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Abstract. This paper deals with the problem of constructing an intel-
ligent Focused Crawler, i.e. a system that is able to retrieve documents
of a specific topic from the Web. The crawler must contain a component
which assigns visiting priorities to the links, by estimating the probabil-
ity of leading to a relevant page in the future. Reinforcement Learning
was chosen as a method that fits this task nicely, as it provides a method
for rewarding intermediate states to the goal. Initial results show that a
crawler trained with Reinforcement Learning is able to retrieve relevant
documents after a small number of steps.
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1 Introduction

World Wide Web can be considered as a huge library of every kind of informa-
tion, accessible to many people throughout the world. However, it lacks a global
indexing system that would consist of an explicit directory of all the information
found in the Web. In order to deal with this problem, many Web tools have
been constructed that mostly try either to construct a Web directory a priori,
or respond to a user’s query about keywords contained in a Web page.

These methods usually require exhaustive crawling, an effort to traverse
as many Web pages as possible in order to maintain their database updated.
However, this procedure is very resource consuming and may take weeks to be
completed. On the other hand, “Focused Crawling” [3] is the effort to retrieve
documents relevant to a predefined topic, trying to avoid irrelevant areas of the
Web. Therefore it is more effective in finding relevant documents faster and more
accurately.

A “Focused Crawler” searches the Web for relevant documents, starting with
a base set of pages. Each of these pages contains usually many outgoing hyper-
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links and a crucial procedure for the crawler is to follow the hyperlinks that are
more probable to lead to a relevant page in the future. Therefore, the crawler
must include a component that evaluates the hyperlinks, usually by assigning
a numerical “score” to each one of them. The highest the score is, the more
probable it is that this hyperlink will lead to a relevant page in the future.

This component, the “Link Scorer” is implemented here by a reinforcement
learning (R.L.) agent. An R.L. agent can recognize different states of the envi-
ronment and for each of these states s ∈ S it is able to choose an action α from a
set of actions A. The choice of the action that the agent will perform in a specific
state, is based on the policy π of the agent and can be represented simply as a
look-up table.

Except for the agent, another important factor of an R.L. scheme, is the
environment. The environment “judges” each of the agent’s choices (actions)
by providing a numerical reward. The reward is indicative of what we want the
agent to perform, but not how it will perform it.

Based on the rewards it receives, the agent’s policy is rearranged towards the
optimal policy π∗. When a reward is given, the course of actions that the agent
has followed so far gets credit. The way this credit is distributed backwards to
the actions is determined by the specific R.L. method adopted. Moreover, the
environment makes the transition to the next state st+1, given the current state
st and the action at, chosen by the agent.

Reinforcement learning seems to fit nicely to the task of focused crawling.
Indeed, the environment can tell the agent when it has done a good job (found
a relevant page), but not how to do it - this is its own responsibility. Moreover,
when the agent receives a reward the whole course of actions followed is affected,
and not only the last one as would be the case in a supervised learning approach.
This is a promising solution to the central problem of focused crawling, which is
to assign credit to all the pages of the path that leads to a relevant document.

Our aim is to construct a focused crawler that uses an R.L. agent to train the
“link scoring” component. This crawler should have increased ability to identify
good links, because of the R.L. scheme, and therefore become more efficient and
faster than a baseline crawler.

The next section presents a survey of the most important related work on Fo-
cused Crawling. Special attention is paid to methods engaging machine learning
and the different aspects of dealing with this problem are illustrated. Section 3
is devoted to our own approach and the issues of representing the entities of the
problem in an R.L. scheme. Section 4 describes our implementation of the R.L.
agent and section 5 presents experimental results. These results are analyzed, in
order to draw conclusions on our method, which are presented in the last section.

2 Related Work

The first attempts to implement focused crawling were based on searching the
Web using heuristic rules that would guide the choices of the crawler. These
rules are usually based on keywords found near the link and in the rest of the
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page that contains it. The crawler performs a search strategy combined with the
heuristic rules in order to follow successful paths leading to relevant pages. Such
implementations are “Fish-Search” [6] and “Shark-Search [8].

