
Domain-Specific Web Site Identification:
The CROSSMARC Focused Web Crawler

Konstantinos Stamatakis, Vangelis Karkaletsis,

Georgios Paliouras
Institute of Informatics and Telecommunications,

NCSR “Demokritos”, GR-15310, Athens, Greece
{kstam, vangelis, paliourg}@iit.demokritos.gr

James Horlock, Claire Grover, James Curran,
Shipra Dingare

Division of Informatics, University of Edinburgh,
horlock@cstr.ed.ac.uk

{grover, jamesc, sdingar1}@cogsci.ed.ac.uk

Abstract

This paper presents techniques for identifying domain
specific Web sites that have been implemented as part of
the EC-funded R&D project, CROSSMARC. The project
aims to develop technology for extracting interesting
information from domain-specific Web pages. It is
therefore important for CROSSMARC to identify Web
sites in which interesting domain specific pages reside
(focused Web crawling). This is the role of the
CROSSMARC Web crawler.

1. Introduction

CROSSMARC is an EC-funded R&D project that aims

to develop technology for information extraction from
Web pages in various languages, employing language
technology methods as well as machine learning methods
in order to facilitate technology porting to new domains.
CROSSMARC also employs localisation methodologies
and user modelling techniques in order to present the
results of the extraction according to the user's personal
preferences and constraints. The system is implemented
with a multi-agent architecture in order to ensure a clear
separation of responsibilities and to provide the system
with clear interfaces and robust and intelligent information
processing capabilities. The CROSSMARC architecture
involves the following main processing stages:
• Collection of domain-specific Web pages, which

involves two sub-stages: (a) focused crawling to
identify Web sites that are of relevance to the
particular domain (e.g. retailers of electronic
products), (b) domain-specific spidering of the
retrieved Web sites in order to identify Web pages of
interest (e.g. laptop product descriptions).

• Information Extraction from the domain-specific Web
pages.

• Data storage to store the extracted information (from
descriptions in any of the project’s languages) into a
common database.

• Data presentation to present the extracted information
to the end-user through a multilingual user interface,
according to the user’s language and preferences.

In this paper we present the CROSSMARC approach
to focused Web crawling. In Section 2 we outline related
work and discuss the differences and similarities between
Web crawling and Web site spidering. In Sections 3 and 4
we present the CROSSMARC implementation and the
results of its evaluation in the domain of laptop offers
from e-retailers sites.

2. Background

2.1. Related Work

The term ‘focused crawling’ was introduced by

Chakrabarti et al. (1999). The system described there,
starts with a set of representative pages and a topic
hierarchy and tries to find more instances of interesting
topics in the hierarchy by following the links in the seed
pages. Pages are classified into topics, using a
probabilistic text classifier.

Aggarwal et al. (2001) present a significant
improvement of the focused crawling approach, which
they call intelligent crawling. In contrast to the focused
crawling method, it uses a combination of evidence, in
order to rank the candidate hyperlinks by their level of
interest and learns the relevant weight of these factors as it
crawls. Making the assumption that the initial set of
starting points can lead to all interesting pages, very
central sites should be used as starting points for the crawl
(e.g. Yahoo, Amazon, etc.).

Another interesting approach to focused crawling is
adopted by the InfoSpiders system (Menczer and Belew,
2000), a multi-agent focused crawler. The process is
initialized by a set of keywords and a set of root pages.
Each agent starts with a root page and performs focused
crawling by evaluating the link value and following the
most promising links. Link value is assessed using a
reinforcement learning method, using contextual words as
input. Reward values are calculated online, by the reward
that the agent receives when following a link. The user
can provide relevance feedback to assist the learning
process.

A different approach is proposed by Diligenti et al.
(2000). Their method of context focused crawling looks
for the parents of a set of representative seed documents,

up to a certain level and then builds text classifiers for
each level. Then starting from a central Web node it can
predict how far it is from an interesting page, as in the
Rennie and McCallum (1999) method for spidering.

2.2. Focused crawling vs. site-specific spidering

In focused crawling, the aim is to adapt the behaviour
of the search engine to the requirements of a user. The
requirements of the user are expressed in one of three
different ways: a query consisting of a set of keywords, a
document that is representative of what the user is
interested in, or a set of documents related to the user’s
interests. In the first two cases, the system either produces
a query to a standard search engine, in order to construct a
base set of documents that are potentially relevant to the
topic, or starts the search from a set of user-specified
central points on the Web, e.g. Yahoo!.

