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Abstract

The paper is motivated by the need to handle robustly the
uncertainty of temporal intervals, e.g. as it occurs in au-
tomated event detection in video streams. The paper intro-
duces a two-dimensional mapping of Allen s relations, based
on orthogonal characteristics of interval relations, namely
relative position and relative size. The hourglass-shaped
mapping also represents limit cases that correspond to du-
rationless intervals. Based on this mapping, we define two
sets of primitive interval relations in terms of the relative po-
sitioning and relative size of intervals. These primitives are
then used to derive a probabilistic set of Allen’s relations. A
number of example cases are presented to illustrate how the
proposed approach can improve the robustness of interval
relations.

1. Introduction

Allen’s interval calculus [[l] has been used extensively
for temporal reasoning [2], human mental modeling [f]] and
temporal databases [4]. In the context of automated in-
formation extraction from multimedia content [[1(], Allen’s
relations provide a mechanism for inferring higher level
knowledge and/or querying over detected events. However,
the rigid nature of qualitative relations does not encourage
their direct use, since they do not suit the inexact nature of
the information extraction algorithms [§]. In particular, as
pointed out in [[7], qualitative interval relations may not be
robust enough to small temporal perturbations.

Addressing this issue, one may consider extending
Allen’s relations with uncertainty values. In [8], probability
temporal interval networks are introduced, where nodes are
intervals and edges are probabilistic relations. In [9] proba-
bilities are attached to intervals, while in [3] a fuzzy exten-
sion of Allen’s algebra has been proposed. In all of these
approaches, the use of uncertainty is mostly motivated by
the need to impose soft constraints on temporal relations,
while the focus is on providing the algebra and algorithms

to deal with uncertainty values, once these are available.

A somehow different issue, which is the focus of this ar-
ticle, is how to assign uncertainty values to Allen’s relations,
so as to compensate for the inherent uncertainty of the auto-
mated event detection process. Once uncertainty values are
assigned to interval relations, they can be used, for exam-
ple, as input to probability temporal interval networks to be
checked for consistency [8] and to provide a reliable confi-
dence index with respect to a database query [4]. We believe
that this extension can improve significantly the robustness
and the applicability of Allen’s relations.

Assigning probabilities to interval relations, one has to
account for symmetries between relations. Such symmetries
have been studied in terms of reorientation and transposi-
tion transforms (see []] and references therein). Neverthe-
less, to our knowledge, the relative size of intervals has not
been used as a primary axis of symmetry. As we show here,
it turns out the relative size, together with relative duration,
create a two-dimensional space, which greatly facilitates the
understanding of the relations and the assignment of proba-
bilities.

Overall, this article has three main contributions. First,
it sheds light to the geometry of Allen’s relations by map-
ping them onto a two-dimensional hourglass configuration,
where the horizontal axis corresponds to relative time and
the vertical one to relative size of intervals. Along its verti-
cal limits, the mapping also allows to visualize cases where
either the target or the reference interval is durationless.

Second, for each dimension, a probability set of ordered
primitive relations is defined, namely (before—concurrent
with—after) and (smaller—equisized—larger). A sound way
to determine the probabilities of these relations, as functions
of the relative size and relative position of the intervals, is
detailed.

Last, a probabilistic set of Allen’s relations is presented
and a way to evaluate the probabilities using the primitive
relations, is defined.

The rest of the article is structured as follows. Section B
explains the shortcomings of Allen’s relations that have mo-
tivated our work. Section P introduces the two-dimensional



hourglass configuration of Allen’s relations. Section f de-
scribes the primitive relation sets and their association to the
relative size and duration of the intervals, whereas Section [§
presents the probabilistic extension of Allen’s relations. Fi-
nally, Section [ shows the utility of the defined extension
for a number of cases and Section [ summarizes the results
and highlights open issues.

