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Gold Standard Evaluation of Ontology Learning
Methods Through Ontology Transformation and

Alignment
Elias Zavitsanos, Georgios Paliouras, and George A. Vouros

Abstract—This paper presents a method along with a set of measures for evaluating learned ontologies against gold ontologies. The
proposed method transforms the ontology concepts and their properties into a vector space representation to avoid the common string
matching of concepts and properties at the lexical layer. The proposed evaluation measures exploit the vector space representation and
calculate the similarity of the two ontologies (learned and gold) at the lexical and relational levels. Extensive evaluation experiments are
provided, which show that these measures capture accurately the deviations from the gold ontology. The proposed method is tested
using the Genia and the Lonely Planet gold ontologies, as well as the ontologies in the benchmark series of the Ontology Alignment
Evaluation Initiative.
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1 INTRODUCTION

IN the context of this paper, ontology evaluation con-
cerns the assessment of an ontology that is produced

by an ontology learning method. Ontology evaluation is
performed in order to ensure that the learned ontology
adheres to some predefined standards, represents accu-
rately the domain that it covers, and in general, fulfills
the requirements of its deployment. Regarding the au-
tomated learning of ontologies, evaluation methods are
very much needed in order to decide which learning
method produces the most suitable ontology in terms of
the concepts and properties learned and in terms of their
relations, with respect to a given domain. Beyond the
evaluation of ontology learning methods, the automated
ontology evaluation is crucial for the engineering of on-
tologies, since developers need to decide which existing
ontologies to re-use. However, evaluation techniques are
not useful only during the engineering process of the
ontology: they are also useful to an end-user who is
looking for an ontology that is suitable for her appli-
cation domain. Thus, although there is a clear need for
methods for evaluating and comparing ontologies, it is
most probable that an evaluation method will not be
suitable for all the tasks. This paper proposes a method
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for the evaluation of ontology learning methods. This
method compares learned ontologies with gold standard
ontologies by means of ontology alignment techniques.

Regarding the evaluation of ontology learning meth-
ods, four major approaches are often adopted: (a) those
comparing the learned ontology to a predefined gold
standard ontology, which is usually hand-crafted by do-
main experts, (b) those embedding the learned ontology
in a complete system and evaluating the performance
of the system [1], (c) those relying on a data-driven
evaluation by assessing the ontology on existing data
from the domain of the ontology ( [2], [3]), and (d) those
in which the evaluation is performed purely by human
experts ( [4], [5], [6]). Many approaches fall into the first
category, i.e. evaluation using a gold standard ontology
(e.g. [7], [8], [9], [10]).

Methods that rely on gold standard ontologies have
strong points, as well as weaknesses. On the one hand,
they support the evaluation of the learned ontology at
several levels, such as the lexical and the relational one.
In addition, they support the automated evaluation of
learned ontologies using relevant tools and standard
metrics from the field of information retrieval, since
there exists the “ground truth” for comparison. Finally,
through a gold standard-based evaluation method, qual-
itative, as well as quantitative results may be derived. On
the other hand, this type of ontology evaluation assumes
that the gold ontology represents well and accurately the
significant knowledge of the domain. This assumption
may be faulty in many cases, since the gold standard is
usually created by human experts. Therefore, it may be
incomplete or developed in a biased way. Finally, to a
large extent, gold standard evaluation depends heavily
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on the matching1 between the learned and the gold
ontology elements, as well as on the similarity measures
that are used to compare the two ontologies. This is still
an open research issue.

In this paper, a new method for the automated eval-
uation of learned ontologies against gold standards is
proposed, avoiding common pitfalls of ontology com-
parison methods that apply string matching techniques
on concept names. For instance, let us assume the ontolo-
gies in Figure 1. Using a string-matching technique, such
as the edit-distance, the concept RNA may be matched
with DNA, RNA mol with DNA mol, RNA domain with
DNA domain and Nucleid acid with Nucleid acid, unless
a domain-specific matching method is used. Obviously,
the overall performance of this matching would be poor,
since the majority of the concepts that are matched have
completely different meaning and thus instances. On the
other hand, comparing similar or even identical concepts
that are lexicalized with very different terms, such as
“car” and “automobile”, would possibly never lead to a
match, unless a lexicon of synonyms is used.

Fig. 1. Example of possible wrong matches between a
gold ontology (left) and a learned ontology (right). The
matching between the concepts named “Nucleid acid” is
correct, but the rest of the matchings are not.

In contrast to this superficial string matching of con-
cepts, the proposed method transforms the concepts
and properties of the gold standard and the learned
ontology into probability distributions over the term2

space of the dataset from which the ontology has been
learned. In this way, the superficial string matching is
avoided, since probability distributions are compared,
rather than strings. Additionally, it becomes possible
to choose among a variety of measures in order to
assess the similarity of two concepts or two properties.
Another major advantage is that the learning method
is not required to label the identified concepts, since the
concept name is either not used, or it simply participates
as one term in the distributional representation.

Besides the simple and generic transformation method
of concepts and properties into probability distributions,
this article contributes the following: (a) a novel set
of evaluation measures for automatically assessing the

1. The terms “matching” and “match” refer to equivalence mappings
between ontology elements.

2. “Terms” does not necessarily denote domain terms, but words
that constitute the vocabulary over which concepts are specified. In
the following, “terms” and “words” are used interchangeably.

quality of the learned ontology, taking into account the
degree of similarity between the elements of the two
ontologies, as well as their positions in the ontologies,
(b) an extension of our recently proposed method [11],
in order to evaluate fully-fledged ontologies, rather than
simple hierarchies, and deal with cases where the dataset
is not available, (c) a flexible mechanism that allows
different methods to be used for the alignment of the
learned with the gold ontology, as well as different
similarity measures to be used for the comparison of
ontology elements, (d) a thorough investigation of the
importance of computing matches between the gold and
the learned ontology elements with precision in ontology
evaluation, through an extensive evaluation, and (e) a
novel evaluation methodology for assessing evaluation
methods, such as the one proposed in this article.

In the remaining sections, we start by studying related
work concerning the gold standard evaluation of ontolo-
gies (Section 2). In Section 3, the proposed evaluation
method and the evaluation measures are presented. Fi-
nally, Section 4 presents extensive experimental results
and discussion regarding the behavior of the proposed
method using different similarity measures, while Sec-
tion 5 summarizes the main contributions of the paper
and presents future directions.

2 RELATED WORK
In a gold-standard evaluation of ontology learning meth-
ods, it is assumed that the gold ontology is the “correct”
answer to the specific ontology learning problem. In
general, when this evaluation approach is selected, the
strategy is as follows. First, domain experts manually
construct the domain ontology that serves as the gold
standard. Then, ontology pruning is performed. Ontol-
ogy pruning is the process of hiding some components
of the gold ontology, in order to assess the degree to
which the learning mechanism is able to reconstruct the
hidden components. Then, the ontology produced by the
learning method is compared to the gold standard.

The comparison between the learned and the gold
ontology can be done at various layers of the ontology
elements. Based on the lexicalization of the concepts,
one can compare them using the edit distance [12] and
obtain an ontology matching at the lexical level (e.g. [10],
[13], [14]). Quantitative results using such methods can
be derived by the measures of Term/Lexical Precision
and Recall, which have been introduced in [15]. In [17]
and [18], where the learned ontologies are compared
to known semantic nets, such as WordNet, Precision
and the percentage of the correctly matched ontology
elements are measured respectively.

Regarding the evaluation of concept hierarchies, the
work in [16] evaluates learned taxonomies using the
measures of Precision and Recall, assuming that the
correct subsumption relations are those between the
correctly matched concepts. However, the position of the
concepts that are matched is not taken into account in
this evaluation process.
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On the other hand, Augmented Precision and Recall
[9] evaluate and penalize the learned hierarchy accord-
ing to the position of the concepts in the hierarchy by
measuring their distances from the root concept and
their most common abstraction. Similar ideas have been
used in [13], where the measure of Taxonomic Similarity
is introduced, based on the length of the shortest path
between the matched concepts in the concept hierarchies.
However, although such measures focus on penalizing
relational differences, they do not take into consideration
the degree to which the concepts of the learned ontology
differ from the concepts of the gold standard.

The position of the concepts in the hierarchy and the
concepts in their vicinity is of paramount importance,
regarding the taxonomic evaluation of ontologies. The
method in [10] introduces Taxonomic Overlap to com-
pare two concepts in different hierarchies based on their
Semantic Cotopies. The Semantic Cotopy of a concept is
defined to be the set of all its super and sub-concepts.
Techniques like [8] that use the notion of Common
Semantic Cotopy, take into account only concepts that
appear in both the learned and the gold ontologies
with the same name and penalize the learned ontology
according to the position of the learned concepts in the
hierarchy. Thus, they are limited with respect to the
alignment of the ontologies, as they require the concepts
in the gold standard to match exactly the concepts of the
learned ontology.