On the other hand, in site-specific spidering, the spider
navigates in a Web site, following best-scored-first links.
Each Web page visited is evaluated, in order to decide
whether it is really relevant to the topic, and its hyperlinks
are scored in order to decide whether they are likely to
lead to useful pages. Thus, a score-sorted queue of
hyperlinks is constructed, which guides the retrieval of
new pages. The process stops according to user-specified
resource constraints.

Apart from their similarities, the two tasks also have
important differences, which stem from the fact that
focused crawling is not restricted to the narrow boundaries
of a Web site, but should potentially be able to reach the
whole world. While the site-specific spider starts from the
top-page of a site following links and evaluating pages
within the boundaries of the site, there are choices to be
made concerning the starting point of the focused crawler.
A central point on the Web such as a search engine
hierarchy could be considered as a potential starting point,
but it is likely that the crawler would wander endlessly
before getting to the useful part of the hierarchy by
chance. An alternative would be to identify a promising
branch of the hierarchy to start from. Another possibility
is to start from the documents returned by a query in a
common search engine. A final approach would be to start
with a set of documents provided by the user. For
instance, one could ask Google to find pages that are
similar to an initial dataset of domain-specific Web pages.

3. The CROSSMARC Web Crawler

The CROSSMARC implementation comprises three

distinct types of crawler, each being a realisation of the
options outlined in the previous section:
• Version 1 exploits the topic-based Web site

hierarchies used by various search engines to return
Web sites within specific subparts of these hierarchies.

• Version 2 uses a given set of queries, exploiting the
CROSSMARC domain ontologies and lexicons,
submits them to a search engine, and returns the sites
that contain the pages to retrieve.

• Version 3 takes a set of ‘seed’ pages and conducts a
‘similar pages’ search from advanced search engines
such as Google. It then returns the sites that contain
the pages.
For each version, the starting point is determined by

the user and reasonable starting points are those likely to
return a high proportion of relevant sites. For example, in
Version 1, a reasonable starting point, for the
CROSSMARC domain of laptop offers, might be the
Computers_and_Internet/Hardware/Notebook_Computers
branch of the Yahoo! Hierarchy. In Version 2 a possible
starting point might be a general query such as notebook
sale and in Version 3 it would be a set of Web pages
containing laptop offers. Clearly, each type of crawler
can be adapted to different search engines or Web site
hierarchies. However, because each Web hierarchy or
search engine provides different functionality and
represents their hierarchical structure or query results in a
different way, each one requires a slightly different
implementation. In Version 1, the hierarchies that we have
used are directory.google.com, www.forthnet.gr,
www.in.gr, dmoz.org, dir.yahoo.com, uk.dir.yahoo.com,
it.dir.yahoo.com, and fr.dir.yahoo.com, dir.lycos.com,
www.lycos.co.uk. In Version 2, the search engines
exploited are Google and Altavista, and, in Version 3,
only Google. The front-end crawler script combines the
results of the various crawler versions using the various
search engines and hierarchies and returns all Web sites
found.

It must be noted that the crawling process also takes
into account the languages involved in CROSSMARC and
can be customized to new languages. Some of the starting
points are language specific, such as the set of keywords
in the queries and the list of Web directories.

The list of Web sites output from the crawler is
filtered using a light version of the site-specific spidering
tool implemented in CROSSMARC. The full version of
the CROSSMARC spider (NEAC) has three components:
(a) Site navigation. This component traverses a Web site,

collecting information from each page visited, and
forwarding part of the information collected to the
“Page-Filtering” module and another part to the “Link-
Scoring” module.

(b) Page-filtering. This component is responsible for
deciding whether a page is an interesting one (e.g.
contains laptop offers) and should be stored or not.

(c) Link-scoring. This component validates the links to be
followed, in order to accelerate site navigation (only
links with a score above a certain threshold are
followed).

The light version of NEAC navigates the site until it
finds an interesting Web page. If it finds one, it considers
the site as fit and stops navigating. If no such page is
found the site is characterized as unfit. At the end of the
process, only the fit Web sites survive.