More recent methods use information related to the structure of the Web
graph, in order to perform more efficient focused crawling. Some of these methods
take advantage of the “Topical Locality” of the Web (the property of pages with
similar topic being connected with hyperlinks [2]) and use it to guide the focused
crawler [3]. Moreover, the “backlink” information (pages that link to a certain
document), provided by search engines like Google or Altavista, can be used to
generate a model of the Web-graph near a relevant page, such as in the case of
“Context Graphs” [7]. Finally, information such as contents of in-linking pages,
tokens in the URL, and contents of sibling pages, can be extracted in order to
train an agent to recognize the “linkage structure” for each topic [1].

There are also some methods that use R.L. in order to deal with focused
crawling. In [9], the crawling component is based on R.L., although some simpli-
fying assumptions are made. More specifically, in this approach the state space
has been omitted, due to high dimensionality of the data. Therefore, the agent
examines only the value of the possible actions to be taken, irrespective of the
state of the environment. The actions are represented by the different hyperlinks
that exist in a Web page, and the value of each action is estimated by a “bag-
of-words” mapping of the keywords in the neighborhood of the hyperlink to a
scalar value.

3 Problem Representation

In order to analyze the issues that arise in the representation of the focused
crawling task as an R.L. task, we should examine a small part of the Web graph,
like the one depicted in Figure 1. Each node 1©.. 9© represents a Web page and
each arc represents a link from a Web page to another. Web page 9© is relevant
and there is only one path, following the nodes 1©→ 4©→ 8©→ 9© leading to that
page.

The aim of Focused Crawling, is to be able to recognize promising links early
on, in order to follow the right path. Assume that an agent is in node 4© and
has to choose between two links to follow, link 1 and link 3. It should be able to
evaluate those links and choose the best, which is the one that is more promising
in leading to a relevant page. In this case it should be link 1. By following this
link, the agent will now be in node 8©, which is one step closer to the relevant
page.

Reinforcement learning seems to fit this task nicely. When the agent finds
the target, which in this case is the relevant page, all the actions that lead to
this take credit, allowing the agent to learn patterns of paths leading to relevant
pages in the Web. However, a great deal of attention must be paid to the design
of the reinforcement learning approach, in order to determine the most suitable
problem representation, the role of each unit and the environment’s behaviour.
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Fig. 1. A small part of the Web graph

In our approach, every Web page represents a different state st ∈ S. The set
of actions contains the hyperlinks that exist in each page. Therefore, the agent
being in state st (Web page), must choose among the actions that exist for this
state α ∈ A(st), i.e. the hyperlinks found in this Web page. This action leads
to another state st+1 and a numerical reward, rt+1, is given to the agent. This
reward is +1 in case the Web page the agent has moved to is relevant, and 0
otherwise.

The aim of the R.L. agent is to maximize the reward it accumulates over the
long run. This quantity is called the Return, and is defined as follows:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑

k=0

γkrt+k+1, (1)

where γ is a discount factor, denoting the importance of recent rewards compared
to older ones.

In order to find a policy, i.e. a mapping from states to actions, that would
maximize the Return, the agent must be able to evaluate each state according
to that criterion, as follows:

V π(s) = Eπ{Rt|st = s} = Eπ{
∞∑

k=0

γkrt+k+1|st = s} (2)

which is called the state-value function for policy π. In our case, the state-value
function represents the possibility of a Web page being on a path to a relevant
page. Therefore, a page with high state-value is preferable to a page with a lower
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one. When the agent must make a decision upon which hyperlink to be followed,
it needs to estimate the state-value of the page pointed to by the hyperlink,
termed the outlink page here. In other words, being in state st the agent needs
to find the action at that leads to the state st+1 with maximum value:

arg max
at

V (st+1) (3)

This estimation can be achieved either by estimating the values of all the
possible next states, e.g. by fetching and evaluating all the outlink pages, or by
estimating the value of the actions themselves, i.e. evaluating the hyperlinks,
rather than the pages they point to.

Fig. 2. A search tree of Web pages

This process is illustrated schematically in Figure 2, which depicts the out-
link structure by a tree and our purpose is to find the best search strategy for
relevant pages. The successful route is denoted by a dotted line. Starting from
the root page (level 0) the agent needs to evaluate the pages on the next level
and choose the best, according to the value function. Being in a node at level n
it evaluates only the children of this node at level n + 1. As the experience of
the agent grows it will become easier to find the right path in an efficient and
cost-effective way.