Another perspective of viewing the hierarchy is that
of a partitioning of a set of instances. Based on this
idea, the OntoRand index [7] measures the similarity
between gold and learned concepts, based either on their
common ancestors, or on their distances in the hierarchy,
taking also into account the overlap of their instance
sets. Although this method treats concepts as clusters
of instances, going beyond their lexical representation, it
requires that both hierarchies contain exactly the same
set of instances, which limits the applicability of the
method in the case of having a learned ontology without
instances.

According to the criteria for good evaluation mea-
sures presented in [8], our aim is to evaluate two on-
tologies by measuring their similarity, avoiding com-
mon problems introduced by matching only concept
lexicalizations. This is particularly important for many
ontology learning methods, which are unable to label
the identified concepts. Moreover, in contrast to most of
the related efforts towards the evaluation of ontology
learning methods, which focus on the evaluation of con-
cept hierarchies (e.g. our method in [11]), the proposed
method is suitable for evaluating concept hierarchies, as
well as ontologies enriched with other semantic relations
and properties.

3 THE DMA METHOD
The proposed method, called Distributional Method for
Alignment (DMA), assumes three main steps for eval-
uating the learned ontology against the gold standard:

(a) transformation, (b) matching, and (c) evaluation. The
first step is required in order to transform the ontology
elements into probability distributions over terms. The
matching step matches the learned ontology elements
to the gold ones. The evaluation is based on this set
of matches. The final step is the actual evaluation that
penalizes the learned ontology according to its deviation
from the gold ontology.

Regarding the transformation of the ontology ele-
ments, two cases are foreseen. In the first case, the
dataset that was used for ontology learning is available,
while in the second it is not. Subsection 3.2 presents
the ontology matching process. Subsection 3.3 introduces
the similarity measures and discusses their properties.
Finally, the last subsection presents how the overall
method works by emphasizing on its generality, its
ability to be independent of the dataset, its flexibility
regarding the choice of different matching methods for
the matching step, as well as its ability to choose differ-
ent metrics for measuring the dissimilarity between the
matched ontology elements.

3.1 Ontology Transformation

Towards the objective of representing each ontology
element as a probability distribution over terms, two
cases are foreseen: (a) creating the term space from the
dataset used to learn the ontology, and (b) creating the
term space from the terms occurring in the concept
specifications, in case the dataset is not available.

A point to be made here concerns the case of having
the learned and the gold ontologies alone, without the
dataset. Since the majority of ontology learning methods
rely on a training dataset of text documents, in the
majority of the cases, such a dataset will be available.
However, in order to illustrate the applicability of the
method in cases where the data are not available, the
handling of this case is presented here. This allows also
to evaluate the method on the very valuable benchmark
of the Ontology Alignment Evaluation Initiative (OAEI).

Regarding the first case, assuming that the concept
instances are annotated in the text documents, he fre-
quencies of the terms that appear in the context of
each concept instance are measured. The context of the
concept instance in this case is the surrounding text or
the complete document, in which the instance appears.
By concept instances we mean instantiations of concepts
that appear in the text. For example, the word “Hania”
is annotated as an instance of the concept “City”, and
thus, the context of this occurrence of “Hania” provides
terms for the representation of the concept “City”.

As Figure 2 illustrates, having the instances annotated
in the corpus, it is possible to associate each document
to the concept(s) that it refers to. In cases where the
concept instances are themselves documents, e.g. in a
document indexing task, the mapping between concepts
and documents is directly provided and the population
process of Figure 2 can be skipped. The distributional
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Fig. 2. The transformation of the ontology elements into
probability distributions.

representation of a concept records the frequency of each
term in the context of all instances of that concept in the
dataset.

At the end of the process, for each concept, the fre-
quencies are normalized to obtain a probability distribu-
tion over the term space of the dataset. At this final step,
there is the option of performing Laplace smoothing
(Equation (1)) of the probability distributions to elimi-
nate possible zero values of unseen terms. Algorithm 1
describes the way the distribution vectors are created.

P̂L(wi)
.=
P̂ (wi) + 1
N + 1

,∀i,

(wi : word, N : term space size).
(1)

Both ontologies, i.e. the learned, and the gold standard
one, are transformed to a common representation follow-
ing Algorithm 1. The representation used for concept
properties is analogous to that of concepts, as long as
the context of the properties can be located. In this case,
the context comprises the document(s) where the values,
labels, domain and range of the properties appear. In
particular, the context of the domain and range of a
property, which usually correspond to concepts, is the
document(s) where instances of those concepts appear.

The transformation step relies heavily on the context
of ontology elements and provides useful information
for the matching task. It must be noted that, via this
context-oriented ontology transformation process, ambi-
guity and polysemy are addressed to some extent, since
a term may be annotated as an instance of different
concepts. The context in which this instance appears pro-
vides useful information for deciding the exact concept
that it instantiates. In addition, this transformation is
particularly suitable for comparing topic ontologies [16],
where concepts are already represented as multinomial
distributions over terms, as well as in cases where the
learning method is not able to provide labels for the
learned concepts.

According to Algorithm 1, when concepts are mapped
to documents (Create DocumentConceptMatrix block),
the degree of participation of a concept cj in a document
di is calculated as the number of instances of concept
cj in document di. Thus, different concepts participate
with a different degree in the same context (document

Data: Documents and concept instances
Result: Distributional representation of concepts
DTArray[][]=createDocumentTermMatrixOfFrequencies()
// Create DocumentConceptMatrix
DCArray[][]=null
for all documents di ∈ 1, .., D do

for all concepts cj ∈ 1, ..C do
for all instances of cj , ik do

if ik exists in di then
DCArray[di][cj]++

end
end

end
end
// Create ConceptTermMatrix
CTArray[][]=null
for all concepts ci ∈ 1, .., C do

for all terms tj ∈ 1, .., T do
for all documents dk ∈ 1, .., D do

percent =
DCArray[dk][ci] ∗DTArray[dk][tj ]

end
CTArray[ci][tj ] = percent

end
end

Algorithm 1: Transformation of concepts to distribu-
tional representations.

di), leading to different distributional representations.
In the extreme case, where two concepts have the

same number of instances, identically distributed in the
same context, then they share the same distributional
representation. Let us consider the following document:

Although the island is formally divided into four
prefectures (Hania, Rethimnon, Heraklion and Las-
sithi), it is more readily divided into east, west and
central Crete.

Two concepts appear in this context. “City” and “Is-
land”. However, “City” participates “more” than “Is-
land”, since four instances of “City” appear in that
context (Hania, Rethimnon, Heraklion, Lassithi), while
only one instance of “Island” appears in the same context
(Crete). Thus, the distributional representations of “City”
and “Island”, will be different. Figure 3 presents the two
vectors.

Fig. 3. Distributional representation of concepts “City”
and “Island” before normalization. Concept “City” more
than “Island” in the same context, since fourfold instances
of the former appear in that context.

When comparing an ontology against a gold standard
one, without knowing the dataset from which this on-
tology has been constructed/learned, the distributional
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representation is obtained, using vocabulary terms. As
Figure 4 shows, a common term space for the gold
and the learned ontology is created, by extracting terms
that appear in the labels, comments and descriptions of
concepts and properties, as well as in concept instances,
domain and range of properties. For a specific property,
the terms that appear in its label, comments and so forth,
define the context for that property.

Following a similar procedure as the one described
in Figure 2, the distributional representation of each
ontology element is created, based on its context.

Fig. 4. The representation of ontology elements in the
case where an annotated dataset is not available.

The transformation method proposed here, bares some
similarities with Formal Concept Analysis [19], where a
concept is defined as the set of its attributes, and for the
whole ontology a formal context is defined, including the
set of concepts and their attributes. However, the method
proposed here aims to go one step further by defining
concepts as multinomial probability distributions over
the term space of the dataset or the ontologies. This
way, a variety of probability distribution measures and
metrics can be used to decide how “close” two concepts
(or properties) are.

3.2 Ontology Matching

Using the vector representation of ontology elements,
it is possible to measure the dissimilarity between the
concepts and properties of the gold and the learned
ontology. Since both representations are based on proba-
bility distributions, an appropriate probability metric can
be used to measure how “close” two concepts or two
properties are. In this paper, three probability metrics
are used in order to measure the dissimilarity between
concepts or properties: (a) the Total Variational Distance
(TVD), (b) the Kolmogorov Distance (dK), and (c) the
Separation Distance (S).

In order to measure the dissimilarity (SimDist) of two
probability distributions p(·) and q(·) over a countable
state space Ω, such as the term space of the corpus here,
the TVD is defined according to Equation (2).

TV D =
1
2

∑
i

| p(i)− q(i) | . (2)

In Equation (2), p(·) and q(·) represent ontology ele-
ments in the learned and gold ontologies respectively.
TVD is one of the most commonly used probability
metrics, because it admits natural interpretations, as well
as useful bounding techniques. Given two distributions
as input, TVD measures their average distance. For indi-
vidual terms, TVD measures the largest possible differ-
ence between the probabilities that the two distributions
assign to the same term (p(i), q(i)).