4. Experimental results

4.1. Crawler evaluation

It is important that the focused crawler should return as
many interesting sites as possible. This initial set of sites
may later be “reduced” by the spidering process. For
reasons of efficiency, however, it is also important that it
does not return too high a proportion of uninteresting sites
since this would require the site-specific spidering
component to perform a great deal of unnecessary
processing. A balance between these competing
requirements can be obtained by finding the optimal start
points for each version of the crawler as well as the
optimal combination of versions. In order to find these
optimal settings, we performed an evaluation where we
sought to measure the effectiveness of each version given
different starting points and to discover how to maximize
the overall effectiveness of the crawler by combining the
various versions and starting points.

The measures for evaluation were the standard
measures of recall, precision, and f-score. The recall of
the crawler is the ratio of fit sites retrieved by the crawler
to all fit sites on the Web (where a fit site is one which
contains at lease one fit, i.e. relevant, page). However, it is
not possible to obtain a count of all fit sites on the Web so
recall cannot be directly measured. The precision of the
crawler is the ratio of fit sites returned by the crawler to
all sites returned by the crawler. While it is in principle
possible to measure precision by manually inspecting all
the sites returned by the crawler, this is impractical given
the large number of sites returned. Finally, f-score is a
measure combining the measures of recall and precision
defined as 2*Recall* Precision/(Recall+Precision).

Although we cannot obtain exact figures for precision
and recall, it is possible to estimate these measures. For
this we needed to estimate how many of the sites returned
by the crawler were fit and the number of fit sites on the
Web. For the former we performed a manual inspection
of a subset of the crawler output (150 pages). For the
latter we had to make the assumption that all fit sites
would be found within the combined output of all versions
and start points of the crawler. The set of Web sites
returned by these steps is quite large and, assuming that it
contains all the fit sites on the Web (as well as a large
number of unfit sites), we estimated the total number of fit
sites by manual examination of a random subset of 150
sites. Our main experiments were limited to English
language sites in the laptop offer domain, and by the

method outlined above we obtained an estimate of 993
such sites on the Web. This estimate is extremely
conservative since the assumption that all fit sites are
contained in the combined output of all versions of the
crawler is clearly not a sound one. However, this appeared
to be the only method available for obtaining any kind of
estimate of the number of fit sites in the entire Web.

 Precision Recall f-measure
 V1 general 32.0% 29.0% 30.4%
V1 narrow 52.3% 7.1% 12.5%
 V2 general 21.3% 11.7% 15.1%
V2 man/mod 32.6% 49.5% 39.4%
V2 screen 41.0% 37.4% 39.1%
 V3 38.0% 6.1% 10.5%

Table 1. Focused Crawler Evaluation

We performed a number of experiments, the results of
which appear in Table 1. The first two rows show results
for Version 1 with two sets of start points in the search
engine hierarchies, general points relating to computer
hardware retailers and more narrow points relating to
notebooks and laptops. As the results indicate, the narrow
hierarchy points adversely affect recall, while the general
hierarchy points lead to a better balance between precision
and recall. The next three rows show evaluation results for
Version 2 with three kinds of queries as start points. The
first set of queries are general ones using combinations of
plural and singular versions of the keywords ‘notebook’,
‘laptop’ and ‘sale’. The second set of queries consists of
the combination of a number of manufacturer/model name
pairs such as ‘compaq presario’ taken from the laptop
domain ontology. The third set of queries are variations
on a number of screen type specifications particular to
laptops as opposed to desktops, e.g. ‘12.1” TFT’. As the
results show, the more precise queries are more effective
than the more general queries. The final row shows
evaluation results for Version 3 where the ‘seed pages’ are
a corpus of fit pages gathered as training and testing
material for the Information Extraction component of the
system. The results show very low recall.

The results of the experiments have helped us to
determine the optimal settings for running the crawler. For
English and the laptop domain we currently run it using a
combination of Version 1 with the more general start
point and Version 2 with the two more specific sets of
queries. On the test material used for the experiments this
yields recall of 92.1%, precision of 45.2% and an f-
measure of 60.64%.

