attribute a particular meaning to each state of the HMM, and it should not
be confused with the token vocabulary V of the model. A typical HMM structure,
using these label types is shown in Figure 1. The HMM of Figure 1 is not fully
connected. This constraint on the allowable transitions encodes prior knowledge
about the task, aiming to improve the extraction performance. For example, the
self-transition in state “T2” indicates that a role instance, e.g. a buyer company,
may consist of more than two tokens. Similarly, the transition from state T1 to state
S1, indicates that a role instance may also consist of a single token.

S B P 2P 1 T 1 S 1 ET 2 S 2

Fig. 1. An example of an HMM structure. Label types are associated to the states of the model
(S: start, E: end, B: background, P1 prefix1, P2: prefix2, T1: target1, T2: target2 S1: suffix1,
S2: suffix2 ).

• A sequence of labels L={l 1 l 2 …l T } is associated with each training sequence

O={o 1 o 2 …o T }. L encodes the hand tagged information about the roles in a

document, and il elements take values from the vocabulary of label types, as

depicted in Figure 1. An example of a label sequence might be L={S B B…P1 P2



T1 T2 T2 S1 S2 B B…E}. When training an HMM for a specific role (e.g. buyer
company), all tokens that are hand tagged with this role are associated with target
tokens.

Since there is a one-to-one mapping between states and labels, the state sequence is
no longer hidden and thus the Baum-Welch algorithm is not needed to train the
HMMs. State transition and token emission probabilities can be acquired directly
from the training data and their associated label sequences, by simply calculating
ratios of counts (maximum likelihood estimation) as follows:
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Where )( jic → counts the transitions from state i to state j, and c(j ↑ k) counts the

occurrence frequency of token k in state j. Token emission probabilities often need to
be smoothed, in order to avoid zero probabilities for vocabulary tokens not observed
in the training data for a particular state. For that purpose we chose a widely used
smoothing technique, described in [16]. State transition probabilities do not require
smoothing, due to the small size and low connectivity of the model.

After the training phase, our four HMMs are evaluated using articles that have not
been “seen” during the training process. Given a set of test sequences, each denoted
as O, the objective is to find the most likely state sequence, i.e., the most likely label
sequence L, and then extract the target tokens. The uncovering of the hidden label
sequence corresponds to the second issue concerning HMMs, as described in
subsection 2.1 and is achieved by the Viterbi algorithm. One issue that arises when
following this modeling approach is how to deal with unknown tokens in the test
collection, i.e., tokens that do not exist in the training vocabulary V. To deal with that
problem we added a special token “unknown” to the vocabulary of the HMMs, during
the training phase.

3. Experiments

3.1 Data preprocessing

For the purposes of our experiments we used a collection of 110 Greek financial
articles describing company acquisition events. In these texts, the roles buyer,
acquired, rate and amount were hand tagged. As mentioned above, buyer indicates
the company that acts as a buyer, acquired indicates the company that is bought, the
acquisition rate is the percentage of the company that is bought and finally the
amount is the amount spent by the buyer. Each text describes a single company
acquisition event. The text corpus was preprocessed using the Ellogon text



engineering platform [10] and the following linguistic tools: tokenizer, part-of-
speech-tagger and stemmer.

The tokenizer identifies text tokens (i.e., words, symbols, etc.) and characterizes
them according to a token-type tag set which encodes graphological information (e.g.
the token comprises upper case greek characters). Part of this tag set is shown in
Table 1(a). The part-of-speech (POS) tagger identifies the POS of each word token,
according to a POS tag set. In addition to the part of speech, the tag set includes also
morphological features, such as number, gender and case. Part of this tag set is shown
in Table 1(b). The POS tagger that we used is a rule-based one, constructed with the
use the transformation-based learning method [2]. The performance of the tagger on
Greek financial texts is approximately 95% [9]. Finally, the stemmer converts word
tokens to lowercase and unstressed, and removes the inflectional suffixes of Greek
nouns and adjectives.

Table 1. (a) Part of the token-type subset used by the tokenizer. (b) Part of the part-of-speech
tag set used by the POS tagger

GLW Greek lowercase word
GUW Greek uppercase word
GFW Greek word first capital
EUW English uppercase word
EFW English word first capital
PERIOD .
INT Integer

(a)

NNF Noun, feminine,
singular number

DDT Definite article
VBD Verb past tense
WP Relative pronoun
FW Foreign word

(b)

The result of each linguistic processing step is a new collection of articles, where
the linguistic information is represented as part of the text in various ways. Due to the
sequential modeling nature of traditional HMMs, we represented the linguistic
features of each token in sequence with the document text. For example, the result of
the tokenizer is a new collection where an extra token is added just before each token,
indicating the type of that token according to the tag set. Table 2 shows a sample
sentence in the various data representations that we examined.

Table 2. Different representations for a sample sentence, incorporating linguistic information.

Collection A
(Baseline)

Στην εξαγορά της εταιρείας ITC προχώρησε η Computer
Logic.

Collection B
(Type Token)

GFW Στην GLW εξαγορά GLW της GLW εταιρείας EUW
ITC GLW προχώρησε GLW η EUW Computer EUW
Logic PERIOD .

Collection C
(POS Token)

DDT Στην NNF εξαγορά DDT της NNF εταιρείας FW
ITC VBD προχώρησε DDT η FW Computer FW Logic.

Collection D
(Type POS Token)

GFW DDT Στην GLW NNF εξαγορά GLW DDT της
NNF GLW εταιρείας EUW FW ITC GLW VBD
προχώρησε GLW DDT η EUW Computer FW EUW FW
Logic PERIOD .



Collection E
(Token_Type)

Στην_GFW εξαγορά_GLW της_GLW εταιρείας_GLW
ITC_EUW προχώρησε_GLW η_GLW Computer_EUW
Logic_EUW PERIOD .

Collection F
(Token_POS)

Στην_DDT εξαγορά_NNF της_DDT εταιρείας_NNF
ITC_FW προχώρησε_VBD η_DDT Computer_FW
Logic_FW .

Collection G
(Token_Type_POS)

Στην_GFW_DDT εξαγορά_GLW_NNF της_GLW_DDT
εταιρείας_GLW_NNF ITC_EUW_FW
προχώρησε_GLW_VBD η_GLW_DDT
Computer_EUW_FW Logic_EUW_FW PERIOD .

Collection H
(Type_POS)

GFW_DDT GLW_NNF GLW_DDT GLW_NNF
EUW_FW GLW_VBD GLW_DDT EUW_FW
EUW_FW PERIOD

Collection I (Stems) στην εξαγορ της εταιρι itc προχωρησε η computer logic

3.2 Results

We conducted five groups of experiments. Each group uses collections from Table
2, which represent linguistic information in a similar manner. The first group contains
experiments on the baseline collection A of Table 2 without any linguistic
information. The second group contains experiments on the collections B, C and D,
where the linguistic information (token type or POS or both) is represented as extra
tokens added just before each token of the text. The third group contains experiments
on the collections E, F and G, where the linguistic information is represented as
tokens attached to each token of the text using the underscore character (“_”), as
depicted in Table 2. The fourth group comprises the collection H where each token of
the text is substituted by the corresponding type and POS, connected with each other
using the underscore character (Type_POS). Finally, the fifth group contains the
collection I, where each token from the baseline collection is substituted by the
corresponding stem.

Each experiment on a collection, involves the training of four HMMs, one for each
role of the domain. We experimented with various structures for the HMMs on each
collection. The model structure, which achieved the best results for the majority of the
collections, is shown in Figure 1. We conducted experiments using more than two
prefix, suffix and target states, expecting that more complex HMM structures would
capture the content of some collections where new tokens have been introduced, e.g.
B, C and D, and thus achieve better results. However the results did not justify the
additional complexity.

The evaluation of the HMMs was done using the 10-fold cross validation method.
According to this evaluation method, the collection is split into ten equally sized
subsets and the learning algorithm is run ten times. Each time, nine of the ten pieces
are used for training and the tenth is kept as unseen data for the evaluation of the
algorithm. Each of the ten pieces acts as the evaluation set in one of the ten runs and
the final result is the average over ten runs. The extraction performance of the HMMs
was evaluated using three measures per HMM (i.e., per role): recall, precision and
accuracy. Recall measures the number of items of a certain role (e.g. buyer) correctly



identified, divided by the total number of items of this specific role in the data.
Precision measures the number of items of a certain role correctly identified, divided
by the total number of items that were assigned to that role by the HMM. Accuracy
measures the number of tokens of a certain role correctly identified, divided by the
total number of tokens assigned to that role [13]. In total 12 measures are used for the
experiments: recall, precision and accuracy for each of the four roles (buyer,
acquired, rate, amount) of the company acquisition domain.

The best results for each group of experiments together with the collections that
achieved those results are presented in Tables 3 (a-e).

Table 3. Best performance of HMMs for each of the five groups of experiments

Buyer Acquired Rate Amount
Recall 0,294 0,238 0,856 0,517

Precision 0,567 0,531 0,791 0,397
Accuracy 0,721 0,617 0,806 0,607

(a) Performance on collection A (baseline collection)

Buyer Acquired Rate Amount
Best Collection B B B B

Recall 0,637 0,571 0,967 0,592
Precision 0,389 0,332 0,687 0,347
Accuracy 0,529 0,413 0,715 0,545

(b) Best performance on collections B, C, D

Buyer Acquired Rate Amount
Best Collection G G G G

Recall 0,310 0,250 0,838 0,567
Precision 0,619 0,555 0,791 0,430
Accuracy 0,782 0,646 0,806 0,615

(c) Best performance on collections E, F, G

Buyer Acquired Rate Amount
Recall 0,697 0,683 0,915 0,842
Precision 0,341 0,351 0,721 0,403
Accuracy 0,410 0,370 0,728 0,482

(d) Performance on collection H

Buyer Acquired Rate Amount
Recall 0,309 0,286 0,856 0,567
Precision 0,501 0,485 0,796 0,385
Accuracy 0,685 0,554 0,814 0,631

(e) Performance on collection I

Comparing the results in Table 3(b) to the baseline results in Table 3(a) we note a
significant increase in recall, accompanied by a smaller decrease in both precision and



accuracy. This can be justified as follows: Capitalization of the first character of a
token usually provides evidence of a name. By using the Type Token representation of
collection B, our HMMs can learn rules of the form “when emitting one of GUW,
GFW, etc., then with high probability the next token is a target token”. Thus the
number of items assigned to the buyer and acquired roles increases, causing the
equivalent increase in recall, followed by a smaller decrease in the other two
measures. On the other hand, the rate and amount roles mostly involve numerical
entities. Thus the number of items assigned to those two roles also increases by the
presence of a numeric token Type, e.g. INT, added just before a number. The learned
rules in this case can be of the form “when emitting an integer or decimal number
then with high probability the next token is a target token”.

Comparing the results of Table 3(c) to the results of Table 3(a), we note an overall
improvement for the buyer, acquired and amount roles, while the performance for the
rate role remains almost unaffected. This means that the additional part-of-speech
information included in this representation (Token_Type_POS) improves the
performance of HMMs. The same is not true for collection D (Type POS Token),
where the encoding of linguistic information as extra tokens causes a significant
deterioration in precision and therefore the additional part-of-speech information is
not beneficial.

When removing information about the token itself in collection H, the result is a
significant increase in recall (comparing tables 3(d) and 3(c)), with a significant
decrease in the other two measures. This is an indication of overgeneralization, which
is expected due to the generality and simplicity of the linguistic information that is
used, i.e., part-of-speech and token type.

The results in Table 3(e) show that stemming improves recall overall, while it hurts
precision for the buyer, acquired, and amount roles. This means that the reduction of
the vocabulary, with the use of stemming, causes a higher level of generalization,
which increases recall and reduces precision. The performance for the rate role
improves slightly in all three measures, which is justified by the emergence of clearer
contextual patterns for this role, with the use of stemmed words.

Another clear conclusion from the experiments is that the performance for the
buyer and acquired roles is worse than that for the rate role for all of the experiments.
To a lesser extend the same is true for the amount role. There are two reasonable
explanations for this. First, the rate and amount roles involve numerical entities,
which are easier to detect in the text than detecting named entities, such as companies.
This justifies the high recall for these roles. Second, it is more difficult to discriminate
between roles for entities of the same type (e.g. companies). As a result many buyer
companies in the collection were also detected by the HMMs as acquired and vice
versa. On the other hand, rate and amount are very different from the other roles, and
there aren’t any other similar roles in the domain such as “rate_B” or “amount_B”.
This justifies the low precision for the buyer and acquired roles. To verify the second
explanation we conducted another set of experiments where both buyer and acquired
were tagged as one concept, i.e., “buyer OR acquired”. The experiments were
conducted using the collections with the best results in the previous experiments
(Table 3). The new results are depicted in Table 4.