2. Motivation

Allen’s relations An interval is defined as a set of real
numbers with the property that any number that lies between
any two numbers in the set is also included in the set. Allen
(1983) introduced a calculus for representing the temporal
relation of events delimited by time intervals. In particu-
lar, he defined 13 jointly exhaustive and pairwise disjoint
(JEPD) qualitative relations between intervals. These are
summarized in Table [l To give an example, if X is a time

name definition example

Before (b) Xp < Xe <Yy < Ye — =
Meets (m) X, <X =Y, <Y, — ==
Overlaps (0) Xp <Yy < Xe <Y —
Starts (s) Y, =X, < X, <Y, Bt
During (d) Yy < Xp < Xe < Ye —
Finishes () Y, < Xp < Yo =X, ——

Bquals (=) Xy =Y, <Y.=X, ==
Finishes-i (fi) Xp <Yy, <Ye=X. — ==
During-i (di) Xp<Yp<Ye<X. — ==

X =Yp <Y <X, /3
Yy <Xp <Ye <Xe
Yo <Y =Xp <X —=
Yo <Ye<Xp <X, /3

Starts-i (i)
Overlaps-i (o)
Meets-i (mi)
After (a)

Table 1. Allen’s qualitative relations between two
intervals X = [X;, X.]and Y = [Y;, Y.

interval with boundaries X = [10sec, 12sec] and Y is a time
interval with boundaries Y = [2sec, 40sec], then the (only)
relation holding is: (X During Y). Although Allen’s rela-
tions are complete, they may not fit very well to temporal
segments that result from automated analysis, which are in-
herently uncertain. In what follows, we discuss two partic-
ular such shortcomings: lack of robustness and inadequacy.

Lack of Robustness Automated analysis results are in-
herently uncertain, due to the limited accuracy of the recog-
nition algorithms. One source of uncertainty is the inaccu-
racy of segment boundaries. It is important that small differ-
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(b) During (d) Overlaps-i

(a) Overlaps (c) During-i

Figure 1. Allen’s relations lack of robustness.
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Figure 2. Allen’s relations inadequacy.

ences of segmentation results should not result in significant
differences in their inferred relations. This can happen with
Allen’s qualitative relations, for two reasons. First, several
relations (such as Meets) require equality of time points,
something which can only hold approximately in real-word
extracted time intervals. Second, negligible changes to one
of the end-points, with respect to the size of the time interval
may result in a different qualitative relation.

To see that, let us examine the case of two intervals of
approximately the same size. More formally, let a time
duration ¢, such that ¢ < «X;|,Vz; and o € (0,1) is a
real number that can be chosen to be arbitrary small. Us-
ing €, we define a uniform random variable U ~ U(—¢, ¢€).
Now let a referred time interval X = [X;,X,] and let
Y = [Xp + w1, Xe + ug] where u; and ug are generated
by U. By definition, interval Y is a/most equal to X but not
necessarily exactly equal. In fact, as depicted in Figure [I,
several of Allen’s relations may hold between X and Y, de-
pending on u; and us. Consequently, the information that
a particular relation holds between two intervals looses its
significance, since most other could characterize approxi-
mately the same situation equally well.

Inadequacy Another issue with Allen’s relations is their
inadequacy in discriminating between very different situa-
tions occurring between intervals. This failure is a conse-
quence of the fact that no quantitative information is taken
into account. In particular, there are cases where a a dif-
ferent relation would result if the end points were slightly
perturbed. Figure B depicts this failure in the case of three
quite different situations, all being qualified as Overlaps.

3. A two-dimensional interval relation space

The idea that the 13 relations of Allen have some geom-
etry is implicitly conveyed by the names of the relations:
most of them come in pairs, where one is considered the
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Figure 3. Two-dimensional hourglass configura-
tion of Allen’s relations

inverse of the other (e.g. Starts vs Starts-i). It is instruc-
tive to examine how the “inverse” attribute modifies each
relation. In most cases, it implies reverting the direction of
time. This is the case for the Before—After, Meets—Meets-i
and Overlaps—Overlaps-i pairs.