For the same countable space Ω, the Kolmogorov
Distance and the Separation Distance are given by Equa-
tions (3) and (4) respectively. However, the Kolmogorov
distance can be also defined over a state space Ω = <,
while the Separation distance is not a metric, due to
symmetry reasons. Finally, one may choose any other
probability measure (e.g. see [20]) to measure similarity.

dK = maxi | p(i)− q(i) | . (3)

S = maxi(1−
p(i)
q(i)

). (4)

DMA determines a one-to-one matching between the
gold and the learned concepts using the TVD metric, or
any other metric. Therefore, the set of matching pairs,
includes as many pairs as the number of concepts in the
smaller of the two ontologies. Respectively, the matching
of properties includes as many pairs as the number of
properties of the ontology that has the fewest properties.

Assuming any of the above probability measures of
dissimilarity, among the possible matches, the best set
of matches is determined, by minimizing the aggregate
SimDist. According to Equation (5), among all the pos-
sible matches N (of concepts and properties), the one
that minimizes the sum of SimDist over all matching
pairs M is chosen.

argminN{
M∑
i

SimDisti}. (5)

It should be stressed that the learned ontology is eval-
uated over the complete set of matches, i.e. the “quality”
of each individual match affects the estimated deviation
of the learned ontology from the gold standard. The
impact of each deviation on the evaluation measure
depends on the probability measure that is chosen and
the way these measures are aggregated. For instance, dK

may be more strict than S in some situations. Irrespective
however, of the probability measure, one difference in
the distributional representation of a concept (i.e. the
value of one term) suffices to distinguish it from another
concept.

Instead of one-to-one matching, one could choose to
perform (a) one-to-many matches, by matching a single
ontology element in the gold ontology to many elements
in the learned ontology, (b) many-to-one matching, by
finding many elements in the gold ontology that prob-
ably match to a single learned ontology element, or
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(c) many-to-many matching. However, when a gold-
standard evaluation is performed, the assumption is
made that the gold ontology is the best among all
the possible ontologies in a domain, given a particular
source of information. Thus, a one-to-one matching is
the most appropriate choice, as it imposes a more strict
evaluation of the learned ontologies. Following this ap-
proach, each ontology element is judged separately and
an overall score for the learned ontology is provided.

Regarding alternative matching methods, the ASMOV
[24] and Lily [23] approaches are included in the ex-
periments. These methods have been chosen due to
their superior performance in the OAEI 2008 matching
contest.

ASMOV uses an algorithm that automates the ontol-
ogy alignment process, optionally incorporating feed-
back from a user. It uses a weighted average of measure-
ments of similarity along four different features (lexical
description, external structure, internal structure, and
individual similarity) of the ontologies, and performs
semantic validation of the resulting alignments.

Lily, on the other hand, uses a hybrid strategy to per-
form the alignment between two ontologies. It comprises
four main components that are responsible for: (a) the
generic alignment between ontologies, (b) the large-scale
ontology alignment, (c) the semantic matching between
ontology elements and (d) alignment debugging.

Both Lily and ASMOV provide a confidence degree
that can be considered to be a degree of similarity for
each matching pair of elements between the two ontolo-
gies. This is important for using them as alternatives to
DMA in the proposed evaluation method. In these cases,
SimDist is equal to (1− γx), where γx is the confidence
degree provided by a matching method X . For instance,
for Lily, the SimDist for each pair of ontology elements
is (1− γLily). Subsequently, we refer to the dissimilarity
SimDist provided by a matching method, rather than
the similarity/confidence degree γ provided by it for
each matching pair of elements.

3.3 Ontology Evaluation Measures

Moving from matched concepts and properties to an
overall evaluation measure is a non-trivial issue. Accord-
ing to [8], a measure must evaluate an ontology along
multiple dimensions (e.g. lexical and relational levels).
Furthermore, in ontology learning, an error, or deviation
of the learned ontology from the gold one, must cause a
change to the measure proportional to the dissimilarity
between the correct and the given result. Finally, for
measures with a range in a closed interval, e.g. [0, 1],
a gradual increase in the error should lead to a gradual
decrease in the value of the evaluation measure.

In this work, a set of similarity measures is also
proposed, which is presented in Equations (6), (7) and
(8). Details about these measures are presented in the
paragraphs that follow.

P =
1
M

M∑
i=1

(1− SimDisti)PCPi. (6)

R =
1
M

M∑
i=1

(1− SimDisti)PCRi. (7)

F =
(β2 + 1)P ∗R
β2R+ P

. (8)

In the above equations, M is the number of matching
pairs between the learned and gold ontology, while
SimDist is a measure of dissimilarity between the
matched concepts and properties ranging in [0, 1].

It is already stressed the importance of the correct
matching as the basis for the evaluation of the learned
ontology. The matching of concepts and properties of
the two ontologies can be performed with any ontology
alignment method ( [21], [22]). In the case where an on-
tology alignment method is used, the SimDist factor can
be replaced by the degrees of matching that this method
provides, such as the ones discussed in subsection 3.2.

For the evaluation of the structure of the learned on-
tology (relational level), the degree of the deviation from
the gold ontology should also depend on the position at
which this deviation occurred in the learned ontology.
For instance, missing a leaf concept that participates
in a single subsumption relation and has no properties
should cause a smaller penalty than missing a central
concept that is subsumed by some concepts and has a
number of children and properties. The PCP and PCR
factors in Equations (6) and (7) measure the impact of
an error to the relational structure of the ontology.

PCP and PCR stand for Probabilistic Cotopy Precision
and Probabilistic Cotopy Recall respectively. They are both
influenced by the notion of Semantic Cotopy [10]. For a
matching i between a concept CL in the learned ontology
and a concept CG in the gold ontology, PCPi and PCRi

are defined based on the Cotopy Set of the concepts.
Definition 1 (Cotopy Set): The cotopy set of a concept

C (CS(C)) is the set of all its direct and indirect super
and sub-concepts and its direct properties, including
the concept C itself. For instance, Figure 5 illustrates
the cotopy set of concept RNA, which includes the
shaded concepts (depicted as circles), as well as its direct
property (depicted as a rectangle).

Definition 2 (PCP): PCPi is the number of concepts in
the cotopy set of CL matched to concepts in the cotopy
set of CG, divided by the number of concepts in the
cotopy set of CL (Equation (9)).

PCPi =
‖CS(CL) ∩ CS(CG)‖

‖CS(CL)‖
. (9)

Definition 3 (PCR): PCRi is the number of concepts
in the cotopy set of CL matched to concepts in the
cotopy set of CG, divided by the number of concepts
participating in the cotopy set of CG (Equation (10)).
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Fig. 5. The cotopy set of concept RNA comprises all the
direct and indirect super and sub-concepts of RNA, its
direct properties, as well as RNA itself (all the shaded
elements).

PCRi =
‖CS(CL) ∩ CS(CG)‖

‖CS(CG)‖
. (10)

For instance, in Figure 6, depicting a specific match
between the concepts named RNA, the PCPRNA is equal
to 3

4 , while the PCRRNA is equal to 3
5 .

Fig. 6. An example regarding a specific match.

Therefore, the P measure (Equation (6)) reflects the
similarity of the two ontologies in the spirit of Precision,
penalizing learned elements that do not appear in the
gold standard ontology. On the other hand, the R mea-
sure (Equation 7), similar to Recall, penalizes the learned
ontology in cases where it does not include elements that
appear in the gold ontology. F is a combined measure
of P and R (Equation 8). The mismatches between
properties of the two ontologies penalize the learned
ontology through the PCP and PCR factors, since concept
properties participate in the cotopy sets of the concepts.

Finally, it should be noted that the gold ontology, being
hand-crafted by human experts, may be biased, incom-
plete, or inaccurate. Therefore, one may be interested
more in the precision of the learning method, or in recall.
Thus, one could adjust the F measure of Equation (8)
to focus more on the impact of P or R, by adjusting
the parameter β. The gold ontologies used in section
4.1 came with the datasets. Although they are hand-
crafted by humans, the assumption is made that they
are accurate conceptualizations of the available data we
study and thus, in our evaluation settings we choose
β = 1, reflecting the harmonic mean of P and R.

3.4 Overview of the Evaluation Method
Figure 7 summarizes the proposed evaluation method,
consisting of an inventory of matching methods, includ-
ing the DMA method that was proposed in subsection

3.2, an inventory of dissimilarity measures, including
TVD, dK and S, presented in 3.2, and the evaluation
measures proposed in subsection 3.3.

Fig. 7. The proposed evaluation method. An inventory of
matching methods and similarity measures can be used
to perform the matching between the learned and the
gold ontology. For each matching pair, the PCP and PCR
factors are calculated, which along with the SimDist factor
provide the final evaluation results in terms of P and R.

The proposed evaluation method can be used with a
variety of methods from the field of Ontology Align-
ment, as long as they provide a “degree” of similarity for
the matching pairs between the elements of the learned
and the gold ontology. If, on the other hand, the DMA
matching method is chosen, one may choose any dissim-
ilarity measure from the corresponding inventory, such
as the TVD. Once a set of matches has been established,
the evaluation of the learned ontology is performed,
taking into account the dissimilarity (SimDist) of each
matching pair, and (b) PCP and PCR for each matching
pair.

As an example, Figure 7 depicts the case where a leaf
concept from the learned ontology matches to a concept
in the gold ontology with SimDist equal to 0.1. For this
specific matching pair, the cotopy sets are determined,
which include the shaded concepts in Figure 7. The final
step is the calculation of PCP and PCR for this matching.
Following the same procedure for all matching pairs
the P , R and F measures are calculated according to
Equations (6), (7) and (8).

4 EXPERIMENTAL EVALUATION

In this section, the DMA is assessed through a set of
experiments, examining the robustness of the evaluation
measures when “errors” are introduced to the gold stan-
dard ontology: Therefore, different versions of the gold
standard ontology are assumed to be the “ontologies
learned”, and are compared to the gold standard.

Two sets of tests have been performed, presented
in the following subsections. First, two real datasets
are used, comprising documents that contain annotated
instances of gold ontology concepts. In this case, we
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study the behavior of DMA and the robustness of the
evaluation measures when introducing errors in the
corresponding gold standard ontologies. In the second
subsection, the set of ontologies provided by the Ontol-
ogy Alignment Evaluation Initiative (OAEI) [21] contest
are used, comprising a reference (gold) ontology and
variants of it (considered to be learned ontologies). In
this case, we observe the behavior of the measures as
the variants of the reference ontology deviate in various
ways from it.

The aim of these experiments is to assess how small
or large deviations from the gold ontology affect the F
value. We also observe the impact of different types of
error on the evaluation measures. Finally, the behavior
of the method is studied, when the SimDist metric
is calculated using the Kolmogorov or the Separation
Distance, besides the TVD, or when DMA is substituted
by highly accurate ontology matching methods.

4.1 Experimental Assessment with Real Datasets
In this task, two gold ontologies are used with their
corresponding datasets: the Genia3, comprising 43 con-
cepts from the domain of molecular biology, and the
Lonely Planet4 ontology, comprising 60 concepts from
the tourism domain. As mentioned above, the “learned”
ontologies are generated, by introducing errors (devia-
tions) to the gold ones.

The intuition behind this approach is that a learned
ontology will approximate the gold standard but will not
be identical to it. This means that it may be incomplete,
by missing some concepts, or it may have more concepts
than the gold one. In addition, it may comprise more
or fewer relations between concepts, or it may contain
reversed taxonomic relations, i.e. a concept A may sub-
sume a concept B, while the opposite holds for the
gold standard. On this basis, we define six elementary
“damage” operators that capture the majority of the
errors in a learned ontology.

This approach is particularly suitable for the evalu-
ation of evaluation methods. It provides a controlled
experimental setting, avoiding the bias introduced by
the use of an ontology learning method. In this context,
the following “damage” operators are used: (1) Swap
Concepts, (2) Remove Concepts, (3) Add Subconcepts,
(4) Add Superconcepts, (5) Add Taxonomic Relations,
and (6) Change Concept Representation.

Each of these operators takes as input a number that
indicates the extent of the damage to the gold ontology.
This degree of “damage” has the following effect on each
of the “damage” operators: Swap Concepts:

• Swap Concepts: the number of subsumption relations
to be swapped.

• Remove Concepts: the number of concepts to be re-
moved.

3. The Genia project, http://www.tsujii.is.s.u-tokyo.ac.jp/GENIA
4. The Lonely Planet travel advise and information, http://www.

lonelyplanet.com

• Add Subconcepts: the number of concepts to be added
as subsumees of existing concepts.

• Add Superconcepts: the number of concepts to be
added as subsumers of existing concepts.

• Add Taxonomic Relations: the number of relations to
be added among existing concepts.

• Change Concept Representation: the number of con-
cepts, whose representation as distributions of terms
will be changed.

With the exception of the last operator (Change Con-
cept Representation), the results are obtained using only
the TV D as the SimDist measure. This is because SimDist
is equal to zero for all pairs of matching concepts in
the first five cases, irrespective of the measure that is
used (TV D, dK , S). In the last “damage” operator, where
the representation of the concepts changes, the three
different SimDist measures are compared.

More complicated operators can be built on the basis
of the proposed elementary ones. For instance, a “Merge
Concepts” or a “Split Concepts” operator would consist
of a sequence of “Remove Concepts” or “Add Concepts”
operations. The impact of such composite operators
would be an aggregate of the impact observed for the
elementary operations. Thus, the elementary operators
provide a finer evaluation of the methods.

For each ontology and for each “damage” operator, 50
different tests are run for each of 10 different “damage”
degrees, thus performing 500 tests per “damage” opera-
tor and a total of 3000 tests per ontology. In each test the
similarity of the resulting ontology to the original one is
measured.

In the following, average values over the 50 tests are
presented for each damage degree of each “damage”
operator. Figures 8 and 9 present the results that were
obtained for the Genia and the Lonely Planet ontologies
respectively, while Figures 11 and 12 provide a different
view of the results, according to the level of the sub-
sumption hierarchy at which the “damage” was done.
The results in Figures 11 and 12 focus on a specific
“damage” degree for each “damage” operator. The rest
of this section summarizes the main observations per
“damage” operator.

Swap Concepts
This operator picks randomly a predefined number of
concept pairs and swaps them, introducing in this way
invalid subsumption relations to the ontologies. The
number of concepts, as well as the “nature” of the
concepts, i.e. their representations as distributions of
terms, remain the same. Thus, only the cotopy sets of
the concepts are affected, resulting in different PCP and
PCR values.

Swapping a single pair of concepts leads to a small
taxonomic difference (Figs. 8 and 9), especially when
this operation is performed on the leaf concepts of the
hierarchy (Figs. 11 and 12). For the two reference ontolo-
gies, the 50 different experiments of swapping one pair
of concepts result to an F between 0.81 and 0.99 (Figs. 11

http://www.tsujii.is.s.u-tokyo.ac.jp/GENIA
http://www.lonelyplanet.com
http://www.lonelyplanet.com
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Fig. 8. Combined diagram for all “damage” operators in
the case of the Genia ontology.

and 12), depending on the position of the concepts in the
hierarchy. As the “damage” increases, i.e. as the number
of concepts that are swapped gradually increases, the
F measure decreases almost linearly (Figs. 8 and 9),
reaching a situation where 10 pairs of concepts are
swapped, changing more than half of the subsumption
relations of the ontologies.

Fig. 9. Combined diagram for all “damage” operators in
the case of the Lonely Planet ontology.

Swapping concepts affects heavily the evaluation re-
sults because of the significant change of the cotopy sets.
A swap between two concepts may affect their cotopy
sets, as well as the cotopy sets of other concepts, by
introducing or removing a large number of neighboring
concepts. This effect depends on the new position of the
swapped concepts. Figure 10 illustrates such an example.
Before the swap operator, the cotopy set of concept
Nucleid acid is the whole ontology (the shaded concepts),

while the cotopy set of concept DNA comprises DNA
itself and Nucleid acid. Recall that the cotopy set of a con-
cept includes all its super and subconcepts. When these
concepts are swapped, the cotopy sets of Nucleid acid
and DNA change significantly. Now, the cotopy set of
DNA is the whole ontology, while the cotopy set of
Nucled acid consists only of itself and DNA.

Fig. 10. Example of swapping two concepts that partici-
pate in a subsumption relation, showing the effect of the
Swap Operator on their cotopy sets.

Remove Concepts
In this case, a predefined number of randomly chosen
concepts is removed from the ontologies. The remaining
concepts stay intact, i.e. their representation is not al-
tered. Again, only the cotopy sets in which the removed
concepts participate change, influencing the PCP and
PCR factors.

The errors that this operator introduces affect the
hierarchical structure of the ontologies, as some concepts
of the gold standard disappear. Removing only one
concept from the hierarchy leads - quantitatively - to
a small relational difference. Especially, if this is a leaf
concept, the penalty is small. For the two ontologies, the
50 different tests of removing a single concept result in
F between 0.90 and 0.99 (Figs. 11 and 12), depending
again on the position of the concept, i.e. whether it is a
leaf or a “central” concept.

As shown in Figures 8 and 9, the decrease of the F
measure is linearly related to the extent of the damage
and it is milder than for concept swapping. This is be-
cause the removal of a concept A affects only the cotopy
set of the concepts in the vicinity of A by decreasing their
size by one. Thus, the PCP and PCR factors are affected,
but not substantially.

Add Subconcepts
This operator adds a predefined number of new con-
cepts randomly to the ontologies, as children of ex-
isting concepts, maintaining the tree-like structure of
the hierarchies. Since the added concepts are assigned
random distributions of terms, it is almost impossible to
be matched to concepts in the gold ontology. In addition,
the fact that the rest of the concepts remain intact, results
in a perfect match between them. Thus, the P value is
only affected, while R remains equal to 1.