Table 4. Performance of the HMMs for the role “buyer OR acquired” on the collections with
the best results from the five groups of experiments.

Collection A
(baseline)

Collection B
(type token)

Collection G
(token_type_pos)

Collection H
(type_pos)

Collection I
(stems)

Recall 0,432 0,738 0,426 0,842 0,416
Precision 0,611 0,400 0,620 0,560 0.560
Accuracy 0,758 0,579 0,767 0,648 0,741

As expected, in Table 4 a consistent improvement in all three measures (recall,
precision and accuracy) is obtained over the results for the buyer and the acquired
roles in Table 3. That improvement, however, is not as substantial as one would
expect. This happens because there are also other company names in the collections
that do not have a particular role in the acquisition event and the HMMs erroneously
detect those entities as either buyer or acquired.

The ultimate question that remains unanswered is which representation leads to the
best performance for HMMs? From the results of Table 3, we conclude that the best
representation for the buyer and acquired roles is the one used in collection G
(Token_Type_POS), which leads to a significant increase in all measures, in
comparison to the baseline collection A. The representation of collection H
(Type_POS) seems to achieve the best performance for the amount role. Finally, for
the rate role the best representation seems to be the one used in collection I (stems).
Note however that the rate is the role with the least deviation to the performance
measures in all the experiments. This happens because the rate role involves
exclusively numerical entities and the percent (%) symbol which are very little
affected by the different representations used in the experiments. On the other hand,
the amount role may further involve alphabetic characters (e.g. 40 εκ. δρχ.). Thus the
performance for the amount role can be easier influenced by the various
representations of Table 2.

4. Discussion and future work

In this paper we examined the effect of linguistic pre-processing of the training
data to the performance of hidden Markov models in role identification. For the
evaluation we used three measures (recall, precision and accuracy) and the 10-fold
cross-validation method, in order to gain an unbiased estimate of the performance.
The data that we used consisted of 110 Greek articles, announcing company
acquisition events. These data were processed by simple and efficient linguistic
analysis tools and were translated into training data for the HMMs using various
representations, in which the linguistic information was represented as part of the text
in a sequential form. The size of the HMMs that we used was small and their structure
was simple, with the model parameters easily estimated from the training data, in a
straightforward manner.

The experiments showed that using certain representations, simple linguistic
analysis improves the extraction performance of HMMs on role identification. The
overall performance was high for the two simpler roles (rate and amount), but it was



much lower for the other two roles (buyer and acquired). The improvement in
performance gained by the use of linguistic information was clearer for the harder
roles. The difficulty in identifying instances of the buyer and acquired roles stems
mainly from the fact that they both correspond to the same type of entity
(organization) and there is insufficient linguistic information for distinguishing
between the two roles. Richer linguistic processing, involving syntactic analysis,
could improve those results. This conclusion is also supported by the higher
performance of an equivalent handcrafted system [5]. Indicative results of this system
are shown in Table 5. The manual system performs badly for the rate and amount
roles, due to the weak performance on the detection of numerical entities in text.
However, it does much better in the other two roles, using much more extensive,
albeit computationally expensive, linguistic analysis. Finally, our results are
comparable to those reported in [3].

Table 5. Performance of a handcrafted system for the company acquisition domain

Buyer Acquired Rate Amount
Recall 75% 70% 49% 43%
Precision 72% 85% 72% 60%

The extraction performance of HMMs could be improved in several ways. Freitag
& McCallum in [3], implemented a statistical technique called shrinkage that
improves the token emission probabilities of an HMM in the presence of sparse
training data. Furthermore, the learning of a probabilistic model such as an HMM,
also involves the learning of the structure of the model. In this paper we assumed a
fixed model structure, carefully designed for the particular dataset and domain that we
used. However, certain structures may capture better the content of some documents
straightforwardly affecting extraction performance. Machine learning techniques have
been used for learning the structure of HMMs ([4], [13], [14]) from training
examples.
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