4 Implementation

In order for an R.L. agent to be implemented, there are many practical issues that
need to be considered. One is the dimensionality of the state-space. In our case,



6

each state (Web page) is represented by a feature vector of 500 binary values.
Each value corresponds to the existence or not of a specific keyword, which is
important for the classification of a page as relevant or not. This makes up a space
of approximately 3 · 10150 different states, that can not be examined separately
in a tabular policy format. Therefore, a function approximation method must
be employed, where the features of each state are used as the input, and the
estimation of the state-value as the output of the function.

The method chosen for our experiments was Temporal Difference Learning
with eligibility traces TD(λ) and gradient descent function approximation [11].
Temporal Difference is a very commonly used method for R.L. Eligibility traces
are used to implement TD(λ), a faster version of TD, where a fewer number of
episodes is required to train the agent.

Moreover, a neural network is trained to estimate the values of different
states, since their dimensionality does not allow a direct mapping. This neural
network receives a training instance at each step of the crawling process. The
input vector represents the features of the current Web page and the output the
estimated state-value of that page, based on the reward that is received. The
reward takes the value 1 or 0 according to whether the page is relevant or not.
Implementing TD(λ), each synapse is associated with its weight and its eligibility
trace, which captures the discounted reward provided by the R.L. policy. These
parameters, weights and eligibility traces, are updated, in order to ensure that
the network gives credit to all the actions of a successful course.

The agent operates in two modes: “training” and “crawling”. During “train-
ing” the agent executes a number of episodes, usually from 1000 to 10000, start-
ing from a root page and following hyperlinks randomly, until it completes a
number of steps (e.g. 10), or until it finds a relevant page. At each step, the
agent is in state st and performs action αt, receiving a reward rt+1 according to
how good the action was (led to a relevant page or not). The reward rt+1 along
with the features representing state st are fed to the neural network. Since the
neural network is enhanced with eligibility traces, it gradually learns to evaluate
a state’s potential of leading to a relevant page, not only immediately but also
in the future.

In the “crawling” mode, the agent is embedded in a crawler, which maintains
a list of hyperlinks and their scores. Starting from a “root” page, the crawler
evaluates all the outlinks using the trained neural network. These hyperlinks
with their scores are added to the list. The crawler selects the hyperlink with
the highest score, examines whether it is relevant or not, and extracts and eval-
uates their outlinks in order to store them in the list. The process ends when a
predefined number of pages have been visited.

In order to evaluate outgoing links at each step, there are two alternative
approaches that can be followed. The first is to fetch all the outlink pages and
estimate their state-values. This is referred to hereafter as the “original lookahead
method”. However, this one-step lookahead causes a computational overhead,
because the crawler is obliged to fetch all the outlink pages, even though it may
decide not to follow most of them. Since the performance of a crawler is usually
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measured according to the number of pages that have to be visited until the
relevant pages are found, this overhead cannot be ignored. Therefore, it would
be desirable to have a variant of the original method, that is able to assign scores
to links without having to visit them first.

This is realised by using the score of the current page as an approximation of
the score of the pages that it links to. The crawler first examines the root page
and assigns a score to it using the same procedure as in the original method.
However, it does not fetch outlink pages and examine their contents. Instead,
they immediately inherit their parent’s score before being added to the list. Then,
the crawler chooses the page with the highest score and visits it. When a page
is found that has already been scored and needs to inherit a new value (multiple
inheritance from more than one parents), the average of all the previous scores is
used. This approach is referred to hereafter as the “variant without lookahead”.

5 Experiments

5.1 Setup

The data used for the experiments are those used in the 2nd domain of the mul-
tilingual information integration project CROSSMARC [4, 10], for the English
and Greek language. CROSSMARC examined two thematic domains: “laptop
product descriptions” and “job adverts on corporate Web sites”. The latter do-
main is considered here.

The datasets used in the experiments represent Web sites containing pages
of the specific domain for the two languages. The characteristics of the datasets
are shown in Table 1 and Table 2.

One characteristic of the domain that makes it particularly challenging for a
focused crawler is the small proportion of relevant pages in each dataset. This
situation, however, is very realistic, given the vastness of the Web, in which a
crawler operates. Furthermore, it should be noted that the Greek datasets are
generally larger and contain more relevant pages.

In order to present objective and comparative results, cross-validation is used
according to the following procedure:

– Given n different datasets, a separate Neural Network with eligibility traces
is trained on each one of them.