4.2. Spider evaluation

As described above, the site navigation module, while
traversing a Web site, collects information from each page

visited, and forwards part of the collected information to
the page-filtering module and another part to the link-
scoring module. Therefore, an efficient identification of
interesting pages presupposes a well-tuned page-filtering
module. The module is based on the use of machine
learning methods for text classification. A variety of
machine learning methods have been evaluated (Naïve
Bayes, Nearest-Neighbour, J48, SMO, AdaBoost and
LogitBoost). In order to obtain an unbiased estimate of the
performance of the various learning methods, stratified
ten-fold cross-validation was used to obtain the results.
According to this methodology, the training set is split
into ten equal-sized pieces maintaining the original
distribution of the classes. Then, ten different training-test
runs are performed, each of which uses one of the ten
pieces for testing and the remaining nine for training.
Average results over the ten runs are reported.

The page-filtering module was evaluated separately for
each of the four languages that are used in CROSSMARC.
The evaluation data for each language consisted of a
number of Web pages describing laptop product offerings
and Web pages that are “near-misses”, i.e. pages that
could be confused with the target pages.

Table 2 shows evaluation results of the algorithms
evaluated on page-filtering for the English language (the
results were similar for the other CROSSMARC
languages).

 Precision Recall f-

measure
Naive Bayes 88.1% 89.3% 88.7%
Near.Neighbour 97.9% 96.0% 96.9%
Dec. Trees 99.0% 92.4% 95.6%
SVM (SMO) 96.4% 95.7% 96.1%
AdaBoost 97.1% 96.0% 96.5%
LogitBoost 97.7% 93.7% 95.7%
Table 2. Page classification results for the English dataset

The most general conclusion of the experiments is that
most learning methods are doing remarkably well (above
the 90% mark) for all four datasets. The simplistic Naive
Bayes classifier is an expected exception to this rule. The
most surprising result is the high performance of the
simple Nearest-Neighbour algorithm, with k=1, i.e.,
looking only at the class of the closest pre-classified
neighbour. The Nearest-Neighbour classifier outperforms
all other learning methods. Nevertheless, its difference
from the SVM and the AdaBoost algorithms is
insignificantly small in all experiments. Therefore, despite
the appealing simplicity and the good results of the
Nearest-Neighbour classifier, the best choice seems to be
the SVM method, which is cheaper computationally than
AdaBoost and faster in run time than a Nearest-Neighbour
classifier.

5. Conclusion

The motivation for focused crawling comes from the

poor performance of general-purpose search engines,
which depend on the results of generic Web crawlers.
Moreover, the focused crawler output, a domain oriented
list of Web sites, still contains enough undesired entries to
necessitate a closer look: light site spidering assures the
domain relevance of a site. This is the approach
implemented in CROSSMARC.

Note also that the described implementation of the
focused crawling as a parasite to common Web services,
such as Google and Yahoo! reduces significantly the cost
of its development and deployment.

Customization to new domains as well as to new
languages is a crucial issue for CROSSMARC. The tools
and methodologies developed facilitate such
customization tasks and form a part of a platform for
cross-lingual information management.

References

Soumen Chakrabarti, Martin H. van den Berg, Byron
E. Dom. “Focused Crawling: a new approach to topic-
specific Web resource discovery”, Proceedings of the
Eighth International World Wide Web Conference,
Toronto, Canada, May 1999.

Charu C. Aggarwal, Fatima Al –Garawi, Philip S. Yu,
“Intelligent Crawling on the World Wide Web with
Arbitrary Predicates”, Proceedings of the Tenth
International World Wide Web Conference, Hong Kong,
May 2001, pp. 96-105.

Michelangelo Diligenti, Frans Coetzee, Steve
Lawrence, C. Lee Giles, Marco Gori. “Focused Crawling
using Context Graphs”, Proceedings of the 26th
International Conference on Very Large Databases,
VLDB 2000, Cairo, Egypt, pp. 527–534, 2000.

C.Grover, S.McDonald, V.Karkaletsis, D.Farmakiotou,
G.Samaritakis, G.Petasis, M.T.Pazienza, M.Vindigni,
F.Vichot and F.Wolinski. “Multilingual XML-Based
Named Entity Recognition”, Proceedings of the
International Conference on Language Resources and
Evaluation (LREC-2002), Las Palmas, Spain, May 2002.

Filippo Menczer and Richard K. Belew. Adaptive
Retrieval Agents: Internalizing Local Context and
Scaling up to the Web. Machine Learning, 39(2/3):203-
242, 2000.

Jason Rennie and Andrew McCallum. “Efficient Web
Spidering with Reinforcement Learning”, Proceedings
of the Sixteenth International Conference on Machine
Learning (ICML-99), 1999.

