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ABSTRACT
Text classification constitutes a popular task in Web re-
search with various applications that range from spam fil-
tering to sentiment analysis. To address it, patterns of co-
occurring words or characters are typically extracted from
the textual content of Web documents. However, not all
documents are of the same quality; for example, the curated
content of news articles usually entails lower levels of noise
than the user-generated content of the blog posts and the
other Social Media.

In this paper, we provide some insight and a prelimi-
nary study on a tripartite categorization of Web documents,
based on inherent document characteristics. We claim and
support that each category calls for different classification
settings with respect to the representation model. We verify
this claim experimentally, by showing that topic classifica-
tion on these different document types offers very different
results per type. In addition, we consider a novel approach
that improves the performance of topic classification across
all types of Web documents: namely the n-gram graphs.
This model goes beyond the established bag-of-words one,
representing each document as a graph. Individual graphs
can be combined into a class graph and graph similarities
are then employed to position and classify documents into
the vector space. Accuracy is increased due to the contex-
tual information that is encapsulated in the edges of the
n-gram graphs; efficiency, on the other hand, is boosted by
reducing the feature space to a limited set of dimensions
that depend on the number of classes, rather than the size
of the vocabulary. Our experimental study over three large-
scale, real-world data sets validates the higher performance
of n-gram graphs in all three domains of Web documents.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis
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1. INTRODUCTION
Text classification (TC), also known as text categoriza-

tion, is the task of automatically detecting one or more
predefined categories that are relevant to a specific docu-
ment [30, 31]. This process is typically carried out with the
help of supervised machine learning techniques; a classifi-
cation algorithm is trained over a corpus of labeled docu-
ments in order to capture the most distinguishing category
patterns that will be used to classify the new, unlabeled in-
stances. TC constitutes a popular research topic, due to its
applications in all kinds of Web documents: filtering spam
out of e-mails [22], categorizing Web pages hierarchically [7]
and analyzing the sentiment of Social Media content [27].
Therefore, its performance is critical for a wide range of
tasks on the Web.

At the core of TC methods lies the representation model
for (Web) documents, which defines the features that form
the basis for applying classification techniques. Two are the
dominant models that are typically employed in this con-
text: the term vector and the n-grams model, collectively
called bag-of-tokens models [20, 30]. The former represents
documents - and categories - as a bag of (frequent) words,
and the latter as a bag of (frequent) character or word se-
quences. Basically, they associate individual documents as
well as classes with frequent, discriminative tokens or char-
acters and categorization is based on the similarity between
them.

The performance of these models depends heavily on the
inherent characteristics of the document collection at hand.
In fact, their effectiveness is degraded by semantically in-
correct (or incomprehensible) phrases and by spelling, syn-
tactical and grammatical mistakes, as these characteristics
introduce noise to the information conveyed by a document.
However, not all types of documents convey the same levels
of noise. In the case of Web pages like news article, noise
is typically very low, guaranteeing high classification accu-
racy. In contrast, the controversial, user-generated content
of Web 2.0 and Social Media (e.g., messages on Twitter1

1http://twitter.com



and comments on Youtube2 videos) involves many intrica-
cies that affect not only the accuracy but also the efficiency
of TC [1]. More specifically, it poses the following serious
challenges to the functionality of traditional representation
models [11, 13, 24]:

(C1) Multilinguality. Most representation models are lan-
guage specific: to ensure high performance, they fine-
tune their functionality to the language at hand. This
is typically done with pre-processing techniques, such
as lemmatization, stemming and word sense disam-
biguation with the help of dictionaries (e.g., Word-
Net3). Social Media posts can be in any language,
but they typically lack any metadata that denotes it.

(C2) Sparsity. Social Media content solely comprises free-
form text that is rather short in length, especially
when compared to traditional Web documents, like
Web pages. Due to size limitations, individual mes-
sages typically consist of a few words, thus involving
little extra information that can be used as evidence
for identifying the corresponding category.

(C3) Noise. Social Media posts are particularly noisy, due
to their casual, real-time nature and their minimal
curation. For example, users frequently participate
in chats, posting their messages as quickly as possi-
ble, without verifying their grammatical or spelling
correctness; incomprehensible messages can be simply
corrected by a subsequent post.

(C4) Evolving, non-standard vocabulary. A large part
of the activity in Social Media pertains to informal
communication between friends, who typically employ
a casual “communication protocol” (e.g., slang words
and dialects) [8]. The limited size of their messages
also urges them to shorten words into neologisms that
bear little similarities to the original ones (e.g., “gr8”
instead of “great”).

In this paper, we start by providing a preliminary study
of the endogenous characteristics of Web documents with
respect to four dimensions. Based on it, we introduce three
main types of Web Documents: the curated, the semi-curated
and the raw ones. We claim and support that the selected
document types cause variation in the performance of text
classification systems, not only in terms of effectiveness, but
also of efficiency. We provide empirical evidence for our
claim by examining three large-scale, real-world data sets
— one for each document type.

Our experimental study also highlights the inadequacy of
the established representation models in handling the de-
manding content of Social Media. To deal with them, we
apply a novel, efficient and language-neutral representation
method that is robust to noise: the n-gram graphs. It goes
beyond the plain bag-of-tokens models by representing in-
dividual documents and entire categories as graphs: their
nodes correspond to specific n-grams, with their weighted
edges denoting how close the adjacent n-grams are found on
average. In this way, it adds contextual information to the
n-grams model, thus achieving higher accuracy. It also im-
proves the time efficiency of learning, by addressing success-
fully the problem of the “dimensionality curse”: documents

2http://www.youtube.com
3http://wordnet.princeton.edu

are classified according to a limited set of graph similarity
metrics, with the overall number of features depending on
the number of classes, instead of the vocabulary size. We
compare n-gram graphs with the established representation
models over the three real-world data sets of our experi-
mental study. The outcomes demonstrate the significantly
higher performance of n-gram graphs, not just for Social
Media content, but across all types of Web documents.

On the whole, the main contributions of this paper are
the following:

1. We categorize Web documents into three main types
on the basis of their endogenous information. We an-
alyze their inherent characteristics and demonstrate
empirically that the type of a document affects the
performance of TC, especially for the traditional rep-
resentation models (i.e., bag-of-tokens).

2. We explain how the n-gram graphs can be employed
as a representation model for TC and elaborate on its
advantages over the existing models with respect to
both accuracy and time efficiency.

3. We conduct an analytical experimental study with three
large-scale, real-world data sets, one for each type of
Web documents. Its outcomes demonstrate that the
representation models behave differently in each case,
with the n-gram graphs offering top performance across
all types.

The rest of the paper is structured as follows: in Section 2,
we formally define the problem we study and, in Section 3,
we analyze the n-gram graphs model, comparing it with the
traditional, bag-of-tokens ones. Section 4 defines the three
types of Web documents, while Section 5 presents our exper-
imental evaluation. In Section 6, we elaborate on existing
work, and we conclude the paper in Section 7, along with
directions for future work.