Interestingly, the pair During—During-i cannot be ob-
tained by the same principle: if X happens During Y then
it would still happen During Y if the time axis was reversed.
To obtain During-i we have to actually change the relative
size of the intervals, i.e. letting X being larger than Y, in-
stead of being smaller. Furthermore, a careful examination
of the Starts—Starts-i and Finishes—Finishes-i pairs reveals
that the inverse characteristic refers to both relative time po-
sition and relative size.

The Hourglass Configuration This observation led us
to explore a two-dimensional configuration of Allen’s rela-
tions, where one dimension corresponds to the relative po-
sition of the intervals and the other to their relative size.
Figure B shows how these relations may be depicted in a
two-dimensional configuration that resembles an hourglass.
The horizontal axis corresponds here to the relative posi-
tion of the intervals, while the vertical one to their relative
size. The coordinate axes also introduce some symbols that
correspond roughly to the probabilistic primitive relations
that will be defined in Section § (<: before, =: concurrent
with, >: after, >: larger, ~: equisized and <: smaller).

The hourglass configuration has some nice properties.
First, by letting Y be a fixed interval and X an interval that
progressively moves forward in time, the hourglass enables
us to quickly visualize the relations it will go through, pro-
vided that we chose a particular relative size of intervals. For
example, when X has the same size as Y, these are: Before,
Meets, Overlaps, Equals, Overlaps-i, Meets-i and After.

Moreover, the hourglass allows to distinguish between
relations that are defined solely by inequalities from those
that are defined also by equalities. The regions inside and
outside the hourglass correspond to the six relations de-
fined by inequalities: Before, Overlaps, During, During-i,
Overlaps-i and After. The /ines defining these regions cor-
respond to the six relations that include an equality in their
definition: Meets, Starts, Finishes, Finishes-i, Starts-i and
Meets-i. Last, the central point of the hourglass corresponds
to the only relation defined by two equalities, namely the
Equals relation.

Another useful property of the hourglass configuration
is that it reveals the two distinct axes of symmetry of the
relations: “folding” the hourglass along the horizontal axis
and around the center (relative position symmetry) makes,
for example, the Before and After regions coincide, whereas
“folding” it along the vertical axis (relative size symmetry)
makes the During and During-i regions coincide.

The hourglass also distinguishes between relations with
respect to of the relative size of the intervals: the relations
appearing at its lower part (Starts, During and Finishes) are
applicable only if the first interval is smaller than the sec-
ond. whereas the relations appearing only at its upper part
(Finishes-i, During-i and Starts-i) are applicable only if the
first interval is larger than the second, All other relations are
applicable regardless of the relative size of the intervals.

The Limits of the Hourglass The hourglass configura-
tion allows us also to visualize the relations applicable in
three limit cases, with respect to the relative size of the in-
tervals. Namely, the lower line (bottom) of the hourglass
corresponds to the case where the first interval is infinitely
smaller than the second, i.e. it reduces to a durationless in-
terval. Notice that, as one should expect, the Overlaps and
Overlaps-i relations do not apply here: at the limit, a time
point cannot overlap with an interval. Still on the lower line,
the Meets—Starts and Finishes—Meets-i pairs become indis-
tinguishable when the first interval is infinitely smaller than
the second. As a result, they are displayed as single points
at the lower left and right corner of the hourglass.

Similar conclusions can be drawn by looking at the up-
per line (top) of the hourglass, where the first interval is in-
finitely larger than the second, i.e. the second interval be-
comes durationless. Here, the Overlaps and Overlaps-i re-
lations also do not apply, while the Meets—Finishes-i and
the Starts-i—-Meets-i relations converge to the upper left and



right corners of the hourglass.

A third limit case worth mentioning is when the intervals
have the same size. In this case, one can easily verify that
the Starts, Starts-i, Finishes and Finishes-i relations coincide
with the Equals relation.

4. Primitive probabilistic relations

Motivated by the two-dimensional configuration of
Allen’s relations, and in order to extend the relations with
probabilities, we follow a two-step approach. At the first
step, discussed in this section, we define a number of prim-
itive interval relations for each of the two dimensions. In
order to distinguish them from Allen’s original relations, we
will denote the new ones with bold letters. These relations
are not binary (hold/do not hold) but quantitative, i.e. they
hold up to a certain degree, between zero and one. We shall
discuss how this degree may be given a probabilistic inter-
pretation.

At a second step, deferred to Section [, we use these
primitives as a basis for a probabilistic extension of Allen’s
relations defined by inequalities.

Note that, in all definitions, we assume intervals to have
strictly positive size.

4.1. Primitives for relative position

The Concurrent relation Let us first define the concur-
rent with primitive, which we will mathematically denote
as <. To do this, let us see how Allen’s During is defined
and see how we may extend it and attach a probability mea-
sure. Allen’s During holds iff X is entirely into Y. As shown
in Figure [ll, even if a small part of X is not into Y then this
relation will not hold.

In case the relation holds, we may say that “the probabil-
ity of X being concurrent with Y equals 1. However, we
may also relax the definition so that when the part of X not
in'Y is very small, then the concurrent with relation almost
holds. To that end, we adopt the following view:

Let a point ¢ chosen randomly in X. What is the
probability that ¢ is also in Y?

In other words, we measure the probability P(X<Y) by
considering P(t € Y|t € X).

In order to define a symmetric relation, instead of choos-
ing t from X in all cases, we will be choosing ¢ randomly
from the smallest interval, and thus define P(X<Y) as

X <Yl

def | P(t € Y|t € X)
1
{ x>y O

P(XxY) =
( ) PteXteY)
where | - | denotes the size of the interval:

X| = X, — X,

Note that P(X<Y) = P(Y < X). Moreover, we will make
the assumption that there is no reason to choose one time
point over another. In this case, Eq. ([I]) simplifies to

x| <y,
PO T B x>

When this ratio equals 1, then the smallest interval is en-
tirely into the larger one. Smaller probability values indicate
that some part of the smaller interval is not into the larger
one. Last, zero probability will indicate that no part of one
interval is within the other.

The Before and After relations The before and after re-
lations will be denoted as < and > respectively. When some
part of X is not in Y then X is either before or after Y. We
will first deal with the case where X is not larger than Y, to
ensure that all parts of X not in Y will be either on/y before
Y or only after Y but not both.

For this definition, we need to introduce some notation.
Namely, the left complement of the interval Y = [Y;, Yo/,
i.e. the interval that covers the entire time axis until Yy, is

denoted as Y:
Y= (7007 Yb)

Similarly, the right complement of Y, i.e. the interval that

covers the entire time starting from Y., is denoted as Y:

Y = (Y., +0)

Now, following the same arguments as with the concurrent
with relation, the probability of X being before Y is defined
as the probability of choosing a random point in X that lies

before Y, i.e. in Y. Formally,

VX[ <|Y[: Pr(X<Y)Y P(teY|teX)

XNy @
X

Along the same line of argument, the probability of X
being after Y is defined as:
VIX| < [Y]: Pr(X>=Y)™ PteY|teX)

XNy (3)
X

Now, when |X| > |Y], the same definitions hold but with



the X and Y arguments inverted. Namely:

VIX| > Y] Pr(X<Y)™ PteX[teY)

_Ynx| )
Y]
VIX| > Y] Pr(X=Y)™ PteX|teY)
_Iynx| ©®)
Y]

One may easily verify that the before and after relations
are inversely related, i.e

VX,Y: Pr(X<Y)=Pr(Y>X)

Probability base with respect to relative position Al-
together, the three relative position primitives introduced
above (before, concurrent with and after) are complemen-
tary: the more one holds, the less the others do. In partic-
ular, the primitives form a complete base, in the sense that,
for any two intervals X and Y:

