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Abstract 
 

This paper presents techniques for identifying domain 
specific Web sites that have been implemented as part of 
the EC-funded R&D project, CROSSMARC. The project 
aims to develop technology for extracting interesting 
information from domain-specific Web pages. It is 
therefore important for CROSSMARC to identify Web 
sites in which interesting domain specific pages reside 
(focused Web crawling). This is the role of the 
CROSSMARC Web crawler. 

 
1. Introduction 

 
CROSSMARC is an EC-funded R&D project that aims 

to develop technology for information extraction from 
Web pages in various languages, employing language 
technology methods as well as machine learning methods 
in order to facilitate technology porting to new domains. 
CROSSMARC also employs localisation methodologies 
and user modelling techniques in order to present the 
results of the extraction according to the user's personal 
preferences and constraints. The system is implemented 
with a multi-agent architecture in order to ensure a clear 
separation of responsibilities and to provide the system 
with clear interfaces and robust and intelligent information 
processing capabilities. The CROSSMARC architecture 
involves the following main processing stages: 
• Collection of domain-specific Web pages, which 

involves two sub-stages: (a) focused crawling to 
identify Web sites that are of relevance to the 
particular domain (e.g. retailers of electronic 
products), (b) domain-specific spidering of the 
retrieved Web sites in order to identify Web pages of 
interest (e.g. laptop product descriptions). 

• Information Extraction from the domain-specific Web 
pages. 

• Data storage to store the extracted information (from 
descriptions in any of the project’s languages) into a 
common database. 

• Data presentation to present the extracted information 
to the end-user through a multilingual user interface, 
according to the user’s language and preferences.     

In this paper we present the CROSSMARC approach 
to focused Web crawling. In Section 2 we outline related 
work and discuss the differences and similarities between 
Web crawling and Web site spidering. In Sections 3 and 4 
we present the CROSSMARC implementation and the 
results of its evaluation in the domain of laptop offers 
from e-retailers sites. 

 

2. Background 
 

2.1. Related Work 
 
The term ‘focused crawling’ was introduced by 

Chakrabarti et al. (1999). The system described there, 
starts with a set of representative pages and a topic 
hierarchy and tries to find more instances of interesting 
topics in the hierarchy by following the links in the seed 
pages. Pages are classified into topics, using a 
probabilistic text classifier.  

Aggarwal et al. (2001) present a significant 
improvement of the focused crawling approach, which 
they call intelligent crawling. In contrast to the focused 
crawling method, it uses a combination of evidence, in 
order to rank the candidate hyperlinks by their level of 
interest and learns the relevant weight of these factors as it 
crawls. Making the assumption that the initial set of 
starting points can lead to all interesting pages, very 
central sites should be used as starting points for the crawl 
(e.g. Yahoo, Amazon, etc.). 

Another interesting approach to focused crawling is 
adopted by the InfoSpiders system (Menczer and Belew, 
2000), a multi-agent focused crawler. The process is 
initialized by a set of keywords and a set of root pages. 
Each agent starts with a root page and performs focused 
crawling by evaluating the link value and following the 
most promising links. Link value is assessed using a 
reinforcement learning method, using contextual words as 
input. Reward values are calculated online, by the reward 
that the agent receives when following a link. The user 
can provide relevance feedback to assist the learning 
process.  

A different approach is proposed by Diligenti et al. 
(2000). Their method of context focused crawling looks 
for the parents of a set of representative seed documents, 



up to a certain level and then builds text classifiers for 
each level. Then starting from a central Web node it can 
predict how far it is from an interesting page, as in the 
Rennie and McCallum (1999) method for spidering.   
 
2.2. Focused crawling vs. site-specific spidering 
 

In focused crawling, the aim is to adapt the behaviour 
of the search engine to the requirements of a user. The 
requirements of the user are expressed in one of three 
different ways: a query consisting of a set of keywords, a 
document that is representative of what the user is 
interested in, or a set of documents related to the user’s 
interests. In the first two cases, the system either produces 
a query to a standard search engine, in order to construct a 
base set of documents that are potentially relevant to the 
topic, or starts the search from a set of user-specified 
central points on the Web, e.g. Yahoo!.  

On the other hand, in site-specific spidering, the spider 
navigates in a Web site, following best-scored-first links. 
Each Web page visited is evaluated, in order to decide 
whether it is really relevant to the topic, and its hyperlinks 
are scored in order to decide whether they are likely to 
lead to useful pages. Thus, a score-sorted queue of 
hyperlinks is constructed, which guides the retrieval of 
new pages. The process stops according to user-specified 
resource constraints. 

Apart from their similarities, the two tasks also have 
important differences, which stem from the fact that 
focused crawling is not restricted to the narrow boundaries 
of a Web site, but should potentially be able to reach the 
whole world. While the site-specific spider starts from the 
top-page of a site following links and evaluating pages 
within the boundaries of the site, there are choices to be 
made concerning the starting point of the focused crawler. 
A central point on the Web such as a search engine 
hierarchy could be considered as a potential starting point, 
but it is likely that the crawler would wander endlessly 
before getting to the useful part of the hierarchy by 
chance. An alternative would be to identify a promising 
branch of the hierarchy to start from. Another possibility 
is to start from the documents returned by a query in a 
common search engine. A final approach would be to start 
with a set of documents provided by the user. For 
instance, one could ask Google to find pages that are 
similar to an initial dataset of domain-specific Web pages.  

 
3. The CROSSMARC Web Crawler 

 
The CROSSMARC implementation comprises three 

distinct types of crawler, each being a realisation of the 
options outlined in the previous section: 
• Version 1 exploits the topic-based Web site 

hierarchies used by various search engines to return 
Web sites within specific subparts of these hierarchies.   

• Version 2 uses a given set of queries, exploiting the 
CROSSMARC domain ontologies and lexicons, 
submits them to a search engine, and returns the sites 
that contain the pages to retrieve.   

• Version 3 takes a set of ‘seed’ pages and conducts a 
‘similar pages’ search from advanced search engines 
such as Google. It then returns the sites that contain 
the pages. 
For each version, the starting point is determined by 

the user and reasonable starting points are those likely to 
return a high proportion of relevant sites.  For example, in 
Version 1, a reasonable starting point, for the 
CROSSMARC domain of laptop offers, might be the 
Computers_and_Internet/Hardware/Notebook_Computers 
branch of the Yahoo! Hierarchy. In Version 2 a possible 
starting point might be a general query such as notebook 
sale and in Version 3 it would be a set of Web pages 
containing laptop offers.  Clearly, each type of crawler 
can be adapted to different search engines or Web site 
hierarchies.  However, because each Web hierarchy or 
search engine provides different functionality and 
represents their hierarchical structure or query results in a 
different way, each one requires a slightly different 
implementation. In Version 1, the hierarchies that we have 
used are directory.google.com, www.forthnet.gr, 
www.in.gr, dmoz.org, dir.yahoo.com, uk.dir.yahoo.com, 
it.dir.yahoo.com, and fr.dir.yahoo.com, dir.lycos.com, 
www.lycos.co.uk. In Version 2, the search engines 
exploited are Google and Altavista, and, in Version 3, 
only Google.  The front-end crawler script combines the 
results of the various crawler versions using the various 
search engines and hierarchies and returns all Web sites 
found. 

It must be noted that the crawling process also takes 
into account the languages involved in CROSSMARC and 
can be customized to new languages. Some of the starting 
points are language specific, such as the set of keywords 
in the queries and the list of Web directories.  

The list of Web sites output from  the crawler is 
filtered using a light version of the site-specific spidering 
tool implemented in CROSSMARC. The full version of 
the CROSSMARC spider (NEAC) has three components:  
(a) Site navigation. This component traverses a Web site, 

collecting information from each page visited, and 
forwarding part of the information collected to the 
“Page-Filtering” module and another part to the “Link-
Scoring” module.  

(b) Page-filtering. This component is responsible for 
deciding whether a page is an interesting one (e.g. 
contains laptop offers) and should be stored or not. 

(c) Link-scoring. This component validates the links to be 
followed, in order to accelerate site navigation (only 
links with a score above a certain threshold are 
followed). 



The light version of NEAC navigates the site until it 
finds an interesting Web page. If it finds one, it considers 
the site as fit and stops navigating. If no such page is 
found the site is characterized as unfit. At the end of the 
process, only the fit Web sites survive. 

 
4. Experimental results 

 
4.1. Crawler evaluation 

  

It is important that the focused crawler should return as 
many interesting sites as possible. This initial set of sites 
may later be “reduced” by the spidering process. For 
reasons of efficiency, however, it is also important that it 
does not return too high a proportion of uninteresting sites 
since this would require the site-specific spidering 
component to perform a great deal of unnecessary 
processing. A balance between these competing 
requirements can be obtained by finding the optimal start 
points for each version of the crawler as well as the 
optimal combination of versions. In order to find these 
optimal settings, we performed an evaluation where we 
sought to measure the effectiveness of each version given 
different starting points and to discover how to maximize 
the overall effectiveness of the crawler by combining the 
various versions and starting points.   

The measures for evaluation were the standard 
measures of recall, precision, and f-score. The recall of 
the crawler is the ratio of fit sites retrieved by the crawler 
to all fit sites on the Web (where a fit site is one which 
contains at lease one fit, i.e. relevant, page). However, it is 
not possible to obtain a count of all fit sites on the Web so 
recall cannot be directly measured. The precision of the 
crawler is the ratio of fit sites returned by the crawler to 
all sites returned by the crawler. While it is in principle 
possible to measure precision by manually inspecting all 
the sites returned by the crawler, this is impractical given 
the large number of sites returned. Finally, f-score is a 
measure combining the measures of recall and precision 
defined as 2*Recall* Precision/(Recall+Precision). 

Although we cannot obtain exact figures for precision 
and recall, it is possible to estimate these measures. For 
this we needed to estimate how many of the sites returned 
by the crawler were fit and the number of fit sites on the 
Web.  For the former we performed a manual inspection 
of a subset of the crawler output (150 pages). For the 
latter we had to make the assumption that all fit sites 
would be found within the combined output of all versions 
and start points of the crawler. The set of Web sites 
returned by these steps is quite large and, assuming that it 
contains all the fit sites on the Web (as well as a large 
number of unfit sites), we estimated the total number of fit 
sites by manual examination of a random subset of 150 
sites. Our main experiments were limited to English 
language sites in the laptop offer domain, and by the 

method outlined above we obtained an estimate of 993 
such sites on the Web. This estimate is extremely 
conservative since the assumption that all fit sites are 
contained in the combined output of all versions of the 
crawler is clearly not a sound one. However, this appeared 
to be the only method available for obtaining any kind of 
estimate of the number of fit sites in the entire Web. 

 
 Precision Recall f-measure 
    V1 general 32.0% 29.0% 30.4% 
V1 narrow 52.3% 7.1% 12.5% 
    V2 general 21.3% 11.7% 15.1% 
V2 man/mod 32.6% 49.5% 39.4% 
V2 screen 41.0% 37.4% 39.1% 
    V3 38.0% 6.1% 10.5% 

Table 1. Focused Crawler Evaluation 
 

We performed a number of experiments, the results of 
which appear in Table 1. The first two rows show results 
for Version 1 with two sets of start points in the search 
engine hierarchies, general points relating to computer 
hardware retailers and more narrow points relating to 
notebooks and laptops. As the results indicate, the narrow 
hierarchy points adversely affect recall, while the general 
hierarchy points lead to a better balance between precision 
and recall. The next three rows show evaluation results for 
Version 2 with three kinds of queries as start points. The 
first set of queries are general ones using combinations of 
plural and singular versions of the keywords ‘notebook’, 
‘laptop’ and ‘sale’. The second set of queries consists of 
the combination of a number of manufacturer/model name 
pairs such as ‘compaq presario’ taken from the laptop 
domain ontology. The third set of queries are variations 
on a number of screen type specifications particular to 
laptops as opposed to desktops, e.g. ‘12.1” TFT’. As the 
results show, the more precise queries are more effective 
than the more general queries. The final row shows 
evaluation results for Version 3 where the ‘seed pages’ are 
a corpus of fit pages gathered as training and testing 
material for the Information Extraction component of the 
system. The results show very low recall.   

The results of the experiments have helped us to 
determine the optimal settings for running the crawler. For 
English and the laptop domain we currently run it using a 
combination of Version 1 with the more general start 
point and Version 2 with the two more specific sets of 
queries. On the test material used for the experiments this 
yields recall of 92.1%, precision of 45.2% and an f-
measure of 60.64%.  

 

4.2. Spider evaluation 
 

 

As described above, the site navigation module, while 
traversing a Web site, collects information from each page 



visited, and forwards part of the collected information to 
the page-filtering module and another part to the link-
scoring module. Therefore, an efficient identification of 
interesting pages presupposes a well-tuned page-filtering 
module. The module is based on the use of machine 
learning methods for text classification. A variety of 
machine learning methods have been evaluated (Naïve 
Bayes, Nearest-Neighbour, J48, SMO, AdaBoost and 
LogitBoost). In order to obtain an unbiased estimate of the 
performance of the various learning methods, stratified 
ten-fold cross-validation was used to obtain the results. 
According to this methodology, the training set is split 
into ten equal-sized pieces maintaining the original 
distribution of the classes. Then, ten different training-test 
runs are performed, each of which uses one of the ten 
pieces for testing and the remaining nine for training. 
Average results over the ten runs are reported. 

The page-filtering module was evaluated separately for 
each of the four languages that are used in CROSSMARC. 
The evaluation data for each language consisted of a 
number of Web pages describing laptop product offerings 
and Web pages that are “near-misses”, i.e. pages that 
could be confused with the target pages. 

Table 2 shows evaluation results of the algorithms 
evaluated on page-filtering for the English language (the 
results were similar for the other CROSSMARC 
languages). 

 
 Precision Recall f-

measure 
Naive Bayes 88.1% 89.3% 88.7% 
Near.Neighbour 97.9% 96.0% 96.9% 
Dec. Trees 99.0% 92.4% 95.6% 
SVM (SMO) 96.4% 95.7% 96.1% 
AdaBoost  97.1% 96.0% 96.5% 
LogitBoost  97.7% 93.7% 95.7% 
Table 2. Page classification results for the English dataset 

 

The most general conclusion of the experiments is that 
most learning methods are doing remarkably well (above 
the 90% mark) for all four datasets. The simplistic Naive 
Bayes classifier is an expected exception to this rule. The 
most surprising result is the high performance of the 
simple Nearest-Neighbour algorithm, with k=1, i.e., 
looking only at the class of the closest pre-classified 
neighbour. The Nearest-Neighbour classifier outperforms 
all other learning methods. Nevertheless, its difference 
from the SVM and the AdaBoost algorithms is 
insignificantly small in all experiments. Therefore, despite 
the appealing simplicity and the good results of the 
Nearest-Neighbour classifier, the best choice seems to be 
the SVM method, which is cheaper computationally than 
AdaBoost and faster in run time than a Nearest-Neighbour 
classifier.  
 

 
5. Conclusion 

 
The motivation for focused crawling comes from the 

poor performance of general-purpose search engines, 
which depend on the results of generic Web crawlers. 
Moreover, the focused crawler output, a domain oriented 
list of Web sites, still contains enough undesired entries to 
necessitate a closer look: light site spidering assures the 
domain relevance of a site. This is the approach 
implemented in CROSSMARC. 

Note also that the described implementation of the 
focused crawling as a parasite to common Web services, 
such as Google and Yahoo! reduces significantly the cost 
of its development and deployment.  

Customization to new domains as well as to new 
languages is a crucial issue for CROSSMARC. The tools 
and methodologies developed facilitate such 
customization tasks and form a part of a platform for 
cross-lingual information management. 
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