2. PROBLEM DEFINITION
Text classification has been extensively studied over the

years, either as a stand-alone research domain [30], or as
part of the broader field of text mining [3]. Related liter-
ature covers two main sub-problems: the single-label and
the multi-label TC ; the former involves disjoint categories
(i.e., each document is assigned to a single class), whereas
the latter allows for overlapping categories, associating each
document with a multitude of classes. Both flavors of TC
have evolved to cover a variety of different classification set-
tings, ranging from document categorization [20] to genre
and author classification [33] and spam detection [22].

In the following, we exclusively consider the single-label
version of TC, since it is more general than multi-label TC:
the latter can be split into several binary (i.e., single-label)
classification problems, but the contrary is not possible [30].
Thus, any method that successfully tackles the former, is
expected to exhibit a high performance for the latter, as
well. In addition, most literature revolves around single-
label classification, since it lies at the core of the main TC
applications. A prominent example is text filtering (i.e.,
the process of distinguishing documents into relevant and
irrelevant ones), with spam filtering probably constituting
its most popular instantiation [30].

Among the applications of TC, we consider topic classi-
fication as our use case for examining the qualitative and



quantitative differences between our document representa-
tion models. This is actually the task of categorizing a given
set of documents into thematic categories and is crucial in
many applications of the Web, ranging from news services
to blogs and Social Media [24].

More formally, the problem we are tackling in this work
is defined as follows [30]:

Definition 1. Given a corpus of documents D, a set of
topics T , and a set Dtr ⊂ D of training pairs Dtr = {<
di, ti >, di ∈ D, ti ∈ T }, we seek a function f : D → T , that
minimizes the size |E| of the set of false pairs (i.e., errors):
E = {< di, ti >: di ∈ D, f(di) 6= ti}.

Given that we only have a subset of the full corpus as
a training set, we may fail to find the optimal function f ,
and we are rather looking for the best approximation to it.
In this context, we additionally consider the following ques-
tions with respect to topic classification: What is a good rep-
resentation of Web documents? How can we use this good
representation in conjunction with existing machine learn-
ing techniques? Can we develop a representation model that
faces the computational and sparsity challenge of the user-
generated content that is available on the Web? Is the accu-
racy and the speed of classification the same across different
quality types of documents (e.g., the curated content of news
articles and the noisy content of Social Media)? The out-
comes of our study are expected to be directly applicable to
other cases of text classification, as well.

Note that the above definition exclusively relies on endoge-
nous (i.e., content-based) information, assuming that the in-
dividual input documents solely consist of their textual con-
tent. Thus, it disregards any exogenous information, such
as related Web resources and special-purpose metadata like
publication date, which are often introduced in TC to en-
hance its performance. The reason is that such information
may involve high extraction cost and, most importantly, it
constitutes an application-dependent parameter [30]. Given
that we do not aim at optimizing the performance of a spe-
cific application, we do not consider such information in our
analysis. Instead, our goal is to examine the effect of the
aforementioned challenges - C1 to C4 - in the performance
of document representation models, identifying the one that
adds more value to the process of capturing textual patterns.

3. DOCUMENT REPRESENTATION
The representation models for topic classification can be

classified in two broad categories: those based exclusively
on the endogenous information of the given corpus (i.e.,
content-based models), and those exploiting additional, ex-
ternal information in order to acquire more contextual in-
formation (i.e., context-aware models). As explained above,
the latter are application-dependent and lie out of the scope
of this work. Thus, in the following, we exclusively consider
content-based representation models4. We overview the tra-
ditional, bag-of-tokens representations and then introduce
the n-gram graphs as a richer alternative. A qualitative
analysis of their advantages and disadvantages follows, high-
lighting the characteristics of n-gram graphs that account for
their potential.

4It is worth noting at this point that contextual informa-
tion typically come in the form of text, and content-based
representation models are typically applied on them, as well.

3.1 Term Vector Model
This method constitutes the dominant Information Re-

trieval technique for detecting the relevant documents to a
keyword query [26]. In the context of TC, it is employed as
follows: given a collection of documents D, it aggregates the
set of distinct terms (i.e., words) W that are contained in
it. Each document di ∈ D is then represented as a vector
vdi = (v1, v2, . . . , v|W|) of size |W| with its j-th dimension
vj quantifying the information that the j-th term wj ∈ W
conveys for di. The same representation may apply to topics
(i.e., categories), as well: their vectors comprise the terms
that have been aggregated from the documents they entail5.

The term information in each dimension can come in any
of the following forms: (i) a binary value indicating the exis-
tence (or absence) of a term in the corresponding document,
(ii) an integer value indicating the number of occurrences
of a term in a document (i.e., Term Frequency), and (iii)
a Term Frequency-Inverse Document Frequency (TF-IDF)
value (cf. [29]). The last alternative takes into account both
the number of occurrences of a term in a document and
its overall frequency in the entire corpus in order to reduce
the impact of particularly common words (i.e., stop words).
This typically results in higher performance, which explains
why the TF-IDF weights are usually preferred over the other
two choices. In the following, we consider only this variation
of the term vector model.

3.2 N-Grams Model
The model comes in two forms: the character n-grams

model, which relies on sequences of distinctive, frequent let-
ters, and the word n-grams model, which relies on sequences
of distinctive, frequent words. The former outperform the
latter in several application areas, such as spam filtering
[21], authorship attribution [9] and utterance recognition
[35]. Given also that in the settings we are considering it
is usually difficult to identify words or even tokens6, we ex-
clusively consider character n-grams in the following.

The set of character n-grams of a word or sentence com-
prises all substrings of length n of the original text. A doc-
ument di is, thus, represented by a vector whose j − th di-
mension encapsulates the information conveyed by the j−th
n-gram for di. Unlike the term vector model, the frequency
of an n-gram is commonly used to quantify this information.
Similarly, a topic ti can be modeled as a vector that com-
prises the aggregate frequency of the n-grams contained in
its documents (or the corresponding centroid). Typical val-
ues for n are 2 (bigrams), 3 (trigrams) and 4 (four-grams).
For example, the phrase “home phone” consists of the fol-
lowing trigrams: {hom, ome, me , ph, pho, hon, one}.

3.3 N-Gram Graphs Model
The n-gram graphs model was first used in [15] as a sum-

mary evaluation method. The rationale behind it is the idea
that the bag model of character n-grams disregards the or-
der of characters’ appearance in the original text, thus miss-
ing valuable information. As a result, words or documents

5Note that an alternative is to extract the centroid of the
term vectors of individual documents to form a class vector.
6Tokenization is a rather naive approach for most (western)
languages, as tokens are typically delimited by whitespace.
This does not hold, however, for such languages as Chinese,
where multiple words can be concatenated in a single token
that actually corresponds to a sentence.



Figure 1: Tri-gram graph of “home phone” string.

with different character sequences end up having identical
or highly similar representations. For instance, the words
“wiki” and “kiwi” have the same bigrams representation, al-
though their meaning is totally different.

To overcome this problem, the n-gram graphs model asso-
ciates neighboring pairs of n-grams with edges that denote
their frequency of co-occurrence. An exemplary tri-gram
graph, derived from the phrase “home phone”, is illustrated
in Figure 1. Apparently, it conveys more information than
the trigrams representation of the example in Section 3.2.

More formally, an n-gram graph is defined as follows [15]:

Definition 2 (N-Gram graph). An n-gram graph is
an undirected graph G = {V G, EG,W}, where V G is the set
of vertices that are labeled by the corresponding n-grams, EG

is the set of edges that are labeled by the concatenation of the
labels of the adjacent vertices (in alphabetic order), and W
is a function that assigns a weight to every edge.

An n-gram graph is characterized by three parameters [15]:
(i) the minimum n-gram rank Lmin, (ii) the maximum n-
gram rank LMAX, and (ii) the maximum neighborhood dis-
tance Dwin [15]. Very low values of Lmin and LMAX (e.g.,
1 or 2) are related to the alphabet and syllables of a lan-
guage (possible combinations of characters). Higher values
allow us to describe possible words or word subsequences,
or even two-word substrings, providing more information
than mere syllables. However, very high values induce noise
(i.e., useless patterns attributed to change). In the follow-
ing, we exclusively consider the configuration of Lmin =
LMAX = Dwin = n for values within previously studied lim-
its (n ∈ {2, 3, 4}), which were theoretically shown and ex-
perimentally verified to provide good enough information,
while limiting the presence of noise [15].

To represent a document di, we create a document graph
Gdi by running a window of sizeDwin over its textual content
in order to analyze it into overlapping character n-grams.
Any two n-grams that are found within the same window
are connected with an edge eGdi ∈ E

G
di

, whose weight denotes
their frequency of co-occurrence in the document. The doc-
ument is, thus, transformed into a graph that — in addi-
tion to its n-grams — captures the contextual information
of their co-occurrence.

This representation can also be employed for an entire
topic (i.e., set of documents). In this case, however, the
graph is derived from the merge of the individual document
graphs, similarly to the concept of a centroid vector. The
graph models of the topic’s documents are merged into a

single class graph through the update operator [16] as fol-
lows. Given a collection of documents D, an initially empty
graph GD is built; the i − th document di ∈ D is then
transformed into the document graph Gdi that is merged
with GD to form a new graph Gu

D with the following prop-
erties: its edges (nodes) comprise the union of the edges
(nodes) of the individual graphs, and its weights are ad-
justed so that they converge to the mean value of the re-
spective weights. More formally: Gu

D = (Eu, V u,Wui),
where Eu = EGD ∪EGdi , V u = V GD ∪V Gdi and Wui(e) =
WGD (e) + (WGdi (e) −WGD (e)) × 1/i, where the division
by i ensures the incremental convergence to the overall aver-
age value [16]. The resulting class graph captures patterns
common in the content of the entire topic, such as recurring
and neighboring character sequences and digits.

The similarity between documents and topics is estimated
through the closeness of their graph representations. The
following graph similarity metrics are used in this work:

1. Containment Similarity (CS), which expresses the
proportion of edges of a graph Gi that are shared with
a second graph Gj . Assuming that G is an n-gram
graph, e is an n-gram graph edge and that for function
µ(e,G) it stands that µ(e,G) = 1, if and only if e ∈ G,
and 0 otherwise, then:

CS(Gi, Gj) =

∑
e∈Gi

µ(e,Gj)

min(|Gi|, |Gj |) ,

where |G| denotes the number of edges of graph G (i.e.,
the size of the n-gram graph).

2. Size Similarity (SS), which denotes the ratio of sizes
of two graphs:

SS(Gi, Gj) =
min(|Gi|, |Gj |)
max(|Gi|, |Gj |) .

3. Value Similarity (VS), which indicates how many
of the edges contained in graph Gi are contained in
graph Gj , as well, considering also the weights of the
matching edges. In this measure, each matching edge
e having a weight W i(e) in graph Gi contributes
VR(e)/max(|Gi|, |Gj |) to the sum, where VR(e) (i.e.,
value ratio) is a symmetric, scaling factor that is de-

fined as VR(e) =
min(wi

e,w
j
e)

max(wi
e,w

j
e)

, thus taking values in the

interval [0, 1]. Non-matching edges do not contribute
to VS: wi

e = 0 for an edge e /∈ Gi. Plugging all these
measures together, we have:

VS(Gi, Gj) =

∑
e∈Gi

min(wi
e, w

j
e)

max(wi
e, w

j
e)

max(|Gi|, |Gj |) .

VS converges to its maximum value VSmax = 1 for
graphs that share both the edges and the correspond-
ing weights, with VSmax indicating perfect match be-
tween the compared graphs.

An important, derived measure is the Normalized Value
Similarity (NVS), which is computed as follows:

NVS(Gi, Gj) =
VS(Gi, Gj)

SS(Gi, Gj)
.



Figure 2: Extracting the feature vector from the n-
gram graphs model.

The NVS enhances VS by disregarding the relative size of
the compared graphs.

In essence, the containment similarity between two n-gram
graphs implies co-occurrence of similar substrings in the cor-
responding texts. It is related, as a notion, to the cosine sim-
ilarity in the vector space of the n-grams model over binary
values; however, CS considers the co-occurrence of pairs of
n-grams (i.e., edges), instead of the co-occurrence of indi-
vidual n-grams. (Normalized) Value similarity, on the other
hand, takes into account the frequency of co-occurrence of
n-grams, thus being analogous to the cosine similarity be-
tween frequency-based vectors of the n-grams model. Once
again, though, (N)VS functions on pairs of n-grams, instead
of individual ones.

In this work, to classify a document using the n-gram
graphs model we first calculate the class graphs from the
training instances. Each unlabeled document is then posi-
tioned into a vector space, as follows:

• The document is represented as a graph (i.e., docu-
ment graph).

• For every class, we compare the document graph with
the corresponding class graph to derive the similarities
that comprise the feature vector. In more detail, we
extract 3 features from each comparison, one for each
of the similarity measures CS, VS and NVS. The result,
is that we get 3 similarity features per class, for our
document.

• Given N class graphs, the resulting feature vector con-
tains 3×N similarity-based features.

The overview of this embedding process is illustrated in Fig-
ure 2.

3.4 Qualitative analysis
Having outlined the functionality of the main TC repre-

sentation models, this section elaborates on the qualitative
aspects of their performance, explaining how it is affected
by the settings we are considering (i.e., the four challenges
of Section 1 - C1 to C4).

Starting with the term vector model, it is worth noting
that its most critical step is the identification of the dis-
tinct words among a collection of documents. The reason
is that the same word may appear in different forms (e.g.,
a verb may appear as a gerund or in some other inflected
form). In addition, the same word might have a different
meaning, depending on its context. To ensure high per-
formance, Information Retrieval preprocessing methods are
usually employed to group together different manifestations
of the same word or meaning. In this way, the number of
dimensions in the feature space is restricted, allowing for a
more efficient classification. In domains with highly diverse
vocabulary (i.e., C4), feature selection can be critical for the
effectiveness (i.e., accuracy) of classification, as well, since
many features may constitute noise (see [12] for a related
study of feature selection methods).

A common preprocessing technique is stemming [26];, it
reduces the inflected or derived words to their root form,
usually by removing their suffix (e.g., it removes the plural
“s” from the nouns in English). Lemmatization improves on
this process by taking into account the context of a word
- or even grammar information - in order to match it to
a lemma. Both these methods require language-dependent
knowledge to function, thus having limited effectiveness in
multilingual settings (i.e., C1). The performance of the term
vector model can be significantly degraded by spelling mis-
takes (i.e., C3), as well, which hinder the process of detect-
ing and clustering together the different appearances of the
same word. This leads to an extensively larger feature space
(i.e., lower efficiency) as well as to lower effectiveness, due
to noise.

The character n-grams model improves on both disadvan-
tages of the term vector one, constituting a language-neutral
technique that is highly robust to noise (especially with re-
spect to spelling mistakes). Thus, it successfully deals with
challenges C1 and C3, respectively. As mentioned above,
however, its performance is restricted by the fact that it
completely ignores the sequence of n-grams inside a phrase.

A serious drawback, common to both models, is the curse
of dimensionality : the number of features that they entail
is usually very high - depending, of course, on the size of
the corpus (i.e., number of documents). In absolute num-
bers, it is higher for the n-grams than for the term vector
model (for the same corpus), increasing with the increase
of n; the reason is that sub-word tokens are typically more
frequent than whole words, and the larger the values of n is,
the higher is the number of possible character combinations.
This situation is particularly aggravated in the context of a
highly diverse vocabulary: the more heterogeneous a docu-
ment collection is - either with respect to the languages it
comprises (i.e., C1) or the regional variations used by its
authors (i.e., C4) - the higher is the number of features that
these methods take into account. A common practice for
restricting the impact of this problem is to set a threshold
on the minimum frequency of the terms that are considered
as features. This practice, however, is a mere heuristic pro-
cedure, whose performance is application-dependent.

In contrast, the n-gram graphs method involves a limited
feature space, whose dimensions solely depend on the num-
ber of distinct classes. In addition, our model makes no
assumptions on the underlying language, thus being able to
handle the multilingual, user-generated content that is avail-
able on the Web (i.e., C4). It also allows for fuzzy matching



Document Document Vocabulary Special Noise
Type Size Size Notation

Curated Long Formal No Negligible
Semi-curated Average Colloquial Yes Low
Raw Short Slang Yes High

Table 1: Content-based criteria for determining the

quality type of a Web document.

and substring matching, which constitutes a functionality of
high importance in open domains, like the content of So-
cial Media (i.e., C3). Its only drawback is the time that is
needed in order to construct a class-representative graph and
to compute the graph similarities. As demonstrated in [15],
the time complexity of these processes depends both on the
size of n and the size of the input document collection |D|.

Last but not least, the n-gram graphs model fundamen-
tally differs from the other two in the way it tackles C2:
it ameliorates the effect of sparsity by encapsulating con-
textual information in its edges, whereas the bag-of-tokens
models make no provision for this challenge, relying exclu-
sively on the inadequate features extracted from the sparse
content.

4. WEB DOCUMENT TYPES
The above analysis provided hints as to the traits of Web

documents that affect the effectiveness as well as the effi-
ciency of their representation models. In what follows, we
elaborate on these traits, we explain how they affect the
performance of topic classification and we analyze how they
can be used to distinguish among three main types of Web
documents. Note that these types are not intended for genre
classification, as we solely aim at explaining the inherently
different quality of their content and its impact on classifi-
cation. Note also that the problem we are tackling in this
work completely disregards exogenous meta-data. Thus, our
analysis takes into account only factors that can be derived
directly from the textual content of a document.

We consider the following — qualitative and quantitative
— criteria as the most critical ones for the performance of
topic classification:

1. Document Size expresses the length of a document
with respect to the number of characters (or tokens)
it comprises. The higher its value is, the higher is
the number of (possible) features for the bag-of-tokens
models. This criterion is directly related to challenge
C2, as the shorter a document is, the more sparse is
the information it comprises.

2. Vocabulary Size denotes the diversity of the words and
phrases that are employed in a document. Higher di-
versity corresponds to a higher number of tokens that
can be possibly used as features. As a result, Vocabu-
lary Size is increased by multilinguality (i.e., C1) and
by the evolving, non-standard expressions used in So-
cial Media content (i.e., C4). To express it in a compre-
hensible way, we associate it with the type of language
that a document is written in. We acknowledge the fol-
lowing language types: (i) formal, (ii) colloquial, and
(iii) slang. The first type generally involves control-
lable levels of diversity, due to the standard expressions
it entails; it is the language that a journalist typically
employs to record facts in a news article. Slang lan-
guage involves the largest vocabulary size, due to the

informal, rich in neologisms language that is employed
when communicating through instant messages. Collo-
quial language lies in the middle of these two extremes.

3. Special Notation denotes whether a document contains
non-verbal expressions that actually constitute hyper-
links to some Web resource: links to Web pages, links
to multimedia content (i.e., videos or images), or even
links to users (e.g., the @username notation used in
Twitter). This kind of special notation is typically
employed to enhance the effectiveness of topic classifi-
cation by introducing valuable meta-data information
(e.g., [24]). As a content-based feature, however, it
may add noise and, thus, it is relevant to challenge
C3.

4. Noise is directly related to challenge C3, reflecting
the level of spelling mistakes as well as of grammat-
ically, syntactically and semantically incorrect phrases
in the text of a document. Such errors distort its ac-
tual meaning, thus hindering the detection of word or
n-gram patterns. Low noise ensures, therefore, high re-
liability of the content-based features, and vice versa.

We argue that these criteria capture main characteristics
of the major kinds of contemporary Web documents: typical
(static) web pages, discussion fora, blogs as well as Social
Media. In fact, we distinguish three types of Web documents
with the help of these criteria:

1. the curated documents, which entail large documents
of pure text (i.e., without notations) with standard,
formal vocabulary and low levels of noise,

2. the semi-curated documents, which are shorter in size,
involve more noise, a slightly larger vocabulary, and
plenty of hyperlinks, and

3. the raw documents, which are rather telegraphic, noisy
and rich in special notation.

The characteristics of these Web document types are out-
lined in Table 1. We further elaborate on them in the follow-
ing, analyzing the implications they convey in the process
of topic classification.

4.1 Curated Documents
This type comprises such documents as news articles and

scientific publications. The text is adequately long to pose
well-described questions, to provide argumentation or to
cover a topic; sparsity (i.e., C2), therefore, is not an issue.
Spelling mistakes are rather rare and the writing is correct
- both with respect to grammar and syntactic rules -, since
it has been edited or peer-reviewed; thus, it does not suf-
fer from C3. Its language is eloquent and the text itself is
focused and clear, lacking any neologisms and non-standard
vocabulary (i.e., absence of C4). The content is multilingual,
but its actual language is commonly known a priori. Words
are, thus, easily grouped into features through lemmatiza-
tion and stemming, overcoming the challenge of C1.

In combination with the character n-grams model, it leads
to a feature space of high dimensionality that exhibits high
effectiveness. The negligible level of noise, though, does not
provide it with a significant advantage over the term vector
model. Given that the latter has a lower dimensionality —
thus being more efficient — the character n-grams method



may constitute a sub-optimal choice for the classification
of curated documents. The n-gram graphs approach is ex-
pected to outperform both of these models in terms of effec-
tiveness, due to the contextual information that is encapsu-
lated in its edges; even term collocations may be implied by
the neighborhood of character n-grams. This method also
exhibits the (probably) highest classification efficiency, due
to the low number of features. The large size of the docu-
ments, however, results in large document and topic graphs,
which involve considerable computational effort.

4.2 Semi-Curated Documents
This type of documents entails forum posts, text in wikis,

e-mails, and personal blog posts. Their content is multilin-
gual (i.e., C1), minimally edited by its author and comprises
few paragraphs (i.e., C2), which are - nevertheless - long
enough to analyze personal thoughts or to act as written di-
alogue parts. Neologisms, informal language and hyperlinks
form part of its content (i.e. C4), with spelling mistakes and
wrong sentences being relatively common (i.e., C3). On the
whole, it involves all challenges of Section 1, though at a
significantly lesser extent than Social Media content.

The term vector model is expected to have a large feature
space, due to the large size of documents and the relatively
rich vocabulary. The presence of noise is expected to have
a significant impact on its effectiveness. Higher accuracy
is, thus, achieved in combination with the the character n-
grams and the n-gram graphs models, which are robust to
noise. In the n-gram graphs case, though, the size of the doc-
uments may pose a serious computational cost for building
and comparing the document and the topic graphs.

4.3 Raw Documents
This type refers to such documents as Facebook7 sta-

tus updates, YouTube comments, messages in Twitter (also
termed tweets) and short posts in any Web 2.0 platform.
A basic trait of these documents is that they are meant to
be self-contained, conveying their message through a text of
minimal size (i.e., C2); for instance, the messages are often
meant to be the answer to questions like “What is new?”,
“What are you thinking?”, “What is happening?”. They can
also comprise brief comments that simply convey an opinion
or sentiment. Their authors typically use the full range of
internet neologisms, abbreviations, emoticons and all other
similar language constructs (i.e., C4). The grammar of the
text is usually of minimal interest and it is not rare for non-
fluent users to post messages, sometimes using a mixture of
languages (i.e., C3). Their content is multilingual (i.e., C1)
with high levels of geographic lexical variations, as well (i.e.,
C4); for instance, Twitter users from northern California
write “koo” instead of cool, while the same word in southern
California is mentioned as “coo” [8]. In summary, raw docu-
ments contain short, unedited, and noisy texts, abundant in
special notations, which convey contextual information that
may be essential to understand their meaning.

The very high levels of noise are expected to pose a signif-
icant barrier to the effectiveness of the term vector model.
The character n-grams and n-gram graph models are ex-
pected to perform significantly better, due to their tolerance
to noise. Furthermore, the efficiency of the n-gram graphs
model is expected to improve in this context: the limited
size of the raw documents entails minimal computational

7http://www.facebook.com/

Data Set Class Label Documents Distribution

Dreuters

ECAT 13,768 8.00%
MCAT 41,523 24.13%
CCAT 45,382 26.37%
GCAT 71,442 41.51%

Dblogs

Current Affairs 3,288 4.51%
Entertainment 3,753 5.15%
Blog 3,825 5.25%
Work 4,095 5.62%
Life 4,631 6.35%
Personal 5,003 6.86%
Politics 6,738 9.24%
Music 8,295 11.38%
News 12,971 17.79%
Votes 20,320 27.87%

Dtwitter

#quote 99,385 2.51%
#fact 157,959 3.98%
#followfriday 220,155 5.55%
#news 258,080 6.51%
#musicmonday 307,322 7.75%
#iranelection 320,310 8.08%
#tcot 363,739 9.17%
#ff 425,715 10.73%
#jobs 866,752 21.85%
#fb 947,058 23.88%

Table 2: Data set class distribution.

effort for the creation and the comparison of their graph
representations.

On the whole, we can argue that curated and raw doc-
uments define the two extremes of Web document quality
with respect to morphology. The former involves large texts,
where spelling mistakes and non-standard expressions are
the exception, while the latter entails short texts with non-
standard, slang expressions and a considerable portion of
special notation. Semi-curated documents lie in the middle
of these two extremes, slightly closer, though, to the curated
ones: they involve middle-sized texts but with significantly
more noise, non-standard expressions and special notation.
We provide experimental evidence for these patterns in Sec-
tion 5.1.

5. EXPERIMENTAL EVALUATION
The goal of this section is threefold: (i) to provide quanti-

tative evidence for the above Web document types (Section
5.1), (ii) to illustrate whether the document type influences
the performance of topic classification, and (iii) to provide an
analytic comparison of the performance of the various repre-
sentation models presented above (Section 5.2). Particular
attention is paid to the trade-off between effectiveness and
time efficiency, highlighting the balance between them that
is achieved by every combination of representation model
and document type.

In the following, we first present the real-world data sets
we employ in our experimental study and provide empiri-
cal support to the differences between document types of
Section 4. We then present the setup of our experiments,
we elaborate on their outcomes with respect to effectiveness
and, finally, on their outcomes with respect to efficiency.

5.1 Data Sets
To evaluate our document categorization in real settings,

we considered three large-scale, real-world data sets — one
for each type. They are analyzed individually in the follow-
ing paragraphs.

Curated Documents. As representative for this type of



documents, we selected the Reuters RCV2 corpus8, which
has been widely used in the literature (e.g., [2, 5]). It consti-
tutes a multilingual collection of news articles, dating from
the time period between August 1996 and August 1997. In
total, it contains over 480,000 articles, written in 13 dif-
ferent languages. For our analysis, we considered a subset
of this collection, comprising 172,115 articles that are writ-
ten in four languages: the German (16,888 documents), the
Spanish (9,747 documents), the Italian (7,598 documents),
and the French (7,490 documents). The news articles of
RCV2 are categorized along a class hierarchy of 104 overlap-
ping topics. In our experiments, we considered only the top
four categories, which are non-overlapping, thus allowing for
single-label TC. The distribution of documents among them
is presented in Table 2. This data collection is denoted by
Dreuters in the rest of the paper.

Semi-Curated Documents. For this type of docu-
ments, we selected the collection of blog posts that was
published in the context of the 3rd workshop on the We-
blogging Ecosystem in 20069. It contains around 10 million
documents, stemming from approximately 1 million differ-
ent weblogs. They were posted on-line in the time period
between July 7, 2005 and July 24, 2005. For our analy-
sis, we considered the documents corresponding to the 10
largest categories. We removed those documents that be-
long to more than one of the considered categories, since we
examine the single-label TC. This resulted in 72,919 blog
posts, in total, whose class distribution is presented in Ta-
ble 2. Unfortunately, there is no direct information on the
languages it contains. In the following, this data set is sym-
bolized as Dblogs.

Raw Documents. This type of documents is represented
in our analysis by Twitter posts. We used the same data set
as in [37], which comprises 467 million tweets that have been
posted by around 20 million users in the time interval be-
tween June, 2009 and December, 2009. To derive the topic
categorization of the tweets, we relied on their hashtags10.
Around 49 million of the tweets are marked with at least
one hashtag. As in Dreuters, we considered the subset of
these documents that belong to the 10 largest topics. We
removed the tweets that are associated with multiple cate-
gories as well as the retweets, which constitute reproductions
of older tweets, thus containing no original information. The
resulting collection — represented by Dtwitter in the rest of
the paper — comprises almost 4 million tweets. Note that,
following [13, 24], we removed all hashtags from the tweets
of Dtwitter, since they are likely to contain category informa-
tion. Again, there is no straightforward information on the
languages that this data set contains.

5.1.1 Analysis of Document Types
It is interesting to examine the technical characteristics of

the above data sets with respect to the parameters and types
that were defined in Section 4. An overview of the relevant
features is presented in Table 3. We can see that there is a
large difference in the average size of the documents of the
individual data sets: the news articles of Dreuters contain

8http://trec.nist.gov/data/reuters/reuters.html
9http://www.blogpulse.com/www2006-
workshop/datashare-instructions.txt

10A hashtag in Twitter consists of the symbol #, followed by
a series of concatenated words and/or alphanumerics (e.g.,
#wsdm2012).

Dreuters Dblogs Dtwitter

Classes 4 10 10
Documents 172,115 72,919 3,966,475
Total Characters (× 108) 2.07 0.80 3.78
Characters/Document 1,205.55 1,100.25 95.41
Total Tokens (× 106) 30.92 11.69 57.08
Tokens/Document 179.66 160.31 14.39
Av. Token Length 5.68 5.74 5.73

Table 3: Characteristics of data sets.

Data Set Kind of Token Length Instances Distrib.

Dblogs
URL 72.36 125,495 1.07%
Regular Word 5.02 11,564,370 98.93%

Dtwitter

Mention 11.42 1,867,706 3.27%
URL 21.73 2,161,499 3.79%
HashTag 5.94 4,003,308 7.01%
Regular Word 4.79 49,045,538 85.93%

Table 4: Analysis of the special notation tokens.

1,200 characters, or 180 tokens, on average, while Dtwitter

is very sparse (i.e., C2), containing documents of just 95
characters, or 14 tokens. As stated in Section 4, the semi-
curated documents of Dblogs lie closer to Dtwitter, comprising
1,100 characters, or 160 tokens, on average. On the whole,
however, the overall sizes of the data sets with respect to
characters — or tokens — are very close, thus allowing for
a comparison on an equal basis.

It is also remarkable that the tokens of Dreuters are smaller
— on average — than those of Dblogs and of Dtwitter. This is
apparently a paradox, since our categorization argues that
raw documents contain abbreviations and neologisms (i.e.,
C4), which should be substantially shorter than the orig-
inal words (e.g., “gr8” instead of “great”). To investigate
this phenomenon, we analyzed the special notations that are
contained in the semi-curated and raw texts of Dblogs and
Dtwitter, respectively. As illustrated in Table 4, 1% of all
tokens in Dblogs actually pertains to URLs, which are rather
large in size (72 characters, on average). Regular words, on
the other hand, typically consist of just 5 characters, thus
being shorter than those in Dreuters.

In the case of Dtwitter, the relative amount of special nota-
tions is significantly larger. Almost 15% of all tokens consti-
tute “non-verbal tokens”: 3% of them refer to some Twitter
user (i.e., mentions), almost 4% are URLs and 7% designate
the topic(s) of the tweet (i.e., hashtags). The remaining,
regular words have an average length of 4.8 characters, thus
being smaller than those of Dreuters by a whole character.

On the whole, our experimental analysis validates our ar-
guments about the quantitative parameters of the document
types of Section 4.

5.2 Topic Classification

5.2.1 Set-up
To thoroughly test the performance of the document rep-

resentation models, we considered two inherently different
classification algorithms, which are typically employed in
the context of TC: the Naive Bayes Multinomial (NBM)
and the Support Vector Machines (SVM). The former is a
highly efficient method that classifies instances based on the
conditional probabilities of their feature values; the latter
constitutes a more elaborate approach that uses optimiza-
tion techniques to identify the maximum margin decision
hyperplane. It is the state-of-the-art for TC, but does not



Dreuters Dblogs Dtwitter

Vector Model 76.67% 49.81% 59.96%
Bigrams 56.02% 56.19% 57.83%
Trigrams 64.33% 61.53% 64.54%
Four-grams 71.19% 63.51% 65.06%
Bigram Graphs 50.81% 49.57% 41.91%
Trigram Graphs 90.71% 62.33% 65.63%
Four-gram Graphs 93.71% 64.94% 69.79%

Table 5: Precision of Naive Bayes Multinomial.

Dreuters Dblogs Dtwitter

Vector Model 91.63% 63.91% 63.35%
Bigrams 89.46% 59.34% 71.42%
Trigrams 93.87% 64.35% 78.44%
Four-grams 94.71% 65.17% 78.19%
Bigram Graphs 91.32% 65.41% 76.86%
Trigram Graphs 95.09% 73.55% 83.06%
Four-gram Graphs 95.44% 76.31% 79.60%

Table 6: Precision of Support Vector Machines.

scale well to large datasets and to feature spaces with high
dimensions11. We compare these two algorithms on an equal
basis with the aim of identifying the classification conditions
under which it is possible to sacrifice the high effectiveness
of SVM for the high efficiency of NBM.

To measure the effectiveness of classification algorithms,
we employed 10-fold cross validation; in every iteration, we
used 90% of the input corpus as the training set and the
remaining 10% as the testing set. To train a classifier over
the n-gram graphs model, we randomly selected half of the
training instances of each topic in order to build the corre-
sponding class graph. All class graphs were then compared
with the entire training set, providing the similarities that
built the classifier, as well as with the entire testing set in
order to estimate the classification accuracy. This measure
of effectiveness is defined as follows:

accuracy =
true positives

true positives+ false positives
,

where true positives stands for the number of documents
that were assigned to the correct topic, and false positives
denotes the number of documents associated with a wrong
topic.

Our approach and experiments were fully implemented in
Java, version 1.6. The functionality of the n-gram graphs
was provided by the open source library of JInsect12. For
the implementations of the classification algorithms, we used
the version 3.6 of the open source library of Weka13 [17]. In
every case, we employed the default configuration of the al-
gorithms, without fine-tuning any of the parameters. Note
that to scale the SVM in the large dimension space of the
bag-of-tokens model and the large number of instances of
Dtwitter, we employed the LIBLINEAR optimization tech-
nique [10] through its Weka API14. Given that LIBLINEAR
employs linear kernels for training the SVM, it is directly
comparable with the default configuration of SVM in Weka
with linear kernels, which was employed in all other cases.
All experiments were performed on a desktop machine with
8 cores of Intel i7, 16GB of RAM memory, running Linux
(kernel version 2.6.38).

Note that for the term vector and the character n-grams
model we did not employ any preprocessing technique, as
the language of the documents is unknown (i.e., multilin-
gual settings). In order to limit the feature space, we set a
threshold of minimum frequency for each feature, discarding
those not exceeding it. For Dreuters and Dblogs, this thresh-
old was equal to 1% of the size of the document collections,

11For a comprehensive overview of the algorithms’ function-
ality, see [36].

12http://sourceforge.net/projects/jinsect
13http://www.cs.waikato.ac.nz/ml/weka
14https://github.com/bwaldvogel/liblinear-weka

whereas for Dtwitter it was set to 0.1%, due to the substan-
tially larger number of document it comprises. These limits
resulted in relatively stable number of features for each rep-
resentation model across all document types.

5.2.2 Effectiveness Experiments
The performance of the representation models over the

NBM and the SVM classification algorithms are presented
in Tables 5 and 6, respectively. Note that the unequal dis-
tribution of the classes in each data set results in different
baseline values for accuracy. The random classifier (i.e.,
the classifier that assigns all instances to the largest topic)
has an accuracy of 41.51% for Dreuters, 27.87% for Dblogs

and 23.88% for Dtwitter. Nevertheless, all combinations of
representation models and classification algorithms perform
significantly higher than the baseline.

Most importantly, though, we can notice that the numbers
in Tables 5 and 6 follow several interesting patterns. First,
we can see that the performance of the n-grams model in-
creases with the increase of n in the case of Dreuters and
Dblogs, independently of the classification algorithm (i.e.,
four-grams achieve the highest accuracy in both datasets).
In Dtwitter, however, there is no clear difference between tri-
grams and four-grams, as the former have a slightly higher
effectiveness than the latter for SVM and vice versa for
NBM; these differences, though, are statistically insignifi-
cant and are probably related to the low level of noise in
the case of the curated and semi-curated documents of the
first two data sets; the higher portion of spelling mistakes in
the raw documents, on the other hand, provides a significant
boost to the performance of trigrams. As for the bigrams,
they seem inadequate to capture distinguishing textual pat-
terns, due to their limited length, thus having an extensively
lower accuracy in most of the cases.

As expected, the same pattern applies to the n-gram graphs
model, as well. The low levels of noise in (semi-)curated doc-
uments boosts the performance of four-gram graphs, while
the noisy content of raw documents favors the trigram graphs:
the latter outperforms the former for SVM and vice versa for
NBM. It is worth noting at this point that the n-gram graphs
models exhibit a consistently higher accuracy than the corre-
sponding n-grams models for both classification algorithms,
due to the additional, contextual information they encapsu-
late. The only exceptions to this rule are the bigram graph
models, which have a consistently lower accuracy than the
bigrams model, when combined with NBM. Thus, we can
safely conclude that the n-gram graphs are more effective
than the plain n-grams, independently of the documents’
type. We note that in [15] one can find a method to calcu-
late a near-optimal n size for n-gram graphs (applicable to
character n-grams as well), but we avoided to use it due to
its poor scalability over large corpora.

Regarding the relation between the term vector and the n-
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Figure 3: Training time (in minutes) of SVM over various sample sizes per representation model and document
type.

grams model, we can easily notice that, although the former
extensively outperforms the latter for Dreuters, the situation
is totally reversed for Dblogs and Dtwitter. Note, though, that
the deviation in the accuracy of these models is relatively low
for Dblogs, but significantly higher for Dtwitter. This behavior
is in complete agreement with the theoretical expectations
of Section 4, which argues that the low noise of the curated
documents provides an advantage to the term vector model
over the n-grams one.

The relation between the term vector and the n-gram
graphs model follows a different pattern: for most combi-
nations of classification methods and document types, the
latter significantly outperforms the former. The only excep-
tions are the bigram graphs, especially when used in con-
junction with NBM. This combination actually has the low-
est performance across all cases; given that the accuracy
of bigram graphs is substantially enhanced when combined
with SVM, we can infer that NBM is inadequate for han-
dling their contextual information. Nevertheless, we can
safely deduce that the n-gram graphs model constitutes a
more suitable representation for TC than the term vector
one, regardless of the document type.

On the whole, we can conclude that the n-gram graphs
model provides the highest effectiveness for all types of doc-
uments, independently of the classification algorithm. Their
optimal configuration seems to depend on the document
type. On the other hand, the difference in performance
is such that allows use of any value between 3 and 4 for
n. Regarding the classification algorithm to be used, SVM
exploits the contextual information of n-gram graphs more
effectively than NBM, but the latter provides a highly effi-
cient, adequate alternative in the case of curated documents.

5.2.3 Efficiency Experiments
In this section, we examine the effect of representation

models on the time efficiency of classification training. We
consider two metrics: the number of features a model ex-
tracts from the training set, and the training time of a clas-
sifier (i.e., the wall-clock time - in minutes - that is required
for training a classifier over a collection of documents that
has been transformed into the given representation model).
In general, the higher the dimensionality of the feature space
is, the higher the training time is expected to be.

Table 7 presents the number of features each representa-
tion model extracts from each data set of our study. We
can notice that the n-grams model employs the largest fea-
ture space in all cases, with higher values for n resulting
in more dimensions. The term vector model entails signifi-

Dreuters Dblogs Dtwitter

Term Vector 1,742 1,560 1,263
Bigrams 2,129 2,113 2,758
Trigrams 9,327 7,381 7,609
Four-grams 17,891 14,211 12,659
Bigram Graphs 12 30 30
Trigram Graphs 12 30 30
Four-gram Graphs 12 30 30

Table 7: Features per representation and data set.

cantly less features than the n-grams one in all cases, since -
as explained in Section 3 - there is usually a larger variety of
sub-words than words. The number of features the n-gram
graphs models employs is lower by two orders of magnitude
across all document types.

To measure the actual classification time that these fea-
ture sets entail, we used the LibLINEAR algorithm in its de-
fault configuration. For each representation model, we con-
sidered 10 sample sizes, from 5,000 up to 50,000 documents,
with a step of 5,000. The instances of each sample were
randomly selected from the final set of training instances of
each model. The procedure was repeated 10 times and the
average training times are presented in Figures 3(a) to (c).
Note that we do not present the number of features involved
by the bag-of-tokens models in each sample size, since - on
average - it was pretty close to that over the entire data set,
presented in Table 7.

Looking into these diagrams, we can easily notice that the
vector space model requires the lowest training time (less
than a minute) in all cases. This is probably because it re-
sults in a significantly lower number of outliers, which typi-
cally dominate the efficiency of the SVM. The performance
of the n-gram graph models follows two patterns: first, it
exhibits a strong correlation with the number of features
(i.e., number of classes) that are involved in each case; for
the Dreuters that involves only 4 classes its training time is
around 1 minute, rising to approximately 4 minutes in the
case of 10 classes of the data sets Dblogs and Dtwitter. Second,
its training time is almost identical for the different sizes of
n, for each sample size of a specific data set. In fact, there is
just a slight increase in the efficiency with the increase of n;
that is, the bigram graphs involve slightly higher time, fol-
lowed by the trigram graphs and the four-gram ones. This
is probably because the larger the size of n is, the more
discriminative the features are and the lower the portion of
outliers is. This applies to the n-grams model, as well, since
bigrams require significantly higher training time than tri-



grams and four-grams, which exhibit almost identical levels
of efficiency.

In general, the n-grams model appears to be the least effi-
cient one, involving a training time that is two or more times
higher than that of the n-gram graphs. Only in the case of
Dtwitter, they practically share identical levels of efficiency
across most sample sizes. This is probably because of the the
very small size of raw documents, which leads to very sparse
n-grams representations that are processed quite rapidly. In
contrast, the efficiency of the n-gram graphs model is not
affected by the average document size, having a stable train-
ing time that depends exclusively on the number of involved
classes. The most efficient model in call cases, though, is
the term vector one, but its low effectiveness justifies its use
only in the case of curated documents.

6. RELATED WORK
Questions commonly posed in the contemporary text clas-

sification literature refer to: (i) the representation of text
instances, (ii) techniques for facing sparseness in the con-
text of limited information (e.g., short text instances), and
(iii) methods for integrating the specifics of a domain (e.g.,
social media, product reviews, e-mails).

Apart from the representation models of Section 3, doc-
ument models based on “latent topics” have also been em-
ployed in topic classification. They represent documents and
topics in the vector space that is defined by the latent topics
of the input corpus; these topics are typically identified us-
ing methods like the Latent Semantic Indexing (LSI) [6] or
the Latent Dirichlet Allocation (LDA) [4]. Our use of the n-
gram graphs causes a transformation into a space defined by
graph similarities, and not latent topics. These graph simi-
larities correspond to a representation of a class through the
class graph.

To face sparseness, content-based representation models
are typically combined with the context-based ones, which
incorporate data collected outside the training set. In [28],
an external “universal dataset” is employed to help deter-
mine a set of hidden topics using LDA. The empirical eval-
uation verifies a significant increase in classification perfor-
mance, provided that a good universal dataset as well as
good LDA parameters (e.g., number of hidden topics) have
been selected. In [38], the authors propose the applica-
tion of Transductive (i.e., test-set-tailored) LSI to classify
short texts, demonstrating that evidence extracted from the
test instances can improve the performance of classification.
In [34], Wikipedia-based “explicit semantic analysis” is used
to map sparse text snippets (e.g., from ads or “tweets”) to
Wikipedia concepts. In another line of research, [18] studies
the effect of different topic modeling methods on the classi-
fication of tweets in the presence of data sparseness; it advo-
cates that aggregating short messages and performing topic
modeling on them improves performance. Another effective
approach is to use author-related information to augment
the set of features of tweets [32]. In our work we use no
external source of knowledge to augment the data. Thus,
such approaches are orthogonal to ours and can be com-
bined with the n-gram graph framework to further improve
its performance.

Another aspect of text classification relates to Social Me-
dia content, which involves many intricate characteristics
for TC: multi-lingual content, very short and sparse texts,
fully evolving and non-standard vocabulary, noise as well as

lack of labeled resources [24]. In [25], the authors apply text
classification as a keyword extraction process from “social
snippets” (e.g., status updates, interesting events or recent
news), using a variety of features like TF-IDF, and linguis-
tic, position and formatting information. In [19], a system is
proposed to detect spam tweets in what the authors call the
“trend stuffing”. The classification is essentially binary, de-
termining whether a tweet is related to a highly active topic
(i.e., “trend”) or not. In [14], the authors use external knowl-
edge, mapping each tweet to Wikipedia to define a measure
of semantic relatedness between pairs of tweets based on the
links between Wikipedia pages. [23] considers an alternative
source of external knowledge: the metadata of linked objects
appearing in Social Media posts. These metadata are used
to augment the feature space of the posts or even completely
replace them. The results of the experimental study indi-
cate that they can improve topic classification of posts, even
if they are used without the original content-based features.
In our work, we use corpora from different document types
to illustrate their differences. We use only content features,
with no linguistic preprocessing (graph creation) and no ex-
ternal knowledge.

7. CONCLUSIONS
In this work, we presented novel points of research in topic

classification on several axes. We provided a set of differen-
tiating criteria between textual types, and offered insight on
the aspects of Web documents that affect the performance
of text classifications. We took into account a multi-lingual
setting, which is important for general application. We pro-
posed the use of a non-standard representation (i.e., n-gram
graphs) that — in comparison with traditional document
models — conveys not only higher effectiveness (i.e., classi-
fication accuracy), but also higher efficiency in the learning
process. This is achieved through a limited set of expressive
features, whose cardinality actually depends on the number
of classes, rather than on the diversity of the vocabulary.
Our experimental study comprised three large-scale, real-
world corpora — one per document type — thus stressing
the different challenges among the main types of Web docu-
ments. We did not use external knowledge and we minimized
language-dependency. We demonstrated that the proposed
method can provide better results than the traditional ones
in these challenging settings, due to the contextual informa-
tion it encapsulates.

In the future, we intend to examine how the adaptive na-
ture of n-gram graphs can accommodate the evolution of the
discriminative features of a topic with the passage of time
(i.e., topic drift), a phenomenon that is particularly intense
in the real-time content of Social Media. In addition, we
plan to compare the n-gram graphs model with the state-of-
the-art context-based ones as well as with approaches based
on LDA, possibly aiming to combine the power of n-gram
graphs with a generative model.
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