The behavior of this operator is similar to the one that
removes concepts. In this case, the cotopy set of some
concepts is affected by increasing their size by one. The



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JULY 2009 10

Fig. 11. Combined diagram for all “damage” operators in
the case of the Genia ontology.

Fig. 12. Combined diagram for all “damage” operators in
the case of the Lonely Planet ontology.

concepts that are affected through their cotopy sets are
those which are parents and children (direct or indirect)
of the newly added concept. As in the case of removing
concepts, the effect on the PCP and PCR factors is not
substantial.

Adding a single concept to the ontology introduces
a small error to the hierarchical structure. For the 50
different tests of adding only one concept, the F measure
is between 0.91 and 0.99 (Figs. 11 and 12). As the number
of added concepts increases, the F measure is affected
similarly to concept removal.

Add Superconcepts

This operator introduces new taxonomic relations in the
ontology by adding new concepts as parents to ran-
domly chosen existing concepts. This process is similar
to that of adding subconcepts. However, in this case, the
error introduced has an impact on the relational layer
of the ontologies, in the sense that multiple inheritance
between concepts may be introduced. This means that
one concept may now be subsumed by more than one
concept. Thus, P is affected, while R remains equal to 1.
Again, the PCP and PCR factors are affected, resulting
in the F values of Figures 8 and 9.

Figures 11 and 12 show that the addition of a super-
concept has a similar effect to that of adding a subcon-
cept, which is expected, as the cotopy sets of the concepts
in the vicinity of the newly added concept increase by
one.

One may argue at this point that when adding a
concept A, either as a subsumee or a subsumer, there
is a new cotopy set introduced, i.e. that of concept A.
However, this does not affect the evaluation results,
because matching is performed prior to the evaluation.
The resulting set of matches comprises as many matches
as the number of concepts in the smaller ontology. As
already said, the new concept A is not matched to any of
the gold concepts. Thus, its cotopy set does not affect the
evaluation results. The fact that A has been introduced
in the learned ontology is reflected only through the PCP
factor for the concepts in the vicinity of A, the cotopy sets
of which are affected. Figure 13 illustrates an example of
adding a concept to the learned ontology.

Fig. 13. Example of adding the concept DNA domain in
the ontology. This concept is not matched to any of the
gold ones. Thus, PCP and PCR are not calculated for
this concept. Its presence affects the PCP factor of the
root concept and its left child, the cotopy sets of which
increase by one.

Add Taxonomic Relations

This operator introduces new subsumption relations
among the existing concepts of the ontologies. Like the
Add Superconcepts/Subconcepts operator, the impact is
on the relational layer of the ontologies. The number of
concepts remains the same, as well as their representa-
tions, but the number of relations increases. Therefore,
P is affected, while R remains equal to 1. The mean F
value is depicted in Figures 8 and 9. As expected, the
more relations added, the larger the impact on F .
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Figures 11 and 12 illustrate that the impact of adding a
new relation between existing concepts is a little higher
than adding a new relation through the introduction of
a new superconcept. Although at first this may seem
counter-intuitive, it is due to the fact that the addition
of a single new subsumption relation may change the
hierarchy significantly, through the growth of the cotopy
sets of the concepts that participate in this relation.
Figure 14 provides such an example.

Fig. 14. Example of adding a relation between the
concepts Amino acid and RNA. The cotopy set of
Amino acid is now affected and includes almost the
whole ontology. Furthermore, the cotopy sets of RNA,
RNA molecule and RNA domain are increased by one
(which is irrelevant, since it concerns proteins).

Another side effect of this operator is that the addition
of new subsumption relations may introduce cycles to
the resulting ontologies. In terms of the evaluation mea-
sures, cycles affect the PCP and PCR, since they change
the cotopy sets of the concepts that participate in the
cycle by increasing their size.

Change Concept Representation
In this last case, the number of concepts remains intact.
The error is introduced in the distributional representa-
tion of randomly picked concepts. The changes affect the
frequency of the terms that appear in the context of the
concepts.

When changing a single randomly chosen concept,
the F measure ranges between 0.97 and 0.99 (Figs.
11 and 12). However, changing the representation of
more concepts, F decreases more steeply. It should be
pointed out that this operator can lead to the extreme
situation where a concept is changed completely, leading
to SimDist equal to 1. In reality, this can happen by (a)
changing the probabilities of terms in the distribution,
as this operator does, (b) changing the concept instances
and thus changing the context of the concept and its
representation, (c) removing the concept instances, and
thus the context of the concept.

For this operator, an additional set of tests has been
performed, using the Kolmogorov distance (Equation
(3)) and the Separation distance (Equation (4)) measures.
These additional tests were meaningful only for this
operator, as it affects the representation of the concepts,
affecting also the SimDist factor between pairs of con-
cepts. Figure 15 depicts the behavior of the evaluation
measures in terms of the F measure, for different “dam-
age” degrees.

Fig. 15. Combined diagram for the Change Concept
Representation operator.

The behavior of the three measures is very similar.
DMA determined the same matches using the three
different dissimilarity measures. In the general case, this
behavior is expected when changing a single concept,
since the rest of the concepts that remain intact would
be matched correctly to the gold ones. When changing
more than one concept, different similarity measures
should provide different sets of matches. However, in
the specific experiment this was not the case.

Summarizing the results of these experiments, we
observe that the gradual increase of the “damage” leads
to a gradual decrease in the F value in the closed
interval [0, 1]. All the “damage” operators lead to a near-
linear degradation of the F measure. Cases where the F
measure does not exhibit a linear behavior are due to
the fact that the learned ontology maintains some part
in common to the gold one, even when the “damage”
degree is high. If for instance all the subsumption rela-
tions are swapped, the F measure will still not be equal
to zero, due to the remaining similarities between the
two ontologies. The general observation is that different
errors affect differently the evaluation measures, which
are able to capture types of errors in the lexical and the
relational layer of the ontologies.

The similar behavior of the method in the two different
datasets is an initial indication of its invariance to the
properties of the dataset and the ontology. Considering
the slope of the F curves for the two ontologies, their
position is also very similar. This can be attributed to
the fact that the two ontologies have the same depth.
Similarity in the depth of the two ontologies is important
since PCP and PCR use the cotopy set of concepts,
which depends on the number of parents and children.
Assuming that no properties exist, as it is the case for
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the ontologies used here, the cotopy sets comprise only
super and subconcepts. Thus, the similarity of different
ontologies tends to increase when the branching factor
of the two hierarchies is also similar. However, this is not
the case in the two ontologies used in our experiments,
and thus, the evaluation results are not identical.

4.2 Experimental Assessment with the OAEI Ontolo-
gies

In this experiment, the benchmark series of the OAEI
20085 [21] is used. These consist of pairs of ontologies,
comprising a reference ontology and various modifica-
tions of it. Specifically, in this experiment our aim is to
study (a) the behavior of the evaluation measures when
comparing the reference ontology to its variants, (b) the
flexibility of the evaluation measures by substituting the
matching measures with two methods from the field of
ontology alignment6, and (c) the effect that the choice of
a matching method can have on ontology evaluation.

The benchmark test set that was used can be divided
into five groups: 101−104, 201−210, 221−247, 248−266,
and 301 − 304. Each of these numbers indicates a pair
of ontologies: the reference ontology and a variant of it
(or in some cases an irrelevant ontology). For instance,
the set 101 of the first group consists of the reference
ontology compared to itself, the set 102 compares the
reference ontology to an irrelevant one, and so forth.

For each of these five groups experimental results
are provided in terms of F value using the method
proposed in Section 3.2 (DMA), in conjunction with the
TVD (DMA.TVD), the Kolmogorov (DMA.dK), or the
Separation distance (DMA.S) measures. Two state-of-the-
art ontology matching methods are also included in the
experiments: Lily [23] and ASMOV [24].

In this task, there are only pairs of ontologies without
any text collection. Thus, as already stated, each pair
comprises the reference ontology (the gold one), and its
variant, which is assumed to be the “learned” ontology.
In this case, the ontology elements are represented as
multinomial probability distributions over a common
term space created by the terms in the names, comments,
instances, properties, domain, range, labels, values and
descriptions of the ontology elements, as explained in
subsection 3.1.

The first group (101-104) of pairs compares the refer-
ence ontology with (a) itself, (b) an irrelevant ontology,
(c) a variant containing language generalizations in OWL
Lite, where constraints and property types (such as
the transitive property) are replaced with more general
ones, and (d) a variant containing language restrictions
in OWL Lite, where constraints have been discarded.
Therefore, using this group, conclusions are mainly de-
rived regarding the effect of modifications at the lexical

5. Benchmark series: http://oaei.ontologymatching.org/versions/
bench50.zip

6. We have used the results for these methods as provided on the
OAEI web site [21].

level of the ontology. Figure 16 illustrates the behavior
of the evaluation measures in terms of F value.