Pr(X<Y)+Pr(X=<Y)+Pr(X>Y)=1
One may easily verify this, when |X| < |Y]:
Pr(X <Y) + Pr(X =< Y) + Pr(X = Y)

AjXﬁYHﬂXﬂ§HﬂXﬂ§
B X

_IXN(YUYUY) Xl _
- X X

1

and similarly for the |X| > |Y| case.
4.2. Primitives for relative size

We now discuss the second dimension of interval rela-
tions, namely the relation between interval sizes. In what
follows we define three relative duration primitives that cor-
respond roughly to the following cases:

e both intervals have the same size

o the first interval is smaller than the second
e the first interval is larger than the second
Consider the measured ratio

X —1Y]

X|+ Y]

S’:

that takes values from (—1,+1) where the upper, respec-
tively the lower, limit correspond to the case X has “in-
finitely” greater, respectively smaller, size than Y. Assum-
ing that the boundaries of intervals are uncertain, we may

Pr(X~Y) Pr(X>Y)

=
1%

f f T T t
n X =Y
[XT+1Y]

[

-1 —no 0

Figure 4. The equisized and larger probabilities as
areas of \/ (s, o), delimited by —n-c and n-o. Here,
smaller is negligible and not explicitly depicted.

consider that § is the mean value of a random variable S,
following the normal distribution S ~ N (8, o).

We may then define the probability of X being larger (in
short >), equisized (in short ~) and smaller (in short <)
than Y, as the cumulative probability of S taking negative
values, close to zero or positive values respectively. Fig-
ure H illustrates these definitions. Formally, by letting 7 be
a parameter n € R, this is expressed as:

Pr(X<Y)=®(—n-0ols,0) (6)
Pr(X~Y)=®(n-ols,0) —®(—n-o|s,0) (7)
Pr(X>Y)=1—-®(n-0|5,0) 8)

Furthermore, by making use of the complementary error
function:

2 *° 2
erfc(z) = 7/ e dt
7-(- xr

the above definitions reduce to

1
Pr(X<Y) = 3 erfc <n + j)

Pr(X~Y)=1- 1 <erfc (n— 5) + erfc (n+ S))
2 o o

1 A
Pr(X>Y) = 3 erfc (n - S)

g

Probability base for relative duration Altogether, the
smaller, equisized and larger primitives are complemen-
tary. One may easily verify that:

Pr(X<Y)+Pr(X~Y)+Pr(X>Y) =1

i.e. they form a complete probability base.

Dependence on the o and n parameters Figure [ illus-
trates how relative size probability primitives are affected
when varying o and n.

These parameters allow us to model our uncertainty to-
wards the measurement and our tolerance in considering two
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Figure 5. Relative size primitives as a function of
the o and n parameters.

intervals to be equisized. Namely, o quantifies our uncer-
tainty regarding the relative size measurement: small values
of 0, e.g. 0 < 0.1 should be used when there is a signifi-
cant confidence regarding the measurement, whereas large
values when measurement confidence is low.

On the other hand, n regulates our tolerance in favor of
the equisized relation. To see the consequences of choosing
a particular n, let us examine the case when the measured
relative size ratio is zero (s = 0). This is the case where
Pr(X ~Y) is maximized. The maximum value obtained is
not 1, but equals the area of the normal distribution A(0, &)
within the confidence interval (—no, +no):

n
Pr(X~Y);—o = erf(—
For example, when n = 1, respectively n = 2 the maximum
value of equisized obtainable is 0.68, respectively 0.95.

5. Probabilistic extension of Allen’s relations

In the previous section, we defined six primitive rela-
tions: before, concurrent with, after and smaller, equi-
sized, larger. One may use them directly to describe the
relation between intervals. However, our main motivation

has been to use them as a basis upon which to build a prob-
abilistic extension of Allen’s relations. Extending Allen’s
relations with probabilities means that two intervals may be
related by more than one relations (e.g. During and Over-
laps) with specific probability degrees and that these degrees
should add to 1.

We now describe this extension. To keep notation sim-
ple, we will use the same names and symbols as Allen’s.
The difference will be evident by the probability symbol.
To give an example, the fact that “the probability that X and
Y are related by Allen’s During-i relation (di) is 0.7 will be
denoted as Pr(X diY) = 0.7.

The reader can easily verify that the proposed extension
will form a probability set, in the sense that:

vX,Y :
Pr(XbY) +Pr(XoY) + Pr(XdY)
+Pr(XdiY) +Pr(XoiY) + Pr(XaY) =1

5.1. The before and after relations

From Figure [§ one may observe that Allen’s Before and
After relations are independent of the relative size dimen-
sion. Therefore, their probabilistic extension should also be
independent of the relative size of the intervals. Namely, we
may use directly the relative position primitives, as defined
in Eq. (B)-(B), and define Before and After simply as

Note that we have used the symbols b and a for Allen’s
relations instead of the commonly used < and > which are
used here for the relative size primitives.

5.2. The during and during-i relations

The definition of these relations is facilitated by three
limits along the relative duration axis of the hourglass, i.e.
when the first interval is (a) infinitely smaller, (b) equisized
and (c) infinitely larger than the second.

At the infinitely smaller limit, the probability of During-
i will always be zero, whereas the probability of During is
complementary to the probability of being before or after,
since no other relation is possible. Therefore the probability
of During is measured here directly by the concurrent with
primitive as defined in Eq. ([I}):

Pr(X<Y)—1: Pr(XdY)=Pr(XxY)
Pr(XdiY) =0



lim Pr(XdY)=Pr(XxY)
Pr(X<Y)—1

lim Pr(XdiY)=0
Pr(X < Y)—1

Following similar arguments, for the infinitely larger limit,
the following constraints should be respected:

Pr(X>Y)—1: Pr(XdiY)=Pr(X=<Y)

Pr(XdY)=0

Finally, at the equisized limit, both probabilities should go
to zero:

Pr(X~Y) —1: Pr(XdY)=Pr(XdiY)=0

Taking into account that both Pr(X <Y) and Pr(X >Y)
20 to zero when Pr(X ~Y) goes to one (see Eq.(8)-(®)), all
the above constraints are satisfied by the following defini-
tions:

Pr(XdY) “ Pr(X < Y)Pr(X=Y)

and
Pr(XdiY) “ Pr(X>Y)Pr(X<Y)
5.3. The overlaps and overlaps-i relations

Similarly to the During and During-i cases, a number
of constraints may be derived for the three limit cases.
Namely:

Pr(X<Y)—=1:Pr(XoY)=Pr(XoiY)=0
Pr(X~Y) = 1:Pr(XoY)+Pr(XoiY) =Pr(Xx<Y)
Pr(X>Y) > 1:Pr(XoY)=Pr(Xo0iY) =0
These can be verified easily by looking at the hourglass con-
figuration in Figure .

In particular, the second constraint here implies that
when two intervals are equisized and they overlap, whether
left or right, the overall extent of the overlap is given by
the ratio of their intersection to their total size. Moreover,
one may notice that the probability of Overlaps (respectively
the Overlaps-i) relation is correlated to the probability of
Before (respectively After) relation and that Overlaps and
Overlaps-i can not be simultaneously non-zero. Therefore,
one may add the following constraints:

Pr(X~Y) = 1,Pr(X>Y)=0:
Pr(XoY) =Pr(Xx<Y)
Pr(XoiY)=0
and
Pr(X~Y) — 1,Pr(X>Y) >0:
Pr(XoY)=0
Pr(XoiY) =Pr(X<Y)

] l ]
] \ |
(1) X =[1,12],Y = [10, 20] (2) X = [8,19],Y = [10, 20]
b o d b 0 d
0.82 0.14 0.00 0.18 0.62 0.02
di oi a di oi a
0.04 0.00 0.00 0.19 0.00 0.00
] l ]
\ | \ |
(3) X = [12,19],Y = [10, 20] (4) X = [8,21],Y = [10, 20]
b o d b o d
0.00 0.14 0.86 0.15 0.00 0.00
di oi a di oi a
0.00 0.00 0.00 0.51 0.26  0.08
l ] L]
\ | 7
(5) X =[12,23],Y = [10, 20] (6) X = [22,26],Y = [10, 20]
b o d b o d
0.00 0.00 0.01 0.00 0.00 0.00
di oi a di oi a
0.17 0.55 0.27 0.00 0.00 1.00

Figure 6. Expressiveness and Robustness of prob-
abilistic primitives for 0 = 0.10, = 0.10

Following similar arguments to Section (.2, these rela-
tions are defined as:

Pr(Xoy) % | PIX~Y)PrX=<Y) Pr(X-Y) =0
and
Pr(Xoiy) e | PIX~Y)PIX=Y) Pr(X-Y) >0
0 Pr(X>Y)=0
6. Examples

To illustrate how the proposed approach improves the ro-
bustness and expressiveness of interval relations, we present
here its application to examples similar to those described
in Section B. In particular, Figure [ illustrates cases with
different (qualitative) interval relations, namely Overlaps,
During, Overlaps-i and During-i and After. Using the prob-
abilistic extension proposed here, probabilities are obtained
for several relations in each case. The most probable rela-
tion is highlighted with bold letters.

In almost all cases, the most probable relation coincides
with the qualitative one, i.e. the one that would have been
obtained by directly applying Allen’s definitions. However,
probabilities provide additional expressiveness, since their
values depend on the extent to which each relation holds.
For instance, the Overlaps relation in case (2) has greater



probability than the Overlaps-i relation in case (5). This is
because in case (5), the intervals overlap more than in case
(5).

Furthermore, by applying the probabilistic extension pro-
posed here, relations become more robust with respect to
boundary uncertainties. In particular, as one may notice by
looking in case (1), a direct application of Allen’s definitions
would qualify the relation between X and Y as Overlaps.
However, this hides the fact that X is almost before Y and
the fact that they overlap may be due to uncertain measure-
ments. Using the probabilistic extension, the information
regarding the intervals relation is richer: both Before and
Overlaps have significant probabilities, while Before is the
most probable one.

7. Conclusion and Open Issues

The two-dimensional mapping of Allen’s interval re-
lations onto parts of an hourglass configuration has been
proven constructive in two ways. First, it allowed us to de-
compose interval relations into two basic orthogonal dimen-
sions: relative position and relative size of intervals. This
has motivated the definition of two primitive interval rela-
tion sets, whose probabilities are defined independently on
one of the two dimensions. Second, it simplified the proba-
bilistic extension of Allen’s relations by revealing the sym-
metries of relations and shedding light upon the expected
behavior at the durationless and equisized limits.

To our knowledge’, this is the first attempt to assign prob-
ability values to interval relations, aiming to make reason-
ing with uncertain temporal relations more practical. Both
probabilistic primitive relations and probabilistic Allen’s re-
lations can be used to quantitatively describe the relation
between two intervals. However, the proposed set of prob-
abilistic Allen’s relations cannot account for relations de-
fined by equalities (e.g. Allen’s Meets relation). Therefore,
an open issue is to extend the current approach and define
a probability base for Allen’s relations defined by both in-
equalities and equalities.

Finally, the framework defined in this paper may be used
in various ways that deviate from the event detection sce-
nario introduced in this article. For instance, in the con-
text of constraint reasoning for planning and scheduling, one
may be given directly the probabilities of Allen relations that
hold between pairs of intervals. The goal in this case, would
be to derive information about the relative size and position
of the corresponding intervals. This is applicable to soft-
deadline problems and scheduling tasks.
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