# Discovering user communities on the Web and beyond

#### Georgios Paliouras

Institute of Informatics and Telecommunications National Center for Scientific Research "Demokritos"

e-mail: paliourg@iit.demokritos.gr
Web page: http://www.iit.demokritos.gr/~paliourg

Ubiquitous Knowledge Discovery for Users (UKDU), Workshop at ECML/PKDD, Berlin, 22 September 2006 Motivation

#### Motivation

#### Single-site user models

Model common user interests Identify patterns in user navigation

#### Whole-Web user models

Personalize Web directories Include semantics in navigation patterns

#### **Active User Communities**

Active User Communities on the Web Active User Communities beyond the Web

#### Summary and other stuff

Summary Other Stuff



- ightharpoonup Web  $\equiv$  easy access to information and services.
- Problems: size, structure and dynamics of the Web.
- Tools to facilitate access: search engines, Web directories, portals, etc.
- They do not quite work.

### Personalization

- ► Intelligent solutions: personalization, semantics, etc.
- Personalization requires knowