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Abstract. This paper proposes a method for learning ontologies given a corpus of text documents. The method identifies concepts
in documents and organizes them into a subsumption hierarchy, without presupposing the existence of a seed ontology. The
method uncovers latent topics for generating document text. The discovered topics form the concepts of the new ontology.
Concept discovery is done in a language neutral way, using probabilistic space reduction techniques over the original term space
of the corpus. Furthermore, the proposed method constructs a subsumption hierarchy of the concepts by performing conditional
independence tests among pairs of latent topics, given a third one. The paper provides experimental results on the Genia and the
Lonely Planet corpora from the domains of molecular biology and tourism respectively.
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1. Introduction

Ontologies have been proposed as the key ele-
ment to shape, manage and further process knowledge.
However, the engineering of ontologies is a costly,
time-consuming and error-prone task when done man-
ually. Furthermore, in quickly evolving domains of
knowledge, or in cases where information is constantly
being updated, possibly making prior knowledge obso-
lete, the continuous maintenance and evolution of on-
tologies are tasks that require significant human effort.
Thus, there is a strong need to automate the ontology
development/maintenance tasks in order to minimize
the cost of ontology creation and evolution.

For this reason, ontology learning has emerged as a
field of research, aiming to help knowledge engineers
to build and further extend ontologies with the help of
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automated or semi-automated machine learning tech-
niques, exploiting several sources of information. On-
tology learning is commonly viewed [1,10,30,35] as
the task of extending or enriching an existing ontology
with new ontology elements mined from text corpora.
Depending on the ontology elements being discov-
ered, existing approaches deal with the identification
of concepts, subsumption relations among concepts,
instances of concepts, or concept properties/relations.
Linguistic, statistical, or machine learning techniques
are used for these tasks.

The seed ontology used in ontology enrichment
is usually a hierarchical backbone of concepts, re-
lated via subsumption relations, or a generic ontology
that formalizes some of the concepts in a document
collection. Linguistic approaches additionally suffer
from language dependence, as they rely on language-
specific lexico-syntactic patterns.

In contrast to the majority of the existing work,
this paper proposes an automated approach to ontol-
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ogy learning, without presupposing the existence of
a seed ontology, or any other type of external re-
source, except the corpus of training text documents.
The proposed method addresses both tasks of concept
identification and subsumption hierarchy construction.
More specifically, concepts are identified and repre-
sented as multinomial distributions over the term space
of the corpus. Towards this objective, the Markov
Chain Monte Carlo (MCMC) process of Gibbs sam-
pling [17] is used, following the Latent Dirichlet Al-
location (LDA) [4] model. The discovered concepts,
are then organized hierarchically by performing con-
ditional independence tests among them. The statisti-
cal nature of the approach guarantees, among other,
the language-independence of the proposed method.
Finally, we extend our recent work [37] by presenting
more extensive evaluation results, as well as by pre-
senting a new gold standard-based evaluation method
that takes into account the distributional representation
of the learned topics, as well as a relative representa-
tion of the concepts of the gold ontology.

In what follows, Section 2 states the problem, refers
to existing approaches that are related to the proposed
method, and motivates our approach. Section 3 pro-
vides some backround knowledge concerning proba-
bilistic topic models and the LDA model. Section 4 de-
scribes the proposed method, while Section 5 presents
the evaluation method used to judge the performance
of the method. Evaluation results are presented in Sec-
tion 6, and finally, Section 7 concludes the paper by
pointing out the advantages and limitations of the pro-
posed method, sketching plans for future work.

2. Problem definition and related work

2.1. Problem definition

An ontology is a formal specification of a conceptu-
alization of a domain, comprising concepts, individu-
als and properties. Ontology learning tries to learn au-
tomatically ontology elements and integrate them in
an ontology, if one exists, in a consistent and coherent
way. In this paper, we concentrate on the tasks of con-
cept identification and taxonomy construction in the
absence of prior knowledge, such as a seed ontology.
Specifically, we deal with (a) the discovery of con-
cepts from a given collection of documents, and (b)
the hierarchical ordering of these concepts by means of
the subsumption relation. Moreover, since (a) no prior
knowledge is exploited and (b) only statistical and ma-

chine learning techniques are used, this paper aims to
answer the following questions:

1. Is it possible to discover the concepts that express
the content of documents in the corpus, indepen-
dently of the terms’ surface appearance?

2. Is it possible to form the ontology subsumption
hierarchy backbone, using only statistical infor-
mation concerning the discovered concepts?

3. Is it possible to devise a language-neutral ontol-
ogy learning method?

Towards the identification of concepts and the learn-
ing of subsumption relations many approaches have
been proposed. In the following subsection we de-
scribe the major ones that make use of linguistic, sta-
tistical and machine learning methods.

2.2. Concept identification

Starting with linguistic techniques for concept iden-
tification, the work in [23] uses pattern matching to
derive noun phrases that indicate possible concepts.
These approaches are based on matching regular ex-
pressions with Part-Of-Speech (POS) tags, in order to
mark the desired noun phrases that follow a specific
pattern. After tagging the texts, they extract units as
candidate terms which take the form ((A | N)+ |
((A | N)∗(NP)?)(A | N)∗)N , where A stands for ad-
jective and N for noun, and their frequency of appear-
ance is higher than a predefined threshold. The method
of Moldovan and Girju [26] follows similar principles.

In addition, the morphology of words can be ex-
ploited in order to identify domain-specific terms.
Small domain-specific units, e.g. morphemes or suf-
fices, can indicate terms related to the domain of inter-
est. Thus, the key idea is to identify useful character
n-grams or morphemes and use them to select poten-
tial terms from the texts. Efforts like [21] and [8] have
shown that the morphology of words can give impor-
tant clues about their term status.

The use of prior knowledge is also helpful in the task
of linguistic concept identification. When a word ap-
pears frequently together with a known term, they may
constitute a new “complex” term. Moreover, if a word
frequently appears together with some known terms in
some specific pattern, the word becomes part of the ter-
minology [9]. On this basis, the seed ontology provides
the list of known terms, which are the lexicalizations
of the concepts of the ontology.

Although linguistic approaches are widely adopted,
they require significant text pre-processing and are
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language-dependent. On the other hand, many statisti-
cal approaches to concept identification have also been
proposed.

The authors of [10] apply statistical analysis to Web
pages to identify words, which are then grouped into
clusters that are proposed to the knowledge engineer.
For this purpose, they make use of an existing ontol-
ogy, the vocabulary as well as the relations of which,
are exploited in order to construct a corpus by query-
ing the WWW via Google. In this case, the ontology
enrichment task is based on statistical information of
word usage in the corpus and on similarity measures
between concepts in the original ontology.

The authors in [2] extend an ontology with new con-
cepts, taking into account words that co-occur with
each of the existing concepts. The method requires
that there are several occurrences of the concepts to be
identified, so that there is enough contextual informa-
tion to generate topic signatures. Topic signatures are
usually sets of related words with associated weights.
The work reported in [1] follows similar research di-
rections.

More sophisticated schemes include the use of
TF/IDF weighting in a corpus of documents to con-
struct feature vectors for feeding a Latent Semantic In-
dexing (LSI) [11] process. Through this technique, la-
tent topics are revealed which are actually distributions
over the words of the term space of the corpus. The
work in [6] and [5] also uses the method of LSI to re-
trieve latent entities in very large textual collections, as
well as relationships between them. Probabilistic La-
tent Semantic Indexing (PLSI) has also been used in
the task of concept identification [22]. It extends LSI
assuming that each document is a probability distribu-
tion over topics and each topic is a probability distri-
bution over words.

While approaches based on term frequency assume
that the surface appearance of terms in documents
provides sufficient information for concept discovery,
more complex schemes, such as PLSI, suffer from
overfitting to the training corpus, involving a large
number of parameters that need to be estimated [4].

In this paper, in the phase of concept identification,
we aim to uncover latent topics in the corpus, em-
phasizing the generative process of documents. Fur-
thermore, these latent topics, which are represented as
probability distributions over terms, mediate knowl-
edge on the documents’ contents. This approach is
based on the assumption that the topics represent on-
tology concepts. Towards this target, we improve on
previous approaches aiming to avoid overfitting and

large sets of parameters, by using the Latent Dirichlet
Allocation model.

2.3. Subsumption hierarchy construction

Subsumption hierarchy construction deals with the
task of arranging the concepts identified in the previ-
ous step, in a hierarchy according to the subsumption
relations that hold between them. The actual goal in
this task is to identify the subsumption relations that
hold between the ontology concepts.

Linguistic approaches usually construct subsump-
tion hierarchies using lexico-syntactic heuristic pat-
terns. Hearst patterns [19] are the most widely used
and they are of the form:

– NP such as NP, NP, . . . , and NP
– such NP as NP, NP, . . . , or NP
– NP, NP, . . . , and other NP
– NP, especially NP, NP, . . . , and NP
– NP is a NP

Let as assume the phrase “There were several ve-
hicles, such as cars, bikes and trucks”. By applying
a Hearst pattern we conclude that “cars”, “bikes” and
“trucks” are “vehicles”. That is, the class or concept
“vehicle” subsumes the classes or concepts “cars”,
“bikes” and “trucks”, or one could say that “car” is-
a “vehicle”. However, since the is-a relation is some-
times confused with the instance-of relation, we reffer
to hierarchical relations among concepts as subsump-
tion or inclusion relations.

Hearst’s idea was successfully applied in [24], while
the authors in [27], based on Hearst patterns, defined
several heuristics, like NP find in NP such as LIST,
where LIST is a list of noun phrases, in order to con-
struct a taxonomy of concepts.

At the linguistic level still, one can assume that a
term A is a hyponym of a term B if A has more tokens
than B, all the tokens of B are present in A, and both
terms have the same head. Three provisions are needed
for this to hold [29]. First, if a term includes dashes
and brackets, then they should be ignored and the term
should be considered as if there were no dashes and
brackets. Second, a comparison of the lemmatized ver-
sions of the terms is needed. Third, the head of the term
is the rightmost non-symbol token (a word). These pro-
visions, though, make the approach specialized to the
English language.

Linguistic approaches typically suffer from low re-
call, especially the ones based on pattern matching.
This is due to the fact that the patterns do not occur
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frequently enough in texts. Thus, subsumption rela-
tions can be learned only if they are explicitly men-
tioned in the corpus. Furthermore, such techniques
seem to identify relations that hold mostly between
words, rather than between concepts.

Besides the linguistic approaches that mainly iden-
tify subsumption relations between concepts, there are
methods that deal at the same time with the task of con-
cept identification and taxonomy construction. Mov-
ing towards to such methods, mainly machine learn-
ing and statistical ones, an extension of PLSI, named
Hierarchical Probabilistic Latent Semantic Analysis
(HPLSA) has been used in [12], in order to acquire a
hierarchy of concepts, which are usually called topics
in such methods. Due to its strong relation to PLSI,
the drawbacks of PLSI mentioned in the previous sec-
tion are inherited by this method. Hierarchical Latent
Semantic Analysis (HLSA) has been applied in [28]
to introduce hierarchical dependencies among topics
by exploiting the word co-occurrences. This approach
actually computes relations among topics in terms of
words in the topics: those that appear in more than one
topic at a specific level are grouped together at a higher
level.

Finally, a hierarchical extension to LDA is presented
in [3], where a latent hierarchy of topics is inferred
from data. Although the branching factor at each level
of the hierarchy is automatically determined, each doc-
ument in the corpus is modeled as a path from the
root topic to a leaf. As a result, each topic subsumes
only one specific topic (leaf) and its abstractions, an
approach that seems less flexible than the original ap-
proach of LDA, in which each document is a mixture
over all the latent topics that are inferred.

Towards overcoming the problems of linguistic
techniques, and the surface appearance of words, on
which many statistical techniques rely, we follow a
purely probabilistic approach to subsumption relation
discovery. The proposed approach does not depend on
the language or the annotation of the corpus. Instead it
uses conditional independence tests on the latent topics
discovered iteratively, in order to identify subsumption
relations. Each document is modeled as a mixture over
all the specific topics (leaves), as well as over all their
abstractions at the previous level, etc. It must also be
pointed out that, given the latent topics, the proposed
method may compute more than one subsumption hi-
erarchies. This is an additional benefit in cases where
the domain cannot be modelled by a single hierarchy.

Fig. 1. The generative process: Documents are mixtures of topics.
Topics are probability distributions over words (puzzle pieces). The
probability of participation of a topic in a document is defined by the
mixture weights. (Inspired from [33].)

3. Background on Probabilistic Topic Models

Probabilistic Topic Models (PTMs) [33] are based
on the idea that documents are mixtures of topics,
where a topic can be thematic and is represented by
means of a probability distribution over words. PTMs
follow the bag-of-words assumption, i.e. that words are
independently and identically distributed in the texts.
Topic models are generative models for documents:
they specify a probabilistic procedure by which doc-
uments are generated. They are based on probabilis-
tic sampling rules that describe how documents are
generated as combinations of latent variables, i.e. the
topics. Figure 1 illustrates the generative process: top-
ics (clouds) are probability distributions over a prede-
fined vocabulary of words (puzzle pieces). According
to the probability that a topic participates to the con-
tent of each document, the process samples words from
the corresponding topic in order to generate the docu-
ments.

In this paper, we are not interested in the generative
process per se, but rather in the inverse process. Doc-
uments are known and words are observations towards
assessing the topics of documents, as combinations of
words. For this purpose, we use the LDA model de-
scribed below.

The probabilistic generative process that is used in
LDA states that topics are sampled repeatedly in each
document. The generative process assumes the exis-
tence of K topics, providing some dependence from
the surface appearance of terms. Specifically, given a
predefined number of topics K, for each document:

1. Choose N ∼ Poisson(ξ).
2. Choose θ ∼ Dirichlet(α).
3. For each of the N words wn:

– Choose a topic zn ∼ Multinomial(θ).
– Choose a word wn from p(wn | zn, β), a

multinomial probability distribution condi-
tioned on the topic zn.
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Fig. 2. The latent space formed by the LDA model for a vocabulary
of N = 3 words and a predefined number of K = 3 latent topics
(from [4]).

p(zn = i) stands for the probability that the ith topic
was sampled for the nth word and indicates which
topics are important, in the sense that they reflect the
document’s content for a particular document. p(wn |
zn = i) stands for the probability of the occurrence of
word wn given the topic i and indicates the probability
of word occurrence for each topic. Thus, within a doc-
ument, the probability distribution over words speci-
fied by the LDA model is given by Eq. (1).

p(wn) =
K∑

i=1

p(wn | zn = i)p(zn = i). (1)

The basic assumptions of this model comprise the
Poisson distribution that gives the length N of the doc-
uments, which is not critical in this process and thus,
it can be replaced by a more realistic document length,
and a Dirichlet prior on the multinomial distribution
of topics. The Dirichlet prior is used to simplify the
statistical inference, since it is the conjugate prior of
the multinomial distribution. In addition, the number
of topics K is assumed to be known and fixed. This
parameter specifies the dimensionality of the Dirichlet
distribution, and thus, the dimensionality of the topic
variable z.

The topics that this probabilistic model generates
form a latent space, where both documents and words
can be represented. Figure 2 depicts the latent space
for a vocabulary of N = 3 words and a predefined
number of K = 3 latent topics.

The outer triangle, which is the word simplex, is the
initial term space. Its corners correspond to the distri-

butions where one of the three words has probability
equal to one and the other two zero. The topics gener-
ated by LDA form a (N − 1)-dimensional simplex in-
side the initial space, which is the topic simplex. Thus,
each topic is a specific distribution over words. Its cor-
ners correspond to those topic distributions where one
of the three topics has probability equal to one and the
other two zero. The documents that the generative pro-
cess of this model creates, are placed inside the topic
simplex over the contour lines of the Dirichlet distribu-
tion. Thus, documents are represented as mixtures of
topics. The role of the Dirichlet parameter α is to de-
termine how dominant a topic is going to be in a docu-
ment. Low values of α will make one or two topics pre-
dominant in each document, whereas larger values will
give similar weight to more topics. Therefore, changes
to the parameter α lead to different placements of the
inner topic simplex inside the word simplex. Concern-
ing the number of topics (K), low values for K will
result to a small number of “generic” topics, whereas
larger values will result to a bigger number of more
“specific” topics.

To sum up, through the LDA approach, the whole
corpus is modeled as a Dirichlet parameter θ, governed
by a prior α. The dimensionality of θ is equal to the
number of topics that capture the knowledge of the do-
main covered by the text collection. The behavior of
the K topics is determined by α.

As already pointed, in our case, where the objective
is to discover concepts and order them in a subsump-
tion hierarchy, the documents are known, and the ob-
servations are the terms appearing in the documents.
So, we aim to infer the topics that generated the doc-
uments and then organize these topics hierarchically.
The proposed method uses the Markov Chain Monte
Carlo (MCMC) process of Gibbs sampling [17]. The
reader is referred to [16] for a detailed explanation of
this process.

4. The ontology learning method

4.1. Concept identification

As Fig. 3 illustrates, given a corpus of documents,
the method first extracts terms by removing the stop-
words from the texts. The extracted terms constitute
the term space for the application of the LDA model
described in Section 3. In the second step, feature vec-
tors are constructed based on the document frequency
of the terms in the documents. Next, the latent topics
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Fig. 3. The proposed method for ontology learning.

are generated as distributions over vocabulary terms
according to the documents in the corpus and the terms
observed in them. Finally, assuming that the topics
generated correspond to ontology concepts, we orga-
nize them in a subsumption hierarchy according to
their conditional independencies. In order to do so, we
assume that a topic cannot subsume only one other
topic, but it has to subsume at least two topics. At the
end of the section we argue that having a topic that
subsumes only one other topic leads to an incomplete
modelling of the domain.

Therefore, the steps followed by the proposed
method are as follows:

1. Term Extraction – From the initial corpus of
documents, treating each document as a bag of
words, we remove stop-words by creating a his-
togram of frequencies of the words that appear
in the documents. This histogram follows a Zip-
fian distribution. Therefore by removing the most
frequent words, we actually remove the majority
of the stop-words. This technique is performed
in order to maintain the language-independence
of the method. However, standard lists of stop-
words may also be used according to the lan-
guage of the texts. The remaining words consti-
tute the vocabulary and form the term space for
the application of the LDA.

2. Feature Vector Creation – This step creates a
Document – Term matrix of frequencies. Each
cell of this matrix records the frequency of each
term in each document of the corpus. This matrix
is used as input to the LDA for topic generation.

3. Topic Generation – Sets of topics are gener-
ated at this step by the iterative application of
the LDA for different values of the parameter L
(number of topics). Therefore this step results in
a multi-set of topics; each set being produced for
a specific value of L. Starting from one topic at
level l0, the method iterates and terminates when
L topic sets are produced. The topic set at each
level li is larger than that of li−1 by one topic.
A small topic set forces a small number of topics
to capture all the knowledge that the corpus con-
tains, making the topics all-inclusive, and thus
too generic in meaning. As the topic set increases
iteratively, the generated topics become more fo-
cused, capturing more detailed domain knowl-
edge. Thus, the method starts from “generic”
topics, iterates and converges to more “specific”
ones. In accordance to Fig. 2, at each iteration of
the LDA, a new latent space of topics is created
in the same term space. This is due to the fact
that the dimensionality of the Dirichlet variable
θ changes at each iteration, since the number of
topics changes. Therefore, while a simple appli-
cation of the LDA models the corpus as a unique
Dirichlet variable θ, now the corpus is modeled
through L Dirichlet variables, each for each level
li, with different dimensionalities.

4.2. Taxonomy construction

Assuming that each of the computed topics corre-
sponds to an ontology concept, the last step (Fig. 3)
constructs the subsumption hierarchy of the discovered
concepts. The concepts are arranged in a hierarchy ac-
cording to their conditional independencies, given the
topics at higher level. The intuition behind this is as
follows: since the generated topics are random vari-
ables, e.g. A and B at level li, by measuring their mu-
tual information we obtain an estimate of their mutual
dependence. Therefore, given a third variable C, of the
previous level, li−1, that reduces the mutual informa-
tion of topics A and B, C contains a large part of the
common information of A and B, i.e., C is a broader
topic than the others. Topic C belongs in a topic set that
contains broader in meaning topics than the ones in the
set of A and B. In this case we may safely assume that
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Fig. 4. The taxonomy construction process. Topics A and B have
been generated in level li, while topic C in the previous level li−1.
Topics A and B are mutually dependent given no prior knowledge.
However, given topic C, the become conditionally independent (b).
The broader topic C captures the mutual information of A and B,
and thus the corresponding subsumption relations are added to the
ontology (c). Topic C is the topic of level li−1 that provides maxi-
mum independence between topics A and B. The process continues
for other topic pairs in order to retrieve other subsumption relations.

C subsumes both A and B, and the corresponding re-
lations are added to the ontology. Figure 4 depicts this
process.

According to the iterative procedure of step 3, sets
of “general” topics are being generated before the gen-
eration of sets of “specific” topics. In order to calcu-
late the conditional independencies between topics, we
take advantage of the document-topic matrix generated

Algorithm 1 Taxonomy construction using condi-
tional independence tests.

for every topic set Si do
for every topic ti in topic set Si do

for every pair of topics (tj , tk) in topic set Si+1

do
if (conditional independence of tj and tk
given ti is the maximum among other pairs)
AND (satisfies a threshold th) then

ti is parent of tj and tk
end if

end for
end for

end for

by the LDA model. Each entry of this matrix expresses
the probability of a specific topic to participate in a
specific document i.e., this is the probability of a topic,
given a document. The process that generates the sub-
sumption hierarchy is described by Algorithm 1.

Assuming that the topic sets have been generated
through the iterative application of LDA, the algorithm
starts from the first topic set that contains the most
“general” topic and continues deeper in the hierarchy
to larger topic sets. Given the set of topics at level li+1,
the aim is to detect the pair of topics (A,B) whose in-
dependence is the maximum among the existing pairs
of topics in li+1, given a topic C in li.

The conditional independence between two topics A
and B, given a topic C is tested according to Eq. (2),
where th is a threshold, having a very small value near
zero (such as 10−7) in order to avoid small rounding
errors.

|P (A ∩ B | C) − P (A | C)P (B | C)| � th (2)

In order to compute Eq. (2), we need the probability
of a topic A to participate in the corpus D, given that a
topic C participates in the corpus. This is provided by
Eq. (3).

P (A | C) =
P (A ∩ C)

P (C)
. (3)

The probability of a topic C to participate in the corpus
is given by the Eq. (4).

P (C) =
|D|∑
i=1

P (C | di)P (di), (4)
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where |D| is the number of documents in the corpus
and

P (di) =
1
|D| (5)

is the probability of a document in the corpus.
Accordingly, the joint probability of topics A and B

to participate in the corpus, given that a topic C partic-
ipates in the corpus, is given by Eq. (6).

P (A ∩ B | C) =
P (A ∩ B ∩ C)

P (C)
. (6)

Using the above equations, the mutual information be-
tween pairs of topics can be measured by Eq. (7).

I(A ∩ B) =
∑
a∈A

∑
b∈B

p(a, b)log
p(a, b)

p(a)p(b)
. (7)

By maximizing the independence of two topics given
a third one, we minimize their corresponding mutual
information:

I(A ∩ B | C)

=
∑

a,b∈A,B

∑
c∈C

p(a, b | c)log
p(a, b | c)

p(a | c)p(b | c)
, (8)

since Eq. (9) holds due to Eq. (2).

log
p(a, b | c)

p(a | c)p(b | c)
= 0 (9)

Ideally, one could set the threshold parameter th to
zero and use the Eq. (10) to infer the conditional inde-
pendencies between the topics. However, in such cases
we assume that there are no rounding or other errors
due to double precision concerning the computer num-
bering format.

|P (A ∩ B | C) − P (A | C)P (B | C)| = 0 (10)

Therefore, making such assumptions, Eq. (9) yields:

log
p(a, b | c)

p(a | c)p(b | c)
= log1 = 0. (11)

Since the algorithm searches for conditional inde-
pendencies between pairs of topics in a topic set, it
is not able to infer subsumption relations in the case
where a topic subsumes only one other topic. However,

this case of having a topic subsuming only one other
topic would actually lead to an incomplete modeling
of the domain. We would expect that since a concept
C denotes a set of individuals, then a subsumee A of
this concept would denote a subset of these individ-
uals. Therefore, we would expect the existence of at
least one more concept B that would denote individuals
of C, that are not denoted by A.

Finally, although the maximum number of topics per
level L affects the number of iterations of the algo-
rithm, it must be pointed that it does not affect the
depth of the produced hierarchy, leaving this choice to
the algorithm. The depth of the hierarchy depends on
the inclusion relations that are discovered between top-
ics in different layers. Therefore, the number of topics
only provides an upper limit to the depth of the learned
ontology. For instance, one could set L = 10, forcing
the algorithm to iterate 10 times in order to produce 10
topic sets, and thus 10 levels of the hierarchy. However,
the algorithm may not infer any subsumption relation
between the last two or three levels. Thus, the depth of
the produced ontology would be 8 or 9, although we
assumed that it should be 10.

5. Evaluation method

The corpora that we used are accompanied by the
corresponding gold ontologies and we are interested in
treating these ontologies as gold standards. Therefore,
our evaluation method comprises the transformation
of a gold ontology to a distributional representation,
against which to evaluate the learned ontologies. In or-
der to do that, we need to represent the gold standard
ontology concepts in the same way as the learned top-
ics, i.e. as multinomial probability distributions over
the term space of the documents. Finally, a one-to-
one matching of the gold concepts to the topics gen-
erated by the proposed method is performed to assess
the quality of the learned ontology.

Concerning the transformation of the gold standard
ontology in order to represent each concept as a dis-
tribution over terms, we measure the frequency of the
terms that appear in the “context” of each concept. In
both corpora that we used, the concept instances are
annotated in the texts, providing direct population of
the concepts in the golden standard ontologies with
their instances. Therefore, as Fig. 5 illustrates, we per-
form the following transformation procedure:
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Fig. 5. The transformation of the gold standard ontology concepts
into probability distributions. Concepts are first populated in order
to locate their contexts. Then, vectors of term frequencies are cre-
ated based on the context of each concept. Finally, normalization and
smoothing is performed to transform these vectors into probability
distributions.

1. Populate Concepts – By searching the document
space, we retrieve all the concept instances that
appear and we directly populate the gold ontol-
ogy with instances.

2. Map Concepts to Documents – After the popula-
tion of each concept with its instances, it is possi-
ble to associate each document to the concept(s)
that it refers to. This is performed by counting the
concept instances that appear in each document.

3. Create Frequency Vectors – Having the mapping
between concepts and documents we create fea-
ture vectors based on the document in which each
concept appears. These vectors have the form of
a two-dimensional matrix that records the fre-
quency of each term in the context of each con-
cept. That is, we have a “concept – term” ma-
trix that represents each concept as a distribution
over the term space of the text collection. The
context of each concept in this case is the whole
document that is associated with this concept.

4. Normalization – For each concept, the frequen-
cies are normalized giving a probability distribu-
tion over the term space. In addition, a smooth-
ing of the probability distributions is performed
to eliminate possible zero values of unseen terms,
using Eq. (12), where N is the size of the term
space.

P̂L(wi)
.=

P̂ (wi) + 1
N + 1

,∀i. (12)

Using the new representation of the golden con-
cepts, a one-to-one matching to the generated topics
can be performed. Since both representations are based
on probability distributions, we used the symmetric
KL divergence (13) for matching.

DKL =
1
2

[∑
i

P (wi)log
P (wi)
Q(wi)

+
∑

i

Q(wi)log
Q(wi)
P (wi)

]
. (13)

For a golden concept p and a generated topic q, P (·)
and Q(·) are the corresponding probability distribu-
tions. Small values of KL divergence indicate high
similarity between a concept p and a topic q.

Therefore, a topic is matched to a concept if their
corresponding distributions are the “closest” compared
to all the other and their KL divergence is below a
fixed threshold thKL. The threshold thKL affects the
matching of topics to gold concepts in the sense that
strict choices very close to zero cause few topics to
be matched with gold concepts and loose choices lead
to more matchings. Since small values of KL diver-
gence indicate high similarity between a topic and a
concept, ideally, a value equal to zero would indicate a
perfect match. However, such a situation is unlikely to
happen, since the topics are produced by the applica-
tion of LDA and the gold concepts are transformed to
distribution by the transformation method of this sec-
tion. Therefore, we expect that we cannot have iden-
tical topics to concepts. Thus, we assume that values
different from zero, but rather strict near 0.1 are appro-
priate for out evaluation method.

6. Experimental results

We have evaluated the proposed method, using the
method of Section 5, on two corpora:
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Table 1

Information regarding the datasets: the number of documents of each dataset, the number of con-
cepts in the gold ontologies, the number of instances and relations in the gold ontologies, as well
as the average number of instances per concept

Corpus Documents Gold concepts Instances Relations Avg. instances/concept

Genia 2000 43 14000 41 300

LP 300 60 600 60 5

1. The Genia corpus, which contains 2000 docu-
ments from the domain of molecular biology and
is accompanied by the Genia ontology. The on-
tology comprises 43 concepts connected by 41
subsumption relations, which is the only type of
relation among the concepts. The Genia corpus
contains about 14.000 concept instances in 2000
documents. In particular, the average number of
instances per concept is about 300. These re-
sources are available from the Genia project.1

2. The Lonely Planet corpus, which is a collection
of about 300 Web pages from the Lonely Planet
Web site,2 providing touristic information. The
corpus contains about 600 concept instances in
these 300 Web pages, while the average number
of instances per concept is about 5. The corre-
sponding ontology contains 60 concepts and 60
subsumption relations among them, which is the
only type of relation among them.

The corresponding ontologies of both corpora served
as gold standards for evaluation. Table 1 summarizes
the above information.

The computation of the latent topics was done with a
stand-alone Java application, making use of the Gibbs
sampling approximation method. The parameters in-
volved are the maximum number of topics (L) and the
threshold thKL introduced in our evaluation method in
order to match learned topics to golden concepts. Since
Algorithm 1 performs an exhaustive search to find the
best solution, its complexity is O(L3). Although there
is still room for making this algorithm more efficient,
the implemented algorithm needed only 4 minutes to
compute the hierarchies of our experiments on a stan-
dard Pentium 3.0 GHz PC.

We have experimented in both corpora for various
values of the parameter L, setting strict values near
zero to the parameter thKL that affects the matching of
the generated topics and the golden concepts, during
evaluation. The method was evaluated in terms of Pre-

1The Genia project, http://www.tsujii.is.s.u-tokyo.ac.jp/GENIA.
2The Lonely Planet travel advise and information,

http://www.lonelyplanet.com.

cision and Recall. Regarding the concept identification
task, we define Precision as the ratio of the number of
concepts correctly detected to the total number of con-
cepts detected, and Recall as the ratio of the number
of concepts correctly detected to the number of con-
cepts in the gold standard. Accordingly, for the sub-
sumption hierarchy construction task, Precision is the
ratio of the number of subsumption relations correctly
detected to the total number of subsumption relations
detected, and Recall is the ratio of the number of sub-
sumption relations correctly detected to the number of
subsumption relations in the gold standard.

The F-measure is a combined metric the reflects the
harmonic mean between precision and recall, and is
defined as follows:

Fmeasure =
2 ∗ precision ∗ recall
precision + recall

. (14)

The threshold thKL affects the results in the sense
that strict choices very close to zero cause few topics
to be matched with golden concepts and loose choices
lead to more matchings. Therefore, we evaluated the
proposed method choosing a rather strict value for the
threshold thKL. Figure 6 depicts how the F-measure
is affected for two different values of threshold thKL,
concerning both concept identification and taxonomy
construction in the case of the Genia corpus. In all di-
agrams, the X-axis ranges according to the number of
topics inferred by the proposed method.

Accordingly, Fig. 7 depicts how the F-measure is af-
fected for two different values of threshold thKL, con-
cerning both concept identification and taxonomy con-
struction in the case of the Lonely Planet corpus.

For small values of thKL, the results are worse than
for larger ones. Actually, by setting such small values,
we require the learning method to infer topic distribu-
tions that are almost identical to the ones that corre-
spond to the gold standard ontology. On the other hand,
since these distributions are over the whole term space
of the dataset, we require that significant words in the
topic distributions have analogous significance in the
gold distributions.
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Fig. 6. F-measure for Concept Identification and Taxonomy Con-
struction tasks for different values of the threshold thKL for various
numbers of topics in the case of the Genia corpus.

The fact that the results for both tasks of concept
identification and taxonomy construction behave sim-
ilarly is due to the high relation between these two
tasks. Missing one concept, actually indicates a pos-
sible miss of the corresponding subsumption relation.
Since we assume that a correctly retrieved subsump-
tion relation is this between two correctly identified
concepts, a failure on the task of concept identification
also affects the task of taxonomy construction.

Regarding the evaluation of both tasks we chose a
rather low threshold value of thKL equal to 0.2 for
both corpora. Figure 8 depicts in more detail the re-
sults obtained on the Genia corpus for the task of con-
cept identification, while Fig. 9 depicts the results for
the task of subsumption hierarchy construction on the
same corpus. In the latter Figure, the number of the
correct identified subsumption relations for small hier-
archies of 3 or 6 topics is the same, which explains the
non-monotonic behavior of precision between these
two points.

Fig. 7. F-measure for Concept Identification and Taxonomy Con-
struction tasks for different values of the threshold thKL for various
numbers of topics in the case of the Lonely Planet corpus.

Fig. 8. Precision, Recall and F-measure for the task of concept iden-
tification for various numbers of topics in the case of the Genia cor-
pus.

In the case of Genia, by retrieving 34 topics, the
proposed method managed to create an ontology very
close to the gold standard. Specifically, for this num-
ber of topics and for the task of concept identification,
the precision is equal to 0.94, while the recall remains
also high, equal to 0.76, despite the fact that the golden
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Fig. 9. Precision, Recall and F-measure for the task of subsumption
hierarchy construction for various numbers of topics in the case of
the Genia corpus.

ontology contains more concepts. Increasing L further,
does not seem to improve the performance, since recall
remains the same, while precision falls. This is due to
the inability of the method to identify some very spe-
cific topics. Particularly, there are some very specific
concepts subsumed by RNA and DNA that it is very
hard to be distinguished by the learning method. We
believe that these concepts are not concrete enough to
be distinguished, and this is why the learning method
clusters all their instances in one or two topics, forcing
this way the evaluation method to penalize more the
produced ontology.

In the task of taxonomy construction, precision is
equal to 0.93, while recall is 0.75 for the same num-
ber of topics. For these values of precision and recall,
Fig. 10 depicts a part of the learned taxonomy in com-
parison to the gold standard.

Concerning the Lonely Planet corpus, Fig. 11 pro-
vides quantitative results for the task of concept iden-
tification, while Fig. 12 presents the evaluation results
for the task of subsumption hierarchy construction. Fi-
nally, Fig. 13 depicts a part of the learned taxonomy in
comparison to the gold standard.

In the case of the Lonely Planet corpus the best re-
sults were achieved for 55 topics, which is in accor-
dance to the fact that the gold ontology is larger than
the one for Genia. For this number of topics and for the
task of concept identification precision was equal to
0.62 and recall 0.36. Accordingly, for the task of tax-
onomy construction, the best quantitative results were
achieved also for 55 topics and precision was 0.53,
while recall was 0.35.

Fig. 10. Parts of the produced ontology and the GENIA ontology. In
clouds: important terms that participate in the corresponding topics,
which are also concept instances of the GENIA ontology.

Fig. 11. Precision, Recall and F-measure for the task of concept iden-
tification for various numbers of topics in the case of the Lonely
Planet corpus.

While in the case of the Genia corpus the results
were very close to the golden standard, in the case of
Lonely Planet, we observed that the learned ontology
differs substantially from the gold standard. This result
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Fig. 12. Precision, Recall and F-measure for the task of subsumption
hierarchy construction for various numbers of topics in the case of
the Lonely Planet corpus.

is attributed to the fact that in the case of the Lonely
Planet corpus, half of the golden concepts had a single
instance and generally most of the concepts were in-
sufficiently instantiated in the texts. Therefore, the dif-
ficulty of the model to discover some concepts explains
the lower results compared to the Genia corpus. Al-
though the concept instances that are annotated in the
texts are not exploited directly by the learning method,
having concepts that are instantiated sufficiently in the
texts surely helps LDA to discover a more accurate
model of the domain knowledge. For instance, spatial
concepts, such as “Area”, “City”, “Country”, “Island”,
and “Region”, are among the ones that are instantiated
frequently enough in texts, since the corpus deals with
the tourism domain, and are among the ones that are
correctly defined by the learning method. On the other
hand, concepts like “Program”, “Castle”, and “Free-
Way” were insufficiently instantiated and it was hard
to be discovered.

Moreover, the fact that the model of LDA ignores
topic correlations, in the sense that it is unable to
model them due to the nature of its generative pro-
cess, assuming that the produced topics are indepen-
dent from each other, where they are not, introduces an
additional difficulty to the discovery of a large number
of fine-grained, tightly-coherent topics [36].

In addition, the choice of thKL parameter for the
evaluation task plays an important role on how we in-
terpret the quantitative evaluation results. For instance,
in Fig. 10, the inferred topic “Inorganic” among its
most probable words contains all the instances of the
corresponding gold concept. Setting a low value in

Fig. 13. Parts of the produced ontology and the Lonely Planet ontol-
ogy. In clouds: important terms that participate in the corresponding
topics, which are also concept instances of the Lonely Planet ontol-
ogy.

thKL leads to a heavy penalty since the evaluation
takes into account all the words that participate in the
probability distribution of this topic, and ignores the
fact that the words that best describe this topic are in
fact the correct instances of the corresponding gold
concept. Therefore, in this evaluation scenario we con-
clude that values near 0.2 reflect the performance of
the proposed method while at the same time the eval-
uation is quite strict. Finally, in the task of ontology
learning is it necessary to provide qualitative results
along with the quantitative ones in order to draw con-
clusions about the learning method.

Concluding this section, obviously a crucial param-
eter of the proposed method is the number of top-
ics. Although the specific approach actually requires
an upper bound to the the number of topics, since
through the conditional independence tests discards
topics that are not connected, it is important to be
able to set rational values to this parameter a priori.
In general, through this parameter, one sets the level
of “specificity” of the learned hierarchy. However, in
cases where no gold ontology is provided, finding the
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optimal number of concepts in respect to the datasets
requires cross-validation or the incorporation of meth-
ods, such as Hierarchical Dirichlet Distributions [34],
that provide a prior over the number of topics.

Finally, the evaluation of ontologies when these on-
tologies are produced by an automated learning proce-
dure is an open field of research. The research com-
munity has not established a standard methodology for
automating ontology evaluation. Especially when the
evaluation is done against a gold standard ontology,
it seems that we cannot judge objectively the result,
since the gold standard has been created by humans in
a possibly subjective and biased manner. Particularly,
in cases where the ontology has been learned from
scratch and it is not the result of enrichment of a seed
ontology, the evaluation is even more difficult.

7. Conclusions

In this paper we have proposed a fully-automated
method for learning ontologies. The proposed method
uses the Latent Dirichlet Allocation model for the dis-
covery of topics that represent ontology concepts. Ac-
cording to this method, topics are represented as multi-
nomial distributions over document terms. A method
that performs conditional independence tests among
topics arranges concepts in a subsumption hierarchy.

The major advantage of this approach is its sta-
tistical nature, which is based on probabilistic topic
models. This allows the computation of topics in a
language-neutral way, revealing those topics that ex-
press the contents of documents, and thus, the concepts
that express the knowledge that documents mediate.
This makes the method very generic, tackling at the
same time both problems of concept identification and
hierarchy construction.

In addition, a method for evaluating learned ontolo-
gies was presented and was used to obtain experimen-
tal results on the Genia and Lonely Planet ontologies
and the associated corpora. The results that we ob-
tained were very encouraging showing that the pro-
posed method was able to reconstruct large parts of
the golden ontologies only from the statistical analysis
of the corpora. One weakness of the method that was
identified in the experiments was the difficulty of dis-
covering some very specific topics, especially in cases
where they are not instantiated sufficiently in the texts.

Further work includes the improvement of our eval-
uation method towards semantic mapping [32] be-
tween the learned and the gold ontology, as well as fur-

ther experimentation with more data sets and other (ap-
proximation) methods for inferring the latent topics.
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