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Joint work with
I Alexander Artikis (efficient event recognition)
I Jason Filippou (event recognition under uncertainty)
I Nikos Katzouris (structure learning for event recognition)
I Anastasios Skarlatidis (event recognition with MLNs)



Event Recognition

Input:

I Symbolic representation of time-stamped, low-level events
(LLE).

I LLE come from different sources/sensors.

I Very large amounts of input LLE.

Output:

I High-level events (HLE), i.e. temporal/spatial/logical
combinations of LLE and/or HLE.

I Humans understand HLE easier than LLE.

Scope:

I Symbolic event recognition, not signal processing.

Event recognition can be:

I Run-time.

I Retrospective.



Event Recognition for Public Space Surveillance
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Event Recognition for Public Space Surveillance

I Input: short-term activities. Eg: someone is walking, running,
stays inactive, becomes active, moves abruptly, etc.

I Output: long-term activities. Eg: two people are meeting,
someone leaves an unattended object, two people are fighting,
etc.

A long-term activity is recognised given a series of short-term
activities that satisfy a set of temporal, logical and spatial
constraints.



Event Recognition for Public Space Surveillance

Input

340 inactive(id0)

340 p(id0) =(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

. . .



Event Recognition for Public Space Surveillance

Input Output

340 inactive(id0) 340 leaving object(id1, id0 )

340 p(id0) =(20.88,−11.90)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

. . .



Event Recognition for Public Space Surveillance

Input Output

340 inactive(id0) 340 leaving object(id1, id0 )

340 p(id0) =(20.88,−11.90) since(340) moving(id2, id3)

340 appear(id0)

340 walking(id2)

340 p(id2) =(25.88,−19.80)

340 active(id1)

340 p(id1) =(20.88,−11.90)

340 walking(id3)

340 p(id3) =(24.78,−18.77)

380 walking(id3)

380 p(id3) =(27.88,−9.90)

380 walking(id2)

380 p(id2) =(28.27,−9.66)

. . .



Event Recognition for Public Space Surveillance

Input Output

420 active(id4)

420 p(id4) =(10.88,−71.90)

420 inactive(id3)

420 p(id3) =(5.8,−50.90)

420 abrupt(id5)

420 p(id5) =(11.80,−72.80)

420 active(id6)

420 p(id6) =(7.8,−52.90)

480 abrupt(id4)

480 p(id4) =(20.45,−12.90)

480 abrupt(id5)

480 p(id5) =(17.88,−11.90)

. . .



Event Recognition for Public Space Surveillance

Input Output

420 active(id4) [420, 480] fighting(id4, id5)

420 p(id4) =(10.88,−71.90)

420 inactive(id3)

420 p(id3) =(5.8,−50.90)

420 abrupt(id5)

420 p(id5) =(11.80,−72.80)

420 active(id6)

420 p(id6) =(7.8,−52.90)

480 abrupt(id4)

480 p(id4) =(20.45,−12.90)

480 abrupt(id5)

480 p(id5) =(17.88,−11.90)

. . .



Event Recognition for Public Space Surveillance

Input Output

420 active(id4) [420, 480] fighting(id4, id5)

420 p(id4) =(10.88,−71.90) since(420) meeting(id3, id6)

420 inactive(id3)

420 p(id3) =(5.8,−50.90)

420 abrupt(id5)

420 p(id5) =(11.80,−72.80)

420 active(id6)

420 p(id6) =(7.8,−52.90)

480 abrupt(id4)

480 p(id4) =(20.45,−12.90)

480 abrupt(id5)

480 p(id5) =(17.88,−11.90)

. . .



Event Recognition for City Transport Management
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Event Recognition for City Transport Management

I Input: LLE coming from GPS, accelerometers, internal
thermometers, microphones, internal cameras.

I Output: HLE concerning passenger and driver safety,
passenger and driver comfort, passenger satisfaction, etc.

I Details at http://www.ict-pronto.org/

http://www.ict-pronto.org/


Event Recognition for City Transport Management

Input Output

200 scheduled stop enter

215 scheduled stop leave

[215, 400] abrupt acceleration

[500, 600] very sharp turn

700 late stop enter

705 passenger density

change to high

715 scheduled stop leave

820 scheduled stop enter

815 passenger density

change to low

. . .



Event Recognition for City Transport Management

Input Output

200 scheduled stop enter

215 scheduled stop leave 215 punctual

[215, 400] abrupt acceleration [215, 400] uncomfortable driving

[500, 600] very sharp turn [500, 600] unsafe driving

700 late stop enter

705 passenger density

change to high

715 scheduled stop leave

820 scheduled stop enter

815 passenger density

change to low

. . .



Event Recognition for City Transport Management

Input Output

200 scheduled stop enter

215 scheduled stop leave 215 punctual

[215, 400] abrupt acceleration [215, 400] uncomfortable driving

[500, 600] very sharp turn [500, 600] unsafe driving

700 late stop enter 700 non-punctual

705 passenger density since(705) reducing passenger

change to high comfort

715 scheduled stop leave

820 scheduled stop enter

815 passenger density [705, 815] reducing passenger

change to low comfort

. . .



Overview

Event Calculus
Event Recognition using the Event Calculus

I Run-time event recognition with caching.

I Probabilistic event calculus (ProbLog, MLNs).

Adaptable Event Recognition

I MLN weight learning.

I Incremental structure learning with abduction.



Event Calculus

I Formalism for representing events and their effects.

I Originally expressed as a logic (Prolog) program.

I Built-in representation of law of inertia.

Predicate Meaning

happensAt(E , T ) Event E is occurring at time T

initially(F =V ) The value of fluent F is V
at time 0

initiatedAt(F =V , T ) At time T a period of time
for which F =V is initiated

terminatedAt(F =V ,T ) At time T a period of time
for which F =V is terminated

holdsAt(F =V , T ) The value of fluent F is V
at time T

holdsFor(F =V , I ) I is the list of the maximal
intervals for which F =V
holds continuously



Event Calculus

initially( punctuality( , ) = punctual )

initiatedAt( punctuality(Id ,Vehicle) = punctual , T )←
happensAt( punctual(Id ,Vehicle), T )

initiatedAt( punctuality(Id ,Vehicle) = non punctual , T )←
happensAt( non punctual(Id ,Vehicle), T )

happensAt( punctuality change(Id ,Vehicle, non punctual), T )←
holdsFor( punctuality(Id ,Vehicle) = non punctual , I ),
(T , ) ∈ I ,

T 6= 0



Event Calculus

holdsFor( driving quality(Id ,Vehicle) = low , LQDI )←
holdsFor( punctuality(Id ,Vehicle) = non punctual , NPI ),
holdsFor( driving style(Id ,Vehicle) = unsafe, USI ),
union all( [NPI ,USI ], LQDI )

holdsFor( driving quality(Id ,Vehicle) = medium, MQDI )←
holdsFor( punctuality(Id ,Vehicle) = punctual , PunctualI ),
holdsFor( driving style(Id ,Vehicle) = uncomfortable, UCI ),
intersect all( [PunctualI ,UCI ], MQDI )

holdsFor( driving quality(Id ,Vehicle) = high, HQDI )←
holdsFor( punctuality(Id ,Vehicle) = punctual , PunctualI ),
holdsFor( driving style(Id ,Vehicle) = unsafe, USI ),
holdsFor( driving style(Id ,Vehicle) = uncomfortable, UCI ),
relative complement all( PunctualI , [USI ,UCI ], HQDI )



Event Calculus: Run-Time Event Recognition
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Event Calculus: Run-Time Event Recognition



Event Calculus: Run-Time Event Recognition



Event Calculus: Run-Time Event Recognition



Event Calculus: Run-Time Event Recognition



Event Calculus: Run-Time Event Recognition



Run-Time Event Recognition for City Transport
Management
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Probabilistic Event Recognition

Event recognition methods:

I Logic-based methods

I Probabilistic methods

Event recognition requirements:

I Formal representation language

I Handle uncertainty

Probabilistic Event Calculus combines:

I Event Calculus — representation

I Probabilistic inference (ProbLog or MLNs) — uncertainty



Probabilistic Event Recognition: ProbLog

I A Probabilistic Logic Programming language.

I Allows for independent “probabilistic facts”, i.e facts of form:
prob::fact.

I Prob indicates the probability that fact is part of a possible
world.

I Rules are written as in classic Prolog: Head ← Body

I The probability of a query q imposed on a ProbLog database
(success probability) is computed by the following formula:

Ps(q) = P(
∨

e∈Proofs(q)

∧
fi∈e

fi )



Probabilistic Event Recognition: ProbLog

Input Output

340 0.45 :: inactive(id0) 340 0.41 :: leaving object(id1, id0)

340 0.80 :: p(id0) =(20.88,−11.90) 340 0.55 :: moving(id2, id3)

340 0.55 :: appear(id0)

340 0.15 :: walking(id2)

340 0.80 :: p(id2) =(25.88,−19.80)

340 0.25 :: active(id1)

340 0.66 :: p(id1) =(20.88,−11.90)

340 0.70 :: walking(id3)

340 0.46 :: p(id3) =(24.78,−18.77)

. . .



Preliminary Experimental Results (ProbLog)



Markov Logic Networks (MLN) — in a nutshell

I First-order logic → set of hard constraints

I Syntactically: weighted first-order logic formulas (Fi ,wi )

I Semantically: (Fi ,wi ) represents a probability distribution
over possible worlds (or Herbrand interpretations)

P( X = x ) =
1

Z
exp

(∑
i

wi ni (x)

)
I possible world

I partition function

I number of satisfied ground formulas

A world violating formulas becomes less probable, but not
impossible!