In the first case (101), all methods give (correctly) F
values equal to one, since they provide perfect matches
between the elements of the reference ontology and
itself. Besides 102 (the irrelevant ontology) where all
methods give (correctly) F values equal to zero, in the
other two cases, all methods find the correct matches
between the elements of the gold and the learned on-
tology. The highest F values are obtained using the dK

and S similarity measures, as they are more tolerant to
language generalizations and restrictions. They give a
smaller penalty to ontology elements that differ in their
representation. The same holds for Lily and ASMOV
that replace DMA. Between TVD, dK and S, TVD is
the most strict similarity measure, as it is more sensitive
to changes in the distributional representation of the
elements. This is due to the nature of dK and S that focus
on the maximum difference between the elements of two
distributions (Equations 3 and 4), while TVD measures
the average distance between two distributions.

Fig. 16. Behavior of the evaluation measures in the test
cases of the first group of the OAEI set. All methods
determined the same set of matches.

In the second group (201−210), the reference ontology
is compared with (a) variants without the names of
ontology elements (201), (b) variants without names and
comments or with misspelled comments (202− 203), (c)
variants with naming conventions, synonyms or trans-
lations of the ontology elements (204 − 207), and (d)
variants combining naming conventions, synonyms and
translations (208− 210).

As Figure 17 shows, for the first case, where names
are missing, DMA gives high values since it is less
dependent on the names of the ontology elements, and
relies more on the context of these elements. This is true
for all three measures (TVD, dK , and S). Therefore, the
produced matches are correct and carry small penalties.
Lily and ASMOV on the other hand, being dependent
on names, impose a larger penalty and lead to lower
F values, managing at the same time to determine the

http://oaei.ontologymatching.org/versions/bench50.zip
http://oaei.ontologymatching.org/versions/bench50.zip
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correct matches between the elements of the ontologies.

Fig. 17. Behavior of the evaluation measures in the test
cases of the second group of the OAEI set.

In the second case though, where comments are also
missing (202− 203), the common term space created by
DMA is reduced significantly. Thus, the method faces
difficulties in locating the context of each element and
determining the matches. As a result, PCP and PCR
impose a heavy penalty on the learned ontology. The fact
that TVD is more strict than dK and S is due to the way
dissimilarity is calculated by its formula. On the other
hand, Lily and ASMOV provide a set of matches that is
close to the correct one, with fewer mistakes than DMA.
Hence PCP and PCR penalize less the learned ontologies.
This case (202− 203) indicates that DMA should not be
used for evaluating learned ontologies when the term
space is very small, i.e. it comprises very few terms.

When synonyms or translations are introduced (204−
207), DMA becomes more tolerant than Lily and AS-
MOV. This is mainly attributed to the fact that DMA
allows a learned concept to have a different name from
a gold concept. Thus, if this concept is a synonym or
a translation of the gold one, it is assumed correct and
shall not be penalized heavily. Recall that the name of a
concept is just a single feature in its representation. Thus,
a change in a single feature (translation or synonym)
does not lead to a heavy penalty. On the other hand,
Lily and ASMOV, which are more dependent on concept
names make some mistakes in matching concepts.

The final set of the second group (208−210) combines
synonyms, translations and other name conventions all
together. The effect of this additional deviation of the
ontology on Lily and ASMOV is relatively small and
it is attributed to a penalty through SimDist and PCR
for some matching mistakes. On the other hand, DMA
produces very low F values, due to its inability to match
the context of each learned element to the context of
the corresponding gold element. The corresponding rep-
resentations differ significantly, because of the concur-
rent introduction of synonyms, translations, conventions,
acronyms, and so forth, that change the majority of the
features in the vector representations. As a general con-

clusion for this group, DMA seems sensitive to drastic
changes of the term space, while it is suitable for cases
where concept names change.

Regarding the third test group (221 − 247), the inter-
esting cases are (a) those introducing changes at the
relational level of the ontology (221 − 223), (b) those
removing instances or local property restrictions (224 −
225), and (c) those substituting concepts with concept
sets (230− 231).

As Figure 18 illustrates, for the first case (221−223), the
changes at the relational layer affect heavily all methods,
which is expected, since the resulting ontology differs
significantly from the reference one. The main penalty
here is introduced by the PCP and PCR factors that are
sensitive to changes in the relations of the ontology.

Fig. 18. Behavior of the evaluation measures in the test
cases of the third group of the OAEI set.

In the second case (224 − 225), the fact that instances
and restrictions are missing affects the lexical layer of the
ontology. DMA is not affected significantly and is able
to locate the correct context of each ontology element,
thus creating the corresponding representation. This is
because the term space incorporates terms from labels,
lexicalizations, domain, range, etc. that do not change.
On the other hand, Lily and ASMOV are more sensitive
and impose a larger penalty to the learned ontology,
leading to lower F values.

Regarding the last case (230−231), almost all methods
behave similarly to the second case. The observed effect
is mainly due to the PCP factor that penalizes extra
concepts that do not appear in the gold ontology. The
R value is equal to 1 in the majority of the cases for
DMA, pushing the F value also very close to 1. The
tolerance of the proposed method in this case is justified
by the fact that existing concepts are left intact and only
some extra concepts are introduced as specializations of
leaf concepts. This affects only the PCP factor, and does
not result in significant changes in the cotopy sets of the
learned concepts.

The fourth group (248 − 266) is the most difficult
one for matching, as the “learned” ontology is very
different from the reference one. The variants of the
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reference ontology comprise errors in both the lexical
and the relational layer. Concept names and labels may
be scrambled, in the sense that they are replaced by ran-
dom strings, comments are missing and in many cases,
instances and properties are missing also. Regarding the
hierarchical layer, it may be expanded or flattened.

As Figure 19 shows, the evaluation results for all
methods are rather low. This is particularly true for
DMA.TVD, as it penalizes heavier the large differences
in the term distributions. On the other hand, when using
Lily and ASMOV, the F is near 0.2. These methods man-
age to determine a small set of good matches, carrying
a smaller penalty through the PCP and PCR factors.

Fig. 19. Behavior of the evaluation measures in the test
cases of the fourth and fifth group of the OAEI set.

Finally, the last group (301− 304) compares the refer-
ence ontology against four real ontologies. Only 301 and
304 have some elements in common with the reference
ontology. For the other two, no matching was possible.
Figure 19 shows that for the cases 301 and 304 where the
“learned” ontology has some elements in common with
the gold standard, all methods result in low F values.
In the more extreme cases 302 and 303 (not depicted in
the figure), zero F values are obtained, as expected.

Table 1 summarizes the basic conclusions from this
experiment. A threshold to the F value has been intro-
duced, in order to illustrate the tolerance of each method.
From figures 16, 17, 18 and 19, three major cases can be
distinguished: (a) that where the majority of the methods
achieves F values near 1.0, (b) that where the highest F
value is around 0.8, and (c) that where all methods score
below 0.5. In the first case, values near 1.0 indicate that
the method is tolerant to a particular situation, values
near 0.9 indicate relative tolerance, while values below
0.9 indicate no tolerance. In the second case, values
around 0.8 indicate relative tolerance, while lower values
indicate no tolerance. Finally, regarding the last case,
values below 0.5 indicate no tolerance.

Based on this qualitative interpretation of the results,
DMA (with dK and S) and ASMOV seem to be tolerant
to generalizations and restrictions, regarding the repre-

sentation language, e.g. moving from OWL Full to OWL
Lite. Lily is relatively tolerant to restrictions but insensi-
tive to generalizations. When names are removed, DMA
is the only method that is able to provide a correct set of
matches and evaluate objectively the learned ontology,
but when comments are also removed, DMA becomes
very sensitive, while ASMOV and Lily are more tolerant.
DMA is also tolerant to synonyms and translations. Re-
placing concept names with synonyms has a small effect,
since the concept label changes, but the reference concept
remains the same (recall Fig. 1 in Section 1). In contrast,
state-of-the-art ontology matching methods, such as Lily
and ASMOV, impose higher penalties in such cases.
When extreme lexical changes or big relational changes
occur, all methods become very sensitive, as is to be
expected. Finally, DMA is also tolerant to the removal
of instances and restrictions. Therefore, in cases where
names are missing, concepts are replaced by synonyms
or translations, or instances and restrictions are missing,
it is safer to use DMA, since it is able to judge more
objectively by a relevant tolerance the learned ontology
with respect to the gold one.

Thus, the experiments have emphasized that the
proposed method (DMA) goes beyond the superficial
matching of the ontologies. The results of the proposed
evaluation method depend mainly on the effectiveness
of the matching between the ontologies, which in turns
affects the penalty through PCP and PCR, and the
strictness of the method in penalizing lexical differences
through SimDist.

What needs to be stressed however is that the pro-
posed evaluation framework supports a variety of dif-
ferent matching methods. Thus, in cases where sophisti-
cated methods, like ASMOV and Lily are more suitable
than DMA, then they should be preferred. Otherwise,
the DMA provides a good evaluation approach. The
ultimate goal is to evaluate the learned ontology as
objectively as possible.

5 CONCLUSIONS

An automated ontology evaluation method needs to be
flexible and to support the use of measures that take into
account various aspects of the ontology. Furthermore, it
is important to use effective ontology matching methods
that go beyond superficial string matching. In this paper,
a novel method for evaluating learned ontologies against
gold ones was presented, as well as a new set of evalua-
tion measures that rely on a distributional representation
of the ontology elements, based on their contexts. The
proposed method provides a flexible framework for
evaluation, enabling the use of various methods, such
as the ones of the field of ontology matching that avoid
common problems of evaluating ontologies, such as the
superficial string matching between concepts.

In addition, the proposed similarity measures take
into account the lexical and the relational dimensions
of the learned ontology and penalize it in proportion



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JULY 2009 15

TABLE 1
Tolerance of methods in different tests. Check mark
indicates tolerance, “x” indicates no tolerance and “-”

indicates relative tolerance.

DMA Lily ASMOV Group
Test case TVD dK S
Language

Generalizations x X X X X 103
Language

Restrictions x X X X - 104
No names X X X x x 201
No names,

no comments x x x - - 202-203
Synonyms,
translations X X X x - 204-207
Synonyms,

translations, x x x x - 208-210
conventions
Relational,

lexical x x x x x 221-223
changes

No instances,
no restrictions X X X - x 224-225

to its differences from the gold standard. Moreover, the
generality of the evaluation measures allows a flexible
choice of dissimilarity measure to be used. This possi-
bility was demonstrated through experimentation with
the Total Variational Distance, the Kolmogorov Distance
and the Separation Distance. Additionally, the evaluation
measures can be used with any method from the field of
ontology alignment to determine the matching between
the gold and the learned ontology. This was also tested,
using the state-of-the-art ontology matching methods
Lily and ASMOV. The extensive and unbiased evaluation
that was performed has indicated that the proposed eval-
uation methodology is suitable for assessing evaluation
methods and ontology learning methods as well.

From the experimental assessment, we concluded first
that the method penalizes in a near-linear fashion the
increasing deviation of two ontologies, taking values in
the closed interval [0,1]. Second, the proposed method
managed to derive a good assessment in most cases,
avoiding the superficial string matching of ontology
elements. Third, we have showed that it is straightfor-
ward to incorporate any ontology alignment method,
and finally, the importance of choosing an appropriate
matching method that provides correct sets of matches
in order to obtain accurate evaluation results was also
studied. Despite the simplicity of DMA, we have ob-
served that in many cases it is preferable to use that
method in conjunction with TV D, dk, or S, rather more
sophisticated and strict ones. However, the intention of
the experiment is to show which alignment method must
be chosen according to various cases.

Future directions include the evaluation of ontologies
that have been learned from non-textual sources, where
ontology elements cannot be represented as distributions
over terms, but over different types of features. A final
intension is to improve the proposed matching method,
incorporating useful features from the literature of on-

tology alignment.
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APPENDIX
EXPERIMENTAL RESULTS

TABLE 2. Evaluation results in the OAEI benchmark
series using the proposed method and the Total Varia-
tional Distance (TVD) or the Kolmogorov Distance (dK)
as dissimilarity measures.

Data TVD dK

ID Pvalue Rvalue Pvalue Rvalue

101 1.0 1.0 1.0 1.0
102 0.0 0.0 0.0 0.0
103 0.91 0.91 0.99 0.99
104 0.82 0.82 0.98 0.98
201 0.93 0.93 0.99 0.99

201-2 0.97 0.97 0.99 0.99
201-4 0.97 0.97 1.0 1.0
201-6 0.94 0.94 0.99 0.99
201-8 0.95 0.95 1.0 1.0
202 0.02 0.02 0.21 0.15

202-2 0.03 0.03 0.18 0.17
202-4 0.02 0.02 0.19 0.15
202-6 0.02 0.03 0.16 0.15
202-8 0.02 0.02 0.24 0.17
203 0.05 0.06 0.19 0.2
204 0.97 0.97 0.99 0.99
205 0.95 0.95 1.0 1.0
206 0.95 0.95 1.0 1.0
207 0.94 0.94 0.99 0.99
208 0.04 0.05 0.18 0.17
209 0.02 0.02 0.16 0.15
210 0.02 0.02 0.21 0.17
221 0.73 0.18 0.98 0.18
222 0.96 0.47 1.0 0.48
223 0.15 0.9 0.15 0.93
224 0.96 0.96 0.99 0.99
225 0.99 0.99 1.0 1.0
228 0.0 0.0 0.0 0.0
230 0.86 0.86 0.99 0.99
231 1.0 1.0 1.0 1.0
232 0.69 0.17 0.97 0.18
233 0.01 0.0 0.01 0.0
236 0.0 0.0 0.0 0.0
237 0.92 0.45 0.98 0.47
238 0.15 0.93 0.12 0.92
239 0.48 0.26 0.31 0.27
240 0.08 0.38 0.06 0.17
241 0.01 0.0 0.01 0.0
246 0.44 0.24 0.82 0.43
247 0.08 0.37 0.06 0.19
248 0.04 0.02 0.83 0.15

continued on next page

continued from previous page
ID Pvalue Rvalue Pvalue Rvalue

248-2 0.08 0.03 0.83 0.15
248-4 0.07 0.02 0.83 0.15
248-6 0.05 0.02 0.83 0.15
248-8 0.05 0.02 0.83 0.15
249 0.0004 0 0.19 0.16

249-2 0.01 0.02 0.19 0.19
249-4 0.01 0.01 0.24 0.24
249-6 0.0 0.01 0.22 0.19
249-8 0.0 0.01 0.19 0.19
250 0.0 0.0 0.0 0.0

250-2 0.0 0.0 0.0 0.0
250-4 0.0 0.0 0.0 0.0
250-6 0.0 0.0 0.0 0.0
250-8 0.0005 0.0005 0.0005 0.0005
251 0.02 0.02 0.58 0.21

251-2 0.03 0.03 0.23 0.18
251-4 0.03 0.03 0.23 0.18
251-6 0.03 0.03 0.21 0.18
251-8 0.02 0.02 0.18 0.15
252 0.0 0.01 0.08 0.24

252-2 0.01 0.03 0.08 0.22
252-4 0.01 0.03 0.0 0.16
252-6 0.01 0.03 0.05 0.24
252-8 0.01 0.03 0.05 0.24
253 0.0 0.0 0.87 0.15

253-2 0.05 0.02 0.87 0.15
253-4 0.03 0.01 0.87 0.15
253-6 0.02 0.01 0.87 0.15
253-8 0.01 0.01 0.87 0.15
254 0.0 0.0 0.0 0.0

254-2 0.01 0.0 0.01 0.0
254-4 0.0 0.0 0.0 0.0
254-6 0.0 0.0 0.0 0.0
254-8 0.0008 0.0005 0.0008 0.0005
257 0.0 0.0 0.0 0.0

257-2 0.0 0.0 0.0 0.0
257-4 0.0 0.0 0.0 0.0
257-6 0.0 0.0 0.0 0.0
257-8 0.0005 0.0005 0.0005 0.0005
258 0.0004 0.0 0.22 0.13

258-2 0.02 0.01 0.22 0.09
258-4 0.01 0.01 0.22 0.09
258-6 0.01 0.01 0.25 0.13
258-8 0.0 0.01 0.22 0.09
259 0.0 0.0 0.05 0.21

259-2 0.01 0.02 0.05 0.21
259-4 0.01 0.02 0.05 0.19
259-6 0.01 0.02 0.05 0.24
259-8 0.01 0.02 0.03 0.21
260 0.02 0.02 0.18 0.14

260-2 0.03 0.03 0.24 0.16
continued on next page
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continued from previous page
ID Pvalue Rvalue Pvalue Rvalue

260-4 0.04 0.03 0.14 0.08
260-6 0.02 0.03 0.21 0.12
261 0.0001 0.01 0.03 0.14

261-2 0.01 0.02 0.05 0.18
261-4 0.01 0.02 0.07 0.18
261-6 0.01 0.02 0.07 0.16
261-8 0.01 0.02 0.05 0.18
262 0.0 0.0 0.0 0.0

262-2 0.01 0.0 0.01 0.0
262-4 0.0 0.0 0.0 0.0
262-6 0.0 0.0 0.0 0.0
262-8 0.0008 0.0005 0.0008 0.0005
265 0.0 0.0 0.14 0.12
266 0.0 0.0 0.05 0.09
301 0.64 0.04 0.97 0.06
302 0.0 0.0 0.0 0.0
303 0.0 0.0 0.0 0.0
304 0.17 0.42 0.21 0.6

TABLE 3. Evaluation results in the OAEI benchmark
series using the proposed method and the Separation
Distance (S) as dissimilarity measure.

Data S Data S
ID Pvalue Rvalue ID Pvalue Rvalue

101 1.0 1.0 250 0.09 0.09
102 0.0 0.0 250-2 0.14 0.14
103 0.99 0.99 250-4 0.12 0.12
104 0.99 0.99 250-6 0.11 0.11
201 0.99 0.99 250-8 0.11 0.11

201-2 0.99 0.99 251 0.18 0.16
201-4 1.0 1.0 251-2 0.24 0.2
201-6 0.99 0.99 251-4 0.24 0.2
201-8 1.0 1.0 251-6 0.18 0.16
202 0.19 0.2 251-8 0.25 0.2

202-2 0.16 0.2 252 0.0 0.21
202-4 0.19 0.23 252-2 0.0 0.32
202-6 0.19 0.17 252-4 0.0 0.29
202-8 0.22 0.2 252-6 0.0 0.23
203 0.62 0.62 252-8 0.0 0.32
204 0.99 0.99 253 0.89 0.16
205 1.0 1.0 253-2 0.89 0.16
206 1.0 1.0 253-4 0.89 0.16
207 0.99 0.99 253-6 0.89 0.16
208 0.19 0.26 253-8 0.89 0.16
209 0.19 0.2 254 0.5 0.09
210 0.16 0.2 254-2 0.5 0.09
221 0.98 0.18 254-4 0.5 0.09
222 1.0 0.48 254-6 0.5 0.09
223 0.15 0.94 254-8 0.5 0.09
224 1.0 1.0 257 0.11 0.09
225 1.0 1.0 257-2 0.14 0.14

continued on next page

continued from previous page
ID Pvalue Rvalue ID Pvalue Rvalue

228 0.35 0.35 257-4 0.12 0.12
230 0.99 0.99 257-6 0.09 0.09
231 1.0 1.0 257-8 0.09 0.11
232 0.97 0.18 258 0.22 0.2
233 0.5 0.09 258-2 0.22 0.23
236 0.35 0.35 258-4 0.25 0.23
237 0.99 0.48 258-6 0.22 0.2
238 0.15 0.99 258-8 0.56 0.26
239 0.72 0.28 259 0.0 0.24
240 0.06 0.17 259-2 0.0 0.21
241 0.5 0.09 259-4 0.0 0.29
246 0.77 0.37 259-6 0.0 0.26
247 0.06 0.17 259-8 0.0 0.21
248 0.86 0.16 260 0.22 0.17

248-2 0.86 0.16 260-2 0.3 0.2
248-4 0.86 0.16 260-4 0.17 0.1
248-6 0.86 0.16 260-6 0.27 0.15
248-8 0.86 0.16 261 0.04 0.17
249 0.19 0.2 261-2 0.07 0.22

249-2 0.19 0.2 261-4 0.09 0.22
249-4 0.19 0.2 261-6 0.09 0.2
249-6 0.19 0.2 261-8 0.07 0.22
249-8 0.19 0.2 262 0.5 0.09
265 0.18 0.16 262-2 0.5 0.09
266 0.06 0.12 262-4 0.5 0.09
301 0.98 0.07 262-6 0.5 0.09
302 0.0 0.0 262-8 0.5 0.09
303 0.0 0.0 304 0.19 0.58

TABLE 4. Evaluation results in the OAEI benchmark se-
ries using Lily and ASMOV matching methods to produce
the mapping.

Data Lily ASMOV
ID Pvalue Rvalue Pvalue Rvalue

101 1.0 1.0 1.0 1.0
102 0.0 0.0 0.0 0.0
103 0.95 0.95 0.97 0.97
104 0.95 0.95 0.88 0.88
201 0.46 0.46 0.67 0.67

201-2 0.88 0.88 0.91 0.91
201-4 0.78 0.78 0.86 0.86
201-6 0.69 0.69 0.81 0.81
201-8 0.57 0.57 0.71 0.71
202 0.42 0.42 0.49 0.49

202-2 0.65 0.65 0.89 0.89
202-4 0.57 0.57 0.8 0.8
202-6 0.49 0.49 0.71 0.71
202-8 0.41 0.41 0.61 0.61
203 0.8 0.8 1.0 1.0
204 0.91 0.91 0.98 0.98
205 0.61 0.61 0.85 0.85
206 0.59 0.59 0.81 0.81

continued on next page
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continued from previous page
ID Pvalue Rvalue Pvalue Rvalue

207 0.6 0.6 0.81 0.81
208 0.72 0.72 0.98 0.98
209 0.44 0.44 0.75 0.75
210 0.39 0.39 0.61 0.61
221 0.78 0.18 1.0 0.18
222 0.83 0.47 0.78 0.47
223 0.15 0.88 0.15 0.93
224 0.9 0.9 0.94 0.94
225 0.81 0.81 0.36 0.36
228 0.57 0.57 0.36 0.36
230 0.81 0.81 0.52 0.52
231 0.99 0.99 1.0 1.0
232 0.74 0.14 0.93 0.16
233 0.44 0.06 0.5 0.06
236 0.55 0.55 0.34 0.34
237 0.76 0.41 0.72 0.43
238 0.15 0.95 0.13 0.88
239 0.5 0.26 0.28 0.16
240 0.05 0.58 0.05 0.31
241 0.39 0.05 0.48 0.05
246 0.48 0.24 0.27 0.15
247 0.15 0.95 0.05 0.3
248 0.41 0.12 0.53 0.14

248-2 0.58 0.13 0.93 0.17
248-4 0.53 0.12 0.85 0.16
248-6 0.51 0.12 0.76 0.17
248-8 0.45 0.12 0.66 0.16
249 0.44 0.44 0.42 0.42

249-2 0.61 0.61 0.81 0.81
249-4 0.57 0.57 0.64 0.64
249-6 0.46 0.46 0.59 0.59
249-8 0.4 0.4 0.47 0.47
250 0.23 0.23 0.03 0.03

250-2 0.37 0.37 0.25 0.25
250-4 0.29 0.29 0.2 0.2
250-6 0.31 0.31 0.16 0.16
250-8 0.19 0.19 0.04 0.04
251 0.44 0.23 0.41 0.29

251-2 0.58 0.32 0.71 0.43
251-4 0.52 0.27 0.65 0.39
251-6 0.51 0.23 0.6 0.37
251-8 0.44 0.21 0.52 0.32
252 0.09 0.37 0.11 0.54

252-2 0.12 0.61 0.14 0.85
252-4 0.12 0.61 0.14 0.85
252-6 0.12 0.61 0.14 0.85
252-8 0.12 0.61 0.14 0.85
253 0.41 0.13 0.45 0.14

253-2 0.56 0.13 0.85 0.15
253-4 0.53 0.12 0.74 0.14
253-6 0.46 0.11 0.71 0.14
continued on next page

continued from previous page
ID Pvalue Rvalue Pvalue Rvalue

253-8 0.43 0.12 0.58 0.15
254 0.46 0.11 0.06 0.01

254-2 0.37 0.05 0.48 0.05
254-4 0.38 0.06 0.45 0.04
254-6 0.36 0.07 0.36 0.05
254-8 0.38 0.09 0.28 0.05
257 0.14 0.14 0.08 0.08

257-2 0.35 0.35 0.25 0.25
257-4 0.31 0.31 0.2 0.2
257-6 0.23 0.23 0.15 0.15
257-8 0.22 0.22 0.05 0.05
258 0.43 0.23 0.34 0.24

258-2 0.54 0.3 0.65 0.39
258-4 0.5 0.25 0.52 0.33
258-6 0.5 0.23 0.48 0.31
258-8 0.39 0.18 0.39 0.25
259 0.08 0.35 0.12 0.37

259-2 0.11 0.59 0.12 0.79
259-4 0.11 0.59 0.12 0.79
259-6 0.11 0.6 0.12 0.79
259-8 0.11 0.6 0.12 0.79
260 0.29 0.13 0.03 0.03

260-2 0.4 0.19 0.1 0.1
260-4 0.33 0.14 0.08 0.08
260-6 0.32 0.14 0.08 0.08
261 0.01 0.19 0.02 0.03

261-2 0.03 0.37 0.04 0.26
261-4 0.03 0.37 0.04 0.26
261-6 0.03 0.36 0.04 0.26
261-8 0.03 0.38 0.04 0.26
262 0.0 0.0 0.0 0.0

262-2 0.34 0.04 0.48 0.05
262-4 0.35 0.04 0.48 0.04
262-6 0.35 0.05 0.48 0.06
262-8 0.35 0.09 0.5 0.08
265 0.14 0.14 0.08 0.08
266 0.02 0.09 0.04 0.08
301 0.37 0.03 0.19 0.02
302 0.0 0.0 0.0 0.0
303 0.0 0.0 0.0 0.0
304 0.38 0.6 0.18 0.26

TABLE 5. Overall mean F values in the four most repre-
sentative groups.

Groups TVD dK S ASMOV Lily
GROUP 1 0.68 0.74 0.75 0.71 0.72
GROUP 2 0.49 0.58 0.62 0.79 0.61
GROUP 3 0.39 0.41 0.47 0.36 0.47
GROUP 4 0.01 0.11 0.15 0.22 0.22
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