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INTRODUCTION



Event Recognition

Input:

I Symbolic representation of time-stamped, low-level events
(LLE).

I LLE come from different sources/sensors.

I Very large amounts of input LLE.

Output:

I High-level events (HLE), i.e. combinations of LLE.

I Humans understand HLE easier than LLE.

Tutorial scope:

I Symbolic event recognition, not signal processing.

Event recognition can be:

I On-line (run-time).

I Off-line (retrospective).



Medical Applications

I Input: electrocardiograms. E.g., P and QRS waves,
representing heart activity.

I Output: cardiac arrhythmias.

A cardiac arrhythmia is recognised given a stream of P and QRS
waves (events) that satisfy a set of temporal constraints.



Medical Applications

Input

16338 qrs[normal]

17091 p wave[normal]

17250 qrs[normal]

17952 p wave[normal]

18913 p wave[normal]

19066 qrs[normal]

19838 p wave[normal]

20713 p wave[normal]

20866 qrs[normal]

21413 qrs[abnormal]

21926 p wave[normal]

22496 qrs[normal]

. . .



Medical Applications

Input Output

16338 qrs[normal] [17091, 19066] mobitzII

17091 p wave[normal]

17250 qrs[normal]

17952 p wave[normal]

18913 p wave[normal]

19066 qrs[normal]

19838 p wave[normal]

20713 p wave[normal]

20866 qrs[normal]

21413 qrs[abnormal]

21926 p wave[normal]

22496 qrs[normal]

. . .



Medical Applications

Input

77091 qrs[normal]

77250 p wave[normal]

77952 qrs[normal]

78913 qrs[abnormal]

79066 p wave[normal]

79838 qrs[normal]

80000 qrs[abnormal]

80713 p wave[normal]

80866 qrs[normal]

81413 qrs[abnormal]

81926 p wave[normal]

. . .



Medical Applications

Input Output

77091 qrs[normal] [78913, 81413] bigeminy

77250 p wave[normal]

77952 qrs[normal]

78913 qrs[abnormal]

79066 p wave[normal]

79838 qrs[normal]

80000 qrs[abnormal]

80713 p wave[normal]

80866 qrs[normal]

81413 qrs[abnormal]

81926 p wave[normal]

. . .



Humpback Whale Song Recognition

I Input: whale sounds as song units.

I Output: whale songs.

A whale song is recognised given a stream of unit songs that
satisfy a set of temporal constraints.



Humpback Whale Song Recognition

Input Output

[200, 400] A

[400, 500] B

[500, 550] C

[600, 700] B

[700, 800] D

[800, 1000] A

[1050, 1200] E

[1300, 1500] B

[1600, 1800] E

[1800, 1900] C

[1900, 2000] B

. . .



Humpback Whale Song Recognition

Input Output

[200, 400] A [200, 550] S1

[400, 500] B [700, 1200] S2

[500, 550] C [1600, 2000] S3

[600, 700] B . . .

[700, 800] D

[800, 1000] A

[1050, 1200] E

[1300, 1500] B

[1600, 1800] E

[1800, 1900] C

[1900, 2000] B

. . .



Event Recognition for Public Space Surveillance
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Event Recognition for Public Space Surveillance

I Input: short-term behaviours. Eg: someone is walking,
running, stays inactive, becomes active, moves abruptly, etc.

I Output: long-term behaviours. Eg: two people are meeting,
someone leaves an unattended object, two people are fighting,
etc.

A long-term behaviour is recognised given a series of short-term
behaviours that satisfy a set of temporal, logical and spatial
constraints.



Event Recognition for Public Space Surveillance

Input

340 inactive(id0)

340 p(id0) =(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

. . .



Event Recognition for Public Space Surveillance

Input Output

340 inactive(id0) 340 leaving object(id1, id0 )

340 p(id0) =(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

. . .



Event Recognition for Public Space Surveillance

Input Output

340 inactive(id0) 340 leaving object(id1, id0 )

340 p(id0) =(20.88,−11.90) since(340) moving(id2, id3)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

. . .



Event Recognition for Public Space Surveillance

Input Output

420 active(id4)

420 p(id4) =(10.88,−71.90)

420 inactive(id3)

420 p(id3) =(5.8,−50.90)

420 abrupt(id5)

420 p(id5) =(11.80,−72.80)

420 active(id6)

420 p(id6) =(7.8,−52.90)

480 abrupt(id4)

480 p(id4) =(20.45,−12.90)

480 abrupt(id5)

480 p(id5) =(17.88,−11.90)

. . .



Event Recognition for Public Space Surveillance

Input Output

420 active(id4) [420, 480] fighting(id4, id5)

420 p(id4) =(10.88,−71.90)

420 inactive(id3)

420 p(id3) =(5.8,−50.90)

420 abrupt(id5)

420 p(id5) =(11.80,−72.80)

420 active(id6)

420 p(id6) =(7.8,−52.90)

480 abrupt(id4)

480 p(id4) =(20.45,−12.90)

480 abrupt(id5)

480 p(id5) =(17.88,−11.90)

. . .



Event Recognition for Public Space Surveillance

Input Output

420 active(id4) [420, 480] fighting(id4, id5)

420 p(id4) =(10.88,−71.90) since(420) meeting(id3, id6)

420 inactive(id3)

420 p(id3) =(5.8,−50.90)

420 abrupt(id5)

420 p(id5) =(11.80,−72.80)

420 active(id6)

420 p(id6) =(7.8,−52.90)

480 abrupt(id4)

480 p(id4) =(20.45,−12.90)

480 abrupt(id5)

480 p(id5) =(17.88,−11.90)

. . .



Other Event Recognition Applications

Computer Networks:

I Input: TCP/IP messages.

I Output: denial of service attacks, worms.

Financial transaction monitoring:

I Input: messages exchanged between brokers and clients,
brokers’ transactions.

I Output: brokers’ long-term activities.

Emergency Rescue Operations:

I Input: messages exchanged between rescue workers,
information concerning water and fuel availability.

I Output: operation criticality, operation status.



Running Example

City Transport 

Management

Control Centre

IRM Demonstrator

SENSOR & GEO 

DATA PROCESSING

EVENT 

RECOGNITION

INFORMATION 

EXTRACTION

SENSOR 

NETWORK
RESOURCE DATA 

& DIGITAL MAPS

Data

Communication

High-Level 

Events

 

Low-level 

Events

Training/

Debriefing
Actual

Operation

Operator Operator

DriverDriver

  



Event Recognition for City Transport Management

I Input: LLE coming from GPS, accelerometers, internal
thermometers, microphones, internal cameras.

I Output: HLE concerning passenger and driver safety,
passenger and driver comfort, passenger satisfaction, etc.

I Details at http://www.ict-pronto.org/

http://www.ict-pronto.org/


Event Recognition for City Transport Management

Input Output

200 scheduled stop enter

215 scheduled stop leave

[215, 400] abrupt acceleration

[500, 600] very sharp turn

700 late stop enter

705 passenger density

change to high

715 scheduled stop leave

820 scheduled stop enter

815 passenger density

change to low

. . .



Event Recognition for City Transport Management

Input Output

200 scheduled stop enter

215 scheduled stop leave 215 punctual

[215, 400] abrupt acceleration [215, 400] uncomfortable driving

[500, 600] very sharp turn [500, 600] unsafe driving

700 late stop enter 700 non-punctual

705 passenger density since(705) reducing passenger

change to high comfort

715 scheduled stop leave

820 scheduled stop enter

815 passenger density [705, 815] reducing passenger

change to low comfort

. . .



Event Recognition for City Transport Management

Input Output

200 scheduled stop enter

215 scheduled stop leave 215 punctual

[215, 400] abrupt acceleration [215, 400] uncomfortable driving

[500, 600] very sharp turn [500, 600] unsafe driving

700 late stop enter 700 non-punctual

705 passenger density since(705) reducing passenger

change to high comfort

715 scheduled stop leave

820 scheduled stop enter

815 passenger density [705, 815] reducing passenger

change to low comfort

. . .



Tutorial Scope

Logic-based event recognition systems:
I Formal semantics

I Verification, traceability.

I Declarative semantics
I More easily applied to a variety of settings, easier to be

understood by end users.

I High expressiveness
I Compact representation.

At the same time, logic-based event recognition systems:

I can be very efficient;

I interoperate with non-logic based enterprise event processing
infrastructures and middleware.



Tutorial Scope

I We will present:
I A purely temporal reasoning system.
I A system for temporal and atemporal reasoning.
I A system for temporal and atemporal reasoning, explicitly

modelling uncertainty.

I For each system we will review:
I the representation language,
I reasoning algorithms,
I machine learning techniques.

I Other systems have of course been used for event recognition.

I Other systems may be used for event recognition.



PART I:
Chronicle Recognition



Event Definitions

punctual

(Id, VehicleType)

stop enter

(Id, VehicleType, 

StopCode, late)
V

V
stop leave

(Id, VehicleType, 

StopCode, early)

non-punctual

(Id, VehicleType)

stop leave

(Id, VehicleType, 

StopCode, scheduled)

stop enter

(Id, VehicleType, 

StopCode, early)

stop enter

(Id, VehicleType, 

StopCode, scheduled)

V

stop leave

(Id, VehicleType, 

StopCode, late)



Event Definitions

uncomfortable driving

(Id, VehicleType) V

sharp turn

(Id, VehicleType, sharp)

V

sharp turn

(Id, VehicleType, 

very_sharp)

unsafe driving

(Id, VehicleType)

abrupt acceleration

(Id, VehicleType, abrupt)

abrupt deceleration

(Id, VehicleType, abrupt)

abrupt acceleration

(Id, VehicleType, 

very_abrupt)

abrupt deceleration

(Id, VehicleType, 

very_abrupt)



Event Definitions

compromising passenger

safety

(Id, VehicleType)
V

violence

(Id, VehicleType)

emergency stop

(Id, VehicleType)

unsafe driving 

(Id, VehicleType)

vehicle accident

(Id, VehicleType)



High Level Event as Chronicle

A HLE can be defined as a set of events interlinked by time
constraints and whose occurrence may depend on the context.

I This is the definition of a chronicle.

Chronicle recognition systems:

I IxTeT — LAAS.

I Chronicle Recognition System — CRS/Onera.

I Chronicle Recognition System — CRS/Orange-FT group.

CRS/Orange-FT group has been used in many applications:

I Cardiac monitoring system.

I Intrusion detection in computer networks.

I Distributed diagnosis of web services.



Chronicle Representation Language

Predicate Meaning

event(E, T) Event E takes place at time T

event(F:(?V1,?V2),T) An event takes place at
time T changing the value of
property F from ?V1 to ?V2

noevent(E, (T1,T2)) Event E does not take place
between [T1,T2)

noevent(F:(?V1,?V2), No event takes place between
(T1,T2)) [T1,T2) that changes the value

of property F from ?V1 to ?V2

hold(F:?V, (T1,T2)) The value of property F is ?V
between [T1,T2)

occurs(N,M,E,(T1,T2)) Event E takes place at least
N times and at most M times
between [T1,T2)



Chronicle Representation Language

chronicle punctual[?id, ?vehicle](T1) {
event( stop enter[?id, ?vehicle, ?stopCode, scheduled], T0 )

event( stop leave[?id, ?vehicle, ?stopCode, scheduled], T1 )

T1 > T0

end - start in [1, 2000]

}

chronicle non punctual[?id, ?vehicle]() {
event( stop enter[?Id, ?vehicle, *, late], T0 )

}

chronicle punctuality change[?id, ?vehicle, non punctual](T1) {
event( punctual[?id, ?vehicle], T0 )

event( non punctual[?id, ?vehicle], T1 )

T1 > T0

noevent( punctual[?id, ?vehicle], ( T0+1, T1 ) )

noevent( non punctual[?id, ?vehicle], ( T0+1, T1 ) )

end - start in [1, 20000]

}



Chronicle Representation Language

compromising passenger

safety

(Id, VehicleType)
V

violence

(Id, VehicleType)

emergency stop

(Id, VehicleType)

unsafe driving 

(Id, VehicleType)

vehicle accident

(Id, VehicleType)

I Passenger safety: difficult to express that violence, emergency
stop, vehicle accident is more severe when taking place far
from a hospital or a police station.

I No mathematical operators in the atemporal constraints of
the CRS language.



Chronicle Representation Language

I Punctual line/route (as opposed to punctual vehicle): A route
is said to be punctual if all vehicles of the route are punctual.

I We cannot express universal quantification in the CRS
language.

CRS is a purely temporal reasoning system.

It is also a very efficient and scalable system.



Chronicle Recognition System

Each HLE definition is represented as a Temporal Constraint
Network. Eg:

stop enter
[?id,?vehicle,
?stopcode,
scheduled]

stop leave
[?id,?vehicle,
?stopcode,
scheduled]

[1,2000]



Chronicle Recognition System

Compilation stage:

I Constraint propagation in the Temporal Constraint Network.

I Consistency checking.

[2, 5]

A

CA

B

[1, 6]

[0, 10]

[0, 10]

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

A

CA

B

[0, 8]



Chronicle Recognition System

Recognition stage:

I Partial HLE instance evolution.

I Forward (predictive) recognition.

[2, 5]

A

CA

B

[1, 6]

[2, 10]

[3, 10]

[0, 8]

6 98 106 16111611

A

C

B

A

A

A

B

C

C@10

→



Chronicle Recognition System - Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

time

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

A@1 B[5,6]

duplicated



Chronicle Recognition System - Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

A@1 B[5,6]

duplicated



Chronicle Recognition System - Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

A@1 B[5,6]

duplicated



Chronicle Recognition System - Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

A@1 B[5,6]

duplicated



Chronicle Recognition System - Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

A@1 B[5,6]

duplicated



Chronicle Recognition System - Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

A@1 B[5,6]

duplicated



Chronicle Recognition System - Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

A@1 B[5,6]

duplicated



Chronicle Recognition System - Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

A@1 B[5,6]

duplicated



Chronicle Recognition System - Partial instances

HLE definition: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration

timeA@1

A@1 B[2,4]

A@3

A@1 B[4,4]

A@3 B[4,6]

B@5

killed instance

A@1 B@5 C[5,8]

A@1 B[5,6]

duplicated



Chronicle Recognition System

Recognition stage — partial HLE instance management:

I In order to manage all the partial HLE instances, CRS stores
them in trees, one for each HLE definition.

I Each event occurrence and each clock tick traverses these
trees in order to kill some HLE instances (tree nodes) or to
develop some HLE instances.

I The performance of CRS depends directly on the number of
partial HLE instances

I each tick or event O(Kn2) with K number of instances, n size
of models.



Chronicle Recognition System

Several techniques have been recently developed for improving
efficiency. Eg, ‘temporal focusing’:

I Distinguish between very rare events and frequent events
based on a priori knowledge of the monitored application.

I Focus on the rare events: If, according to a HLE definition, a
rare event should take place after the frequent event, store the
incoming frequent events, and start recognition only upon the
arrival of the rare event.

I In this way the number of partial HLE instances is
significantly reduced.

I Example: Reduce tram endurance

A B C
[1,3] [0,3]

A: enter tram intersection

B: abrupt deceleration

C: abrupt acceleration



Chronicle Recognition System

I Temporal focusing leads to backward recognition.

I CRS thus now offers hybrid recognition: it mixes forward and
backward recognition.

I Note: there exist purely backward recognition systems.



Chronicle Recognition System: Machine Learning

I Defining a HLE can be difficult and time-consuming.
I Methods that have been used for automatically extracting

HLE definitions in the CRS language:
I Automata based learning.
I Frequency based analysis of sequence of events.
I Inductive Logic Programming (ILP).

I ILP is well-suited to CRS because first-order logic programs
can be straightforwardly translated into CRS definitions and
vice-versa.

I ILP makes use of domain knowledge.



Inductive Logic Programming

ILP is a search problem.
Given:

I A set of positive examples E+ and a set of negative examples
E− (ground facts).

I A hypotheses language LH .

I A background knowledge base B. B and H are sets of clauses
of the form h← b1 ∧ · · · ∧ bn, where the head h and bi are
literals.

ILP searches for hypotheses H ∈ LH such that:

I B ∧ H � E+ (completeness).

I B ∧ H ∧ E− 2 � (consistency).



Inductive Logic Programming

Walk the hypothesis space:

I states: hypotheses from LH ;

I stop: found a hypotheses set that satisfies completeness and
consistency.

empty

bottom clause

most general clauses

most specific clauses



Inductive Logic Programming

A näıve generate-and-test algorithm would be far too
computationally expensive
The search must be restricted:

I Language bias to reduce the hypothesis space (how to express
a hypothesis).

I Search bias to restrict the search (how a hypothesis will be
selected).



Inductive Logic Programming: Learning Chronicles

Try to learn the definition of ‘punctual’: punctual(Id ,V ,T ).

I Input:
I A set of LLE.
I Annotations of ‘punctual’ (ie, examples).
I Language and search bias.

I Output: the definition of ‘punctual’.



Inductive Logic Programming: Learning Chronicles

input search output

Background knowledge:

% LLE for tram tr1

event(stop_enter(tr1,tram,stop1,early),20,init,e1).

event(stop_leave(tr1,tram,stop1,scheduled),20.5,e1,e2).

...

% LLE for bus b2

event(stop_enter(b2,bus,stop4,scheduled),44,init,e1).

event(stop_leave(b2,bus,stop4,late),46,e1,e2).

...

Examples:

%E+

punctual(tr1,tram,20.5). punctual(b2,bus,21).

...

%E-

punctual(tr1,tram,55). punctual(b2,bus,46).

...



Inductive Logic Programming: Learning Chronicles

input search output

Background knowledge:

% LLE for tram tr1

event(stop_enter(tr1,tram,stop1,early),20,init,e1).

event(stop_leave(tr1,tram,stop1,scheduled),20.5,e1,e2).

...

% LLE for bus b2

event(stop_enter(b2,bus,stop4,scheduled),44,init,e1).

event(stop_leave(b2,bus,stop4,late),46,e1,e2).

...

Examples:

%E+

punctual(tr1,tram,20.5). punctual(b2,bus,21).

...

%E-

punctual(tr1,tram,55). punctual(b2,bus,46).

...



Inductive Logic Programming: Learning Chronicles

input search output

Background knowledge:

% LLE for tram tr1

event(stop_enter(tr1,tram,stop1,early),20,init,e1).

event(stop_leave(tr1,tram,stop1,scheduled),20.5,e1,e2).

...

% LLE for bus b2

event(stop_enter(b2,bus,stop4,scheduled),44,init,e1).

event(stop_leave(b2,bus,stop4,late),46,e1,e2).

...

Examples:

%E+

punctual(tr1,tram,20.5). punctual(b2,bus,21).

...

%E-

punctual(tr1,tram,55). punctual(b2,bus,46).

...



Inductive Logic Programming: Learning Chronicles

input search output

Language bias with mode declaration.

% mode declarations

:- modeh(*, punctual(+id,+vehicle,+float)).

:- modeb(*, event(stop_enter(+id,+vehicle,+stop,

#respected_time), -float, -evt, -evt)).

:- modeb(*, event(stop_leave(+id,+vehicle,+stop,

#respected_time), -float, -evt, -evt)).

:- modeb(*,event(abrupt_deceleration(+id,+vehicle),

-float, -evt, -evt)).



Inductive Logic Programming: Learning Chronicles

input search output

The ALEPH algorithm:

I Select an example from E+, e.g. punctual(tr1 , tram, 20 .5)

I Build most-specific-clause

I Search for more general clause

I Add clause to H and remove covered examples

I Repeat until E+ = ∅



Inductive Logic Programming: Learning Chronicles

input search output

The ALEPH algorithm:

I Select an example from E+, e.g. punctual(tr1 , tram, 20 .5)

I Build most-specific-clause

I Search for more general clause

I Add clause to H and remove covered examples

I Repeat until E+ = ∅

[bottom clause]

punctual(Id, V, T) :-

event(abrupt deceleration(Id, V), T1, E0, E1),

event(stop enter(Id, V, S, early), T2, E1, E2),

event(stop leave(Id, V, S, scheduled), T3, E2, E3).



Inductive Logic Programming: Learning Chronicles

input search output

The ALEPH algorithm:

I Select an example from E+, e.g. punctual(tr1 , tram, 20 .5)

I Build most-specific-clause

I Search for more general clause

I Add clause to H and remove covered examples

I Repeat until E+ = ∅

[best clause]

punctual(Id, V, T) :-

event(stop enter(Id, V, S, early), T1, E0, E1),

event(stop leave(Id, V, S, scheduled), T2, E1, E2).



Inductive Logic Programming: Learning Chronicles

input search output

The ALEPH algorithm:

I Select an example from E+, e.g. punctual(tr1 , tram, 20 .5)

I Build most-specific-clause

I Search for more general clause

I Add clause to H and remove covered examples

I Repeat until E+ = ∅



Inductive Logic Programming: Learning Chronicles

input search output

The ALEPH algorithm:

I Select an example from E+, e.g. punctual(tr1 , tram, 20 .5)

I Build most-specific-clause

I Search for more general clause

I Add clause to H and remove covered examples

I Repeat until E+ = ∅



Inductive Logic Programming: Learning Chronicles

input search output

[Rule 1]

punctual(Id,V,T2) :-

event(stop_enter(Id,V,S,early),T1,E0,E1),

event(stop_leave(Id,V,S,scheduled),T2,E1,E2).

[Rule 2]

punctual(Id,V,T2) :-

event(stop_enter(Id,V,S,scheduled),T1,E0,E1),

event(stop_leave(Id,V,S,scheduled),T2,E1,E2).



Inductive Logic Programming: Learning Chronicles

[Rule 2]

punctual(Id,V,T2) :-

event(stop_enter(Id,V,S,scheduled),T1,E0,E1),

event(stop_leave(Id,V,S,scheduled),T2,E1,E2).

straightforwardly translated into a chronicle model

chronicle punctual[?id, ?vehicle](T1) {
event( stop enter[?id, ?vehicle, ?stopCode, scheduled], T0 )

event( stop leave[?id, ?vehicle, ?stopCode, scheduled], T1 )

T1 > T0

end - start in [1, 2000]

}



Inductive Logic Programming: Learning Chronicles

ILP:

+ The capacity to make use of background information and
declarative bias.

- Not good at handling numbers — either expert-defined
constraints or two-step relation-constraint learning.



Chronicle Recognition System: Summary

I Domain experts easily understand the CRS language.

I CRS has proven to be very efficient in different domains (eg,
medical diagnosis, communication network, web-services).

But CRS does not:

I support atemporal reasoning;

I deal with uncertainty.



PART II:
Event Calculus



Event Calculus

I Formalism for representing events and their effects.

I Usually expressed as a logic (Prolog) program.

Predicate Meaning

happensAt(E , T ) Event E is occurring at time T

happensFor(E , I ) I is the list of the maximal
intervals during which event E
takes place

initially(F =V ) The value of fluent F is V
at time 0

holdsAt(F =V , T ) The value of fluent F is V
at time T

holdsFor(F =V , I ) I is the list of the maximal
intervals for which F =V
holds continuously

initiatedAt(F =V , T ) At time T a period of time
for which F =V is initiated

terminatedAt(F =V ,T ) At time T a period of time
for which F =V is terminated



Event Calculus

happensAt( punctual(Id ,Vehicle), DT )←
happensAt( stop enter(Id ,Vehicle, StopCode, scheduled), AT ),
happensAt( stop leave(Id ,Vehicle,StopCode, scheduled), DT ),
DT > AT

happensAt( non punctual(Id ,Vehicle), AT )←
happensAt( stop enter(Id ,Vehicle, , late), AT )

happensAt( non punctual(Id ,Vehicle), DT )←
happensAt( stop leave(Id ,Vehicle, , early), DT )

happensAt( non punctual(Id ,Vehicle), DT )←
happensAt( stop leave(Id ,Vehicle, , late), DT )



Event Calculus

initially( punctuality( , ) = punctual )

initiatedAt( punctuality(Id ,Vehicle) = punctual , T )←
happensAt( punctual(Id ,Vehicle), T )

initiatedAt( punctuality(Id ,Vehicle) = non punctual , T )←
happensAt( non punctual(Id ,Vehicle), T )

happensAt( punctuality change(Id ,Vehicle, non punctual), T )←
holdsFor( punctuality(Id ,Vehicle) = non punctual , I ),
(T , ) ∈ I ,

T 6= 0



Event Calculus

happensFor( compromising passenger safety(Id ,Vehicle), CPSI )←
happensFor( unsafe driving(Id ,Vehicle), UDI ),
happensFor( violence(Id ,Vehicle), VI ),
happensFor( emergency stop(Id ,Vehicle), ESI ),
happensFor( vehicle accident(Id ,Vehicle), VAI ),
union all( [UDI ,VI ,ESI ,VAI ], CPSI )



Event Calculus

I Very expressive — full power of logic programming.

I Temporal, logical and spatial representation in a single
framework.



Event Calculus

I The Event Calculus (EC) has built-in rules for computing HLE
intervals.

I There are various implementation routes concerning EC.

I Reasoning in EC can be performed at query-time or at
update-time.

I Query-time reasoning: the recognition system logs the input
LLE without processing them, and reasons about the log when
a query — concerning HLE recognition — is submitted.



Event Calculus

Off-line recognition — we query EC after the operation of the
monitored application:

Time Input LLE Output HLE

5 stop enter(b5 , bus, 55 , scheduled)

12 stop leave(b5 , bus, 55 , scheduled)

18 stop enter(b5 , bus, 56 , early)

23 stop leave(b5 , bus, 56 , late)

30 stop enter(b5 , bus, 57 , scheduled)

. . .

punctual(b5 , bus)@12
non punctual(b5 , bus)@23



Event Calculus

On-line recognition — we query EC during the operation of the
monitored application, say every 15 time-points:

Time Input LLE Output HLE

5 stop enter(b5 , bus, 55 , scheduled)

12 stop leave(b5 , bus, 55 , scheduled)

15 punctual(b5 , bus)@12

18 stop enter(b5 , bus, 56 , early)

23 stop leave(b5 , bus, 56 , late)

30 stop enter(b5 , bus, 57 , scheduled) non punctual(b5 , bus)@23

. . .



Event Calculus

T Input LLE Output HLE

5 stop enter(b5 , bus, 55 , scheduled)

12 stop leave(b5 , bus, 55 , scheduled)

15 since(12) :
punctuality(b5 , bus) = punctual

18 stop enter(b5 , bus, 56 , early)

23 stop leave(b5 , bus, 56 , late)

30 stop enter(b5 , bus, 57 , scheduled) [12 , 23) :
punctuality(b5 , bus) = punctual

since(23) :
punctuality(b5 , bus) = non punctual

. . .



Cached Event Calculus

I The Cached Event Calculus (CEC) is an EC dialect with an
implementation of a caching technique.

I CEC stores the intervals of the recognised HLE.

I Update-time reasoning: the recognition system infers and
stores all consequences of each LLE when the LLE is entered
into the recognition system. Query processing, therefore,
amounts to retrieving the appropriate HLE intervals from the
memory.

Note:

I Caching does not necessarily imply update-time reasoning.



Cached Event Calculus

T Input LLE Output HLE

5 stop enter(b5 , bus, 55 , scheduled)

12 stop leave(b5 , bus, 55 , scheduled) since(12) :
punctuality(b5 , bus) = punctual

18 stop enter(b5 , bus, 56 , early)

23 stop leave(b5 , bus, 56 , late) [12 , 23) :
punctuality(b5 , bus) = punctual
since(23) :
punctuality(b5 , bus) = non punctual

30 stop enter(b5 , bus, 57 , scheduled)

. . .



Cached Event Calculus

updateInit(LLE, T, HLE)

update(LLE, T)

updateTermin(LLE, T, HLE)

breakingI(HLE, T, [T1, T2])creatingI(HLE, T)



Cached Event Calculus

I The recognition efficiency of CEC heavily depends on the
order in which LLE arrive.

Note:

I Other caching techniques may lead to more efficient HLE
recognition when non-chronological LLE arrival is common.

I There is room for optimisation in CEC.

I Caching in CEC is applied to a particular type of HLE
definition — only the definitions expressed by initiatedAt and
terminatedAt (eg punctuality).

I Caching is necessary for all types of HLE definition of an
application.



Event Calculus: Machine Learning

Event Calculus is a logic program, thus Inductive Logic
Programming (ILP) can be applied.

Input:

I HLE annotation/examples.
I Background knowledge:

I Event Calculus axioms.
I Narrative of LLE.
I Other domain specific knowledge (optionally).

Output: HLE definitions in terms of happensAt, initiatedAt and
terminatedAt.



Learning Event Calculus HLE Definitions

Try to learn the definition of punctual :

happensAt( punctual(Id ,Vehicle), T )

Positive examples:
...
happensAt( punctual(b5 , bus), 43 )
...

Negative examples:
...
happensAt( punctual(b5 , bus), 87 )
...



Learning Event Calculus HLE Definitions

Try to learn the definition of ‘reducing passenger satisfaction’:
initiatedAt( reducing passenger satisfaction(Id ,V ) = true, T )

Examples:
...
not holdsAt( reducing passenger satisfaction(b1 , bus) = true, 6 )
holdsAt( reducing passenger satisfaction(b1 , bus) = true, 8 )
...
Background Knowledge:
...
happensAt( passenger density change(b1 , bus, low), 6 )
happensAt( passenger density change(b1 , bus, high), 8 )
...
holdsAt( temperature(b1 , bus) = very warm, 8 )
holdsAt( noise level(b1 , bus) = high, 8 )
...



Learning Event Calculus HLE Definitions

Combination of Abductive Logic Programming (ALP) with ILP:

I Enables non-observation predicate learning.

I Exploits background knowledge.
I Creates ‘explanations’ that fill incomplete knowledge

I In our case, produce ground initiatedAt predicates.

holdsAt( F = V , T )←
initiatedAt( F = V , T ′ ),

T
′
< T ,

not broken( F = V , T
′
, T )



Learning Event Calculus HLE Definitions

Abduction Deduction Induction

Background

Knowledge

Examples

Hypotheses

The XHAIL system:

I Abduction: produce ground initiatedAt predicates.

I Deduction: produce preliminary ground hypotheses.

I Induction: perform generalisation.



Learning Event Calculus HLE Definitions

Abduction Deduction Induction

Background

Knowledge

Examples

Hypotheses

Examples:
...
not holdsAt( reducing passenger satisfaction(b1 , bus) = true, 6 )
holdsAt( reducing passenger satisfaction(b1 , bus) = true, 8 )
...
Narrative:
...
happensAt( passenger density change(b1 , bus, low), 6 )
happensAt( passenger density change(b1 , bus, high), 8 )
...



Learning Event Calculus HLE Definitions

Abduction Deduction Induction

Background

Knowledge

Examples

Hypotheses

Delta set:
...
initiatedAt( reducing passenger satisfaction(b1 , bus) = true, 8 )
initiatedAt( reducing passenger satisfaction(b1 , bus) = true, 9 )
...
initiatedAt( reducing passenger satisfaction(b5 , bus) = true, 200 )
...



Learning Event Calculus HLE Definitions

Abduction Deduction Induction

Background

Knowledge

Examples

Hypotheses

Kernel set:
initiatedAt( reducing passenger satisfaction(b1 , bus) = true, 8 )←

happensAt( passenger density change(b1 , bus, high), 8 ),
holdsAt( temperature(b1 , bus) = very warm, 8 ),
holdsAt( noise level(b1 , bus) = high, 8 )

...
initiatedAt( reducing passenger satisfaction(b5 , bus) = true, 200 )←

happensAt( passenger density change(b5 , bus, high), 200 ),
holdsAt( temperature(b5 , bus) = very warm, 200 ),
holdsAt( noise level(b5 , bus) = low , 200 )

...



Learning Event Calculus HLE Definitions

Abduction Deduction Induction

Background

Knowledge

Examples

Hypotheses

Hypotheses:
initiatedAt( reducing passenger satisfaction(Id ,V ) = true, T )←

happensAt( passenger density change(Id ,V , high), T ),
holdsAt( temperature(Id ,V ) = very warm, T )

...



Event Calculus: Machine Learning

Depending on the available examples (HLE annotation) and
desired HLE formalisation, we may use:

I ILP only
I see Part I for the advantages and disadvantages of ILP.

I ALP & ILP
I ALP does not scale well in large datasets.



Event Calculus: Summary

I Domain experts easily understand EC.

I EC is a very expressive formalism, supporting both temporal
and atemporal representation and reasoning.

But:

I there is room for optimisation in EC;

I EC does not deal with uncertainty.



PART III:
Markov Logic



Common Problems of Event Recognition

I Limited dictionary of LLE and context variables.

I Incomplete LLE stream.

I Erroneous LLE detection.

I Inconsistent HLE annotation.

I Inconsistent LLE annotation.

Therefore, adequate treatment of uncertainty is required.



Logic-Based Models & Graphical Models

I Logic-based models:
I Very expressive.
I Directly exploit background knowledge.
I Trouble with uncertainty.

I Probabilistic graphical models:
I Handle uncertainty.
I Model sequential event patterns.
I Difficult to model complex events.



Can these approaches combined?

Research communities that try combine these approaches:

I Probabilistic Inductive Logic Programming.

I Statistical Relational Learning.

How?

I Logic-based approaches incorporate statistical methods.

I Probabilistic approaches learn logic-based models.



First-Order Logic

I Constants, variables, functions and predicates
e.g. tram, T, punctual(tr0 , tram), happensAt(E ,T ).

I Grounding: replace all variables with constants
e.g. happensAt( punctual(tr0 , tram), 10 ).

I World: Assignment of truth values to all ground predicates
e.g.
...
happensAt( punctual(tr0 , tram), 10 ) = True
happensAt( punctual(tr0 , tram), 15 ) = False
...

I A Knowledge Base (KB) in first-order logic: a set of hard
constraints on a set of possible worlds.



Markov Logic

Markov Logic or Markov Logic Network (MLN):

I Unifies first-order logic with graphical models
I Compactly represents complex event relations.
I Handles uncertainty.

I Syntactically: weighted first-order logic formulas (Fi ,wi ).

I Semantically: (Fi ,wi ) represents a probability distribution
over possible worlds

P(world) ∝ exp (
∑

(weights of formulas it satisfies))

A world violating formulas becomes less probable, but not
impossible!



Markov Logic: Knowledge-Based Model Construction

LLE

HLE 

Knowledge 

base

Grounding

Markov-logic Markov NetworkSensors



Markov Logic: Representation

Example definition of HLE ‘uncomfortable driving’ :

abrupt movement(Id ,V ,T )←
abrupt acceleration(Id ,V ,T ) ∨
abrupt deceleration(Id ,V ,T ) ∨
sharp turn(Id ,V ,T )

w1

uncomfortable driving(Id ,V ,T2)←
enter intersection(Id ,V ,T1) ∧
abrupt movement(Id ,V ,T2) ∧
before(T1,T2)

w2



Markov Logic: Representation

I Weight: a real-valued number.

I Higher weight −→ Stronger constraint.
I Hard constraints

I Infinite weight values.
I Background knowledge.
I Axioms.

I Soft constraints
I Strong weight values: almost always true.
I Weak weight values: describe exceptions.



Markov Logic: LLE Uncertainty Propagation

Sensors detect LLE:

I Certainty.

I Degree of confidence.

Example:

I sharp turn(tr0 , tram, 20) detected with probability 0.7

I sharp turn(tr0 , tram, 20) with w1 ∝ 0.7

I ¬sharp turn(tr0 , tram, 20) with w2 ∝ 0.3



Markov Logic: Network Construction

I Formulas are translated into clausal form.

I Weights are divided equally among clauses:

¬abrupt acceleration(Id ,V ,T ) ∨ abrupt movement(Id ,V ,T )

¬abrupt deceleration(Id ,V ,T ) ∨ abrupt movement(Id ,V ,T )

¬sharp turn(Id ,V ,T ) ∨ abrupt movement(Id ,V ,T )

1
3
w1

1
3
w1

1
3
w1

¬enter intersection(Id ,V ,T1) ∨ ¬abrupt movement(Id ,V ,T2) ∨
¬before(T1,T2) ∨ uncomfortable driving(Id ,V ,T2)

w2



Markov Logic: Network Construction

Template that produces ground Markov network:

I Given a set of constants — detected LLE

I Ground all clauses

I Boolean nodes — ground predicates
I Each ground clause

I Forms a clique in the network
I Is associated with wi and a Boolean feature

P(X = x) = 1
Z exp (

∑
i wini (x))

Z =
∑

x∈X exp(P(X = x))



Markov Logic: Network Construction

¬abrupt acceleration(Id ,V ,T ) ∨ abrupt movement(Id ,V ,T )

¬abrupt deceleration(Id ,V ,T ) ∨ abrupt movement(Id ,V ,T )

¬sharp turn(Id ,V ,T ) ∨ abrupt movement(Id ,V ,T )

1
3
w1

1
3
w1

1
3
w1

¬enter intersection(Id ,V ,T1) ∨ ¬abrupt movement(Id ,V ,T2) ∨
¬before(T1,T2) ∨ uncomfortable driving(Id ,V ,T2) w2

LLE:
abrupt acceleration(tr0, tram, 101)
enter intersection(tr0, tram, 100)
before(100, 101)

Constants:
T = {100, 101}
Id = {tr0}
V = {tram}

enter_ 

intersection
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movement

(tr0,tram,101)

uncomfortable

_driving

(tr0, tram,101)

before

(100,101)

abrupt_ 

deceleration

(tr0,tram,101)

sharp_turn

(tr0,tram,101)

abrupt_ 

acceleration

(tr0,tram,101)



Markov Logic: World State Discrimination

P(X = x1)

= 1
Z
exp( 1

3
w1· 1 + 1

3
w1· 1 + 1

3
w1· 1 + w2· 1)

= 1
Z
ew1+w2

P(X = x2)

= 1
Z
exp( 1

3
w1· 1 + 1

3
w1· 1 + 1

3
w1· 1 + w2· 0)

= 1
Z
ew1
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Markov Logic: World State Discrimination

P(X = x1)

= 1
Z
exp( 1

3
w1· 1 + 1

3
w1· 1 + 1

3
w1· 1 + w2· 1)

= 1
Z
ew1+w2

P(X = x2)

= 1
Z
exp( 1

3
w1· 1 + 1

3
w1· 1 + 1

3
w1· 1 + w2· 0)

= 1
Z
ew1
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Markov Logic: Inference

I Event recognition involves querying about HLE

I Having a ground Markov network

I Apply standard probabilistic inference methods

I Large network with complex structure

I Infeasible inference

I MLN combine logical and probabilistic inference methods



Markov Logic: Conditional Inference

Query: The trams that are driven in
an uncomfortable manner given a
LLE stream.

I Query variables Q: HLE

I Evidence variables E : LLE

I Hidden variables H

P(Q | E = e,H) =
P(Q,E = e,H)

P(E = e,H)
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Markov Logic: Conditional Inference

Query: The trams that are driven in
an uncomfortable manner given a
LLE stream.

I Query variables Q: HLE

I Evidence variables E : LLE

I Hidden variables H

P(Q | E = e,H) =
P(Q,E = e,H)

P(E = e,H)
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Markov Logic: Conditional Inference

Query: The trams that are driven in
an uncomfortable manner given a
LLE stream.

I Query variables Q: HLE

I Evidence variables E : LLE

I Hidden variables H

P(Q | E = e,H) =
P(Q,E = e,H)

P(E = e,H)
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Markov Logic: Conditional Inference

I Efficiently approximated with sampling.

I Markov Chain Monte Carlo (MCMC): e.g. Gibbs sampling.

I Random walks in state space.

I Reject all states where E = e does not hold.



Markov Logic: Markov Chain Monte Carlo
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... ...



Markov Logic: Deterministic Dependencies

I MCMC is a pure statistical method.

I MLNs combine logic and probabilistic
models.

I Hard constrained formulas:
I Deterministic dependencies.
I Isolated regions in state space.

I Strong constrained formulas:
I Near-deterministic dependencies.
I Difficult to cross regions.

I Combination of satisfiability testing with
MCMC.

P(X=x)

xxi xj

P(X=x)

xxi xj



Markov Logic: Machine Learning

I Training data: LLE annotated with HLE
...
abrupt acceleration(tr0, tram, 101)
enter intersection(tr0, tram, 100)
uncomfortable driving(tr0, tram, 101)
...
¬abrupt acceleration(tr8, tram, 150)
enter intersection(tr8, tram, 149)
¬uncomfortable driving(tr0, tram, 150)
...

I Weight estimation:
I Structure is known.
I Find weight values that maximise the likelihood function.
I Likelihood function: how well our model fits the data.
I Generative learning.
I Discriminative learning.

I Structure learning: first-order logic formulas.



Markov Logic: Generative Weight Learning

Log-likelihood:

log Pw (X = x) =
∑

i wini (x)− log Z

I Use iterative methods: e.g. gradient ascent.

I Optimise over the weight space.

I Good news: Converge to the global optimum.

I Bad news: Each iteration requires inference on the network.



Markov Logic: Generative Weight Learning

Pseudo-log-likelihood function:

log P∗w (X = x) =
∑n

l=1 log Pw (Xl = xl | MBx(Xl))

I Each ground predicate is conditioned on its Markov blanket.

I Very efficient.

I Does not require inference.

I Markov-blanket must be fully observed.



Markov Logic: Generative Weight Learning

Training data:

I ‘uncomfortable driving’
HLE is annotated.

I The truth value of LLE is
known.

I But the truth value of
‘abrupt movement’, which
is in the Markov blanket
of
‘uncomfortable driving’, is
unknown.
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Markov Logic: Discriminative Weight Learning

In event recognition we know a priori :

I Evidence variables — LLE.

I Query variables — HLE.

I Recognize HLE given LLE.

Conditional log-likelihood function:

log P(Q = q | E = e) =
∑

i wini (e, q)− log Ze

I Conditioning on evidence reduces the likely states.

I Inference takes place on a simpler model.

I Can exploit information from long-range dependencies.



Markov Logic: Summary

I Unifies first-order logic with graphical models:
I first-order logic: high expressiveness;
I graphical models: deal with uncertainty.

I Support for weight and structure learning

But:
I there is room for optimisation with respect to event

recognition
I in particular the handling of numerical constraints is

problematic;

I the simultaneous learning of weights, structure and numerical
constraints remains an open issue.



OPEN ISSUES



Open Issues

I Extension of the Chronicle Recognition System with
atemporal reasoning.

I Improvement of the reasoning efficiency of the Event Calculus.

I Use of abduction for partial supervision in large datasets.

I Use of numerical constraints in the inference algorithms of
Markov Logic Networks.

I Simultaneous optimisation of weights, numerical (temporal)
constraints and logical structure of HLE definition knowledge
base.