Representing Event Calculus in MLN

Some axioms of Event Calculus in First-Order Logic:

holdsAt(F , T )←happens(E , T0) ∧
initiates(E , F , T0) ∧
T0 < T ∧
¬clipped(F , T0, T )

 F × E × T × T0

clipped(F , T0, T1)↔ ∃ E ,T

happens(E , T ) ∧
T0 ≤ T < T1 ∧
terminates(E , F , T )

 F × E × T × T0 × T1

I Huge number of groundings
I Combinatorial explosion



Representing Event Calculus in MLN

Some axioms of Event Calculus in First-Order Logic:

holdsAt(F , T )←happens(E , T0) ∧
initiates(E , F , T0) ∧
T0 < T ∧
¬clipped(F , T0, T )

 F × E × T × T0

clipped(F , T0, T1)↔ ∃ E ,T

happens(E , T ) ∧
T0 ≤ T < T1 ∧
terminates(E , F , T )

 F × E × T × T0 × T1

I Huge number of groundings
I Combinatorial explosion



Simplified Discrete Event Calculus

When a fluent holds:

holdsAt(F ,T + 1)←
initiatedAt(F ,T )

}
F × T

holdsAt(F ,T + 1)←
holdsAt(F ,T ) ∧
¬teminatedAt(F ,T )

 F × T

When a fluent does not hold:

¬holdsAt(F ,T + 1)←
terminatedAt(F ,T )

}
F × T

¬holdsAt(F ,T + 1)←
¬holdsAt(F ,T ) ∧
¬initiatedAt(F ,T )

 F × T



Example: HLE definition

When the fluent ‘meeting’ is initiated:

initiatedAt(meeting,T)←
happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T )

initiatedAt(meeting,T)←
happens(event3,T ) ∧
¬happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T )

When the fluent ‘meeting’ is terminated:

terminatedAt(meeting,T)←
happens(event4,T )

...



Open-world semantics in MLN

Domain-dependent definitions:

I Conditions under which HLE are initiated or terminated

I Open-world assumption for non-evidence predicates:
initiatedAt, terminatedAt and holdsAt

When something is happening that it is not defined in the
domain-dependent definitions:

I Cannot determine whether a fluent holds or not

I Loss of the inertia

I This is also known as the frame problem

I Solution: predicate completion



Predicate completion and MLN

HLE definitions =



1.5

initiatedAt(meeting,T)←
happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T )

0.25

initiatedAt(meeting,T)←
happens(event3,T ) ∧
¬happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T )

...

Completion constraints =
(automatically generated)



4.0

initiatedAt(meeting,T)→
[happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T ) ]

∨
[happens(event3,T ) ∧
¬happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T ) ]

...



Predicate completion and MLN

HLE definitions =



1.5

initiatedAt(meeting,T)←
happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T )

0.25

initiatedAt(meeting,T)←
happens(event3,T ) ∧
¬happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T )

...

Completion constraints =
(automatically generated)



4.0

initiatedAt(meeting,T)→
[happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T ) ]

∨
[happens(event3,T ) ∧
¬happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T ) ]

...



Predicate completion and MLN

HLE definitions =



1.5 initiatedAt(meeting,T)←
happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T )

0.25 initiatedAt(meeting,T)←
happens(event3,T ) ∧
¬happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T )

...

Completion constraints =
(automatically generated)



4.0 initiatedAt(meeting,T)→
[happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T ) ]

∨
[happens(event3,T ) ∧
¬happens(event1,T ) ∧
¬happens(event2,T ) ∧
distance(close,T ) ]

...



Inertia in probabilistic EC
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Inertia in probabilistic EC
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Experiments (MLN)

Input:
...
happens(active(id1),10)
happens(walking(id2),10)
happens(enter(id3),10)
...
happens(running(id3),90)
...
close(id1,id2,25,10)
close(id1,id2,25,11)
...

MLN

Output:
...
0.7 holdsAt(meet(id1,id2), 10)
0.6 holdsAt(meet(id1,id2), 11)
...
0.2 holdsAt(meet(id1,id2), 90)
...

Knowledge base:
Event Calculus axioms
HLE definitions
Additional constraints



Experimental results (MLN)

I EC-LP:
I Logic-programming based EC
I Knowledge base of HLE for CAVIAR dataset

I Manualy adjusted weight values for the HLE meeting :
I weak values — low confidence
I strong values — high confidence

I DEC-MLNa: soft-constrained HLE definitions

I DEC-MLNb: soft-constrained HLE definitions and termination
rules in the additional constraints

Method TP FP FN Precision Recall

EC-LP 3099 2258 525 0.578 0.855
DEC-MLNa 3048 1762 576 0.633 0.841
DEC-MLNb 3048 1154 576 0.725 0.841

Source KB and dataset files can be found in http://www.iit.demokritos.gr/∼anskarl



MLN weight learning

I Manually adjusting the weight values is a tedious and error
prone process

I Annotation is given in terms of ground holdsAt predicates

LLE HLE

... ...
happens(walking(id1), 100)
happens(walking(id2), 100)

distance(close(id1, id2), 100) holdsAt(moving(id1, id2), 100)
happens(walking(id1), 101)
happens(walking(id2), 101)

¬distance(close(id1, id2), 101) holdsAt(moving(id1, id2), 101)
happens(walking(id1), 102)
happens(walking(id2), 102)

¬distance(close(id1, id2), 102) ¬holdsAt(moving(id1, id2), 102)
... ...



MLN Weight learning

I Predicates initiatedAt/terminatedAt are not observable

I The KB can be further simplified by eliminating the
initiatedAt/terminatedAt predicates — supervised learning

I Weight estimation using: Conjugate Gradient or Diagonal
Newton

Conditional log-likelihood function:

log P( Q = q | E = e ) =
∑

i wini (e, q)− log Ze

I Query prediates: HLE

I Evidence predicates: LLE



MLN weight learning results
meeting HLE (hard inertia) meeting HLE (soft inertia)
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moving HLE (hard inertia) moving HLE (soft inertia)
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Structure learning with abduction

Learning event structure (requirements):

I Represent and reason about time properties.

I Learning with partial supervision (Non-OPL - output clauses
in which head literals do not appear in the training examples).

I Process large data streams.

Combining abduction with induction
Negation As Failure (stable model) semantics useful for:

I Handling of inertia.

I Learning with partial supervision (abduction).



Structure learning: Example of non-OPL learning

Compute a theory of the form:

initiatedAt(reducing passenger satisfaction(Id ,VehicleType) = true,T )←
happens(temperature change(Id ,VehicleType, very warm),T ),
holdsAt(punctuality(Id ,VehicleType) = non punctual),T )

From examples of the form

holdsAt(reducing passenger satisfaction(b1, bus) = true, 8)
not holdsAt(reducing passenger satisfaction(b1, bus) = true, 16)
happens(temperature change(b1, bus, very warm) = true, 8)
. . .

And the axioms of the Event Calculus (as background knowledge)



Structure learning: three steps (XHAIL)

Example:

I Abduction

initiatedAt(reducing passenger satisfaction(b1, bus) = true, 8)

I Deduction

initiatedAt(reducing passenger satisfaction(b1, bus) = true, 8)←
happens(temperature change(b1, bus, very warm), 8),
holdsAt(punctuality(b1, bus) = non punctual), 8),
holdsAt(noise level(b1, bus) = high), 8)

I Induction

initiatedAt(reducing passenger satisfaction(Id ,VehicleType) = true,T )←
happens(temperature change(Id ,VehicleType, very warm),T ),
holdsAt(punctuality(Id ,VehicleType) = non punctual),T )



Structure learning from large data streams

The problem

I All three steps implemented with Answer Set Programming.
I Computing answer sets is intractable in the general case.

I Complexity increases with the size of the data.

Possible solution

I Break the dataset into smaller ones (partitions), e.g. time
window.

I Learn a separate theory for each partition.

I Ensure completeness and consistency with all data (not
minimality).



Structure learning from large data streams



Structure learning from large data streams

Preliminary hypothesis H: computed from p0 (first partition)
Forward direction: new partition is being processed
Backward direction: past partitions are being revisited
Revision operators:

I Generalization (occurs in forward motion). Adds extra clauses
to H. Fires backward specialization to retain consistency.

I Specialization (occurs in both forward and backward motion).
Adds extra literals to inconsistent clauses.

Support Set: A structure associated with each clause C ∈ H.

I Compressive way to “remember” the examples that C covers
from each partition.

I “Pool” for literals used to specialize an inconsistent clause.

Initial experiments: batch (> 1 day), incremental (< 1
minute)



Conclusions

I Event Calculus is a sound basis for event recognition.

I Very efficient event recognition can be achieved with caching.

I Uncertainty can be handled with probabilistic event calculus.

I Closed World semantics help.

I Probabilistic inertia in EC is particularly interesting.

I Weight learning in MLNs is effective.

I Structure learning with incremental theory revision is efficient.



Open issues

I Handling of intervals in probabilistic event recognition and
learning.

I Simultaneous handling of uncertainty at the level of data and
the knowledge base.

I Simultaneous optimization of structure and weights.

I Efficient semi-supervised learning in MLNs.

I Interaction with signal processing, providing low-level events.