– After the training has been performed, each dataset passes through the
crawling phase as follows:
• The selected dataset is crawled, using an average of the value functions

of the n− 1 remaining Neural Networks.
• The crawler’s performance is calculated as a cumulative count of the

number of relevant pages found at each navigation step.
– The procedure continues until all the datasets have been tested.
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Table 1. Datasets used in experiments - English

# Name Web Pages Hyperlinks Average
Outlinks

Relevant
Pages

1 ApcInc 24 342 14 1
2 En-Vivo 24 88 4 1
3 Rowan 10 60 6 1
4 Harmonia 241 3332 14 1
5 Quarry 92 1712 19 9

Table 2. Datasets used in experiments - Greek

# Name Web Pages Hyperlinks Average
Outlinks

Relevant
Pages

1 Abc 194 1544 8 11
2 Forthnet 1907 4480 2 18
3 Intracom 555 15599 28 11
4 Marac 87 1249 14 3
5 Sena 102 2074 20 1

5.2 Experimental Results

The experiments were run for 1000 episodes with a maximum of 10 steps each.
Figures 3 to 6 depict the percentage of the relevant pages that were found
by the algorithm against the percentage of the pages visited, for the various
methods. Each point represents the number of pages that have been examined
so far (x-axis) and the number of relevant pages that were discovered until then
(y-axis). Therefore, lines positioned in the left side of the graph represent better
performance (more relevant pages found earlier). Also, the fewer relevant pages
a dataset has, the steeper the line is, since there are less points in the graph that
denote the discovery of a relevant page.

Figures 3 and 4 present the results for the English sites. Both methods
perform better in the “Quarry” dataset, followed by “En-vivo”, “ApcInc”, “Har-
monia” and finally “Rowan”. Although the variant method performed worse in
the “Quarry” dataset than the original one, it was better in the other datasets.
However, since “Quarry” was the only dataset containing more than one relevant
pages, it represents a more realistic situation, while the other datasets can be
considered problematic.

Figures 5 and 6 present the graphs for the Greek sites. The original method
performed better for the “Forthnet” dataset, while the variant in all the other
datasets. Moreover, the Greek datasets are much larger, with various graphi-
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cal structures (number of outlinks) and thus pose a more realistic evaluation
scenario.

Using the same datasets used in CROSSMARC, which is a variant of the
method presented in [9], produced the results shown in Figures 7 and 8. In
the English datasets, CROSSMARC’s crawler performed better on large data-
sets, such as ‘Harmonia”, and “Quarry”, while its performance was worse in the
rest of the datasets, being worst in the “En-Vivo” case. For the Greek datasets,
the performance of the CROSSMARC’s crawler is similar to our method, being
better in some datasets and worse in others.

It should be noted that the results for the original lookahead method are not
directly comparable with the other two methods. This is because the lookahead
method has to visit more pages en route to the relevant page.

Despite this fact the lookahead method seems to be worse than the other two
methods in most cases. Therefore, the additional computation is not justified.
Among the other two methods, no clear conclusion can be drawn about which
of the two is better. However, the fact that the two methods are based on the
R.L. principle, combined with the fact that they seem to complement each other
in terms of performance, indicates a potential synergy among them.

Fig. 3. Results for the original lookahead method - English

6 Conclusion

This paper dealt with the problem of Focused Crawling using an intelligent
crawling agent based on Reinforcement Learning. A crawler must be able to
recognize patterns within the Web graph and make the right choices in order to
be efficient and cost-effective. Reinforcement learning was chosen because it is
a method that allows an agent to accumulate knowledge by experimenting with
the environment, without using direct supervision. It seems to be appropriate
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Fig. 4. Results for the variant without lookahead- English

Fig. 5. Results for the original lookahead method - Greek

Fig. 6. Results for the variant without lookahead - Greek
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Fig. 7. CROSSMARC’s Crawler - English

Fig. 8. CROSSMARC’s Crawler - Greek
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for the task of Focused Crawling where success can be recognised but detailed
guidance to this success cannot be provided, as would be required by a supervised
learning approach.

The results of the experiments show that reinforcement learning is a good
choice for this task. Indeed, in most of the cases only a small number of steps
was required in order to retrieve all the relevant pages.

Further work includes further experimentatin and potential extension of the
method, incorporating features of the method used in CROSSMARC’s crawler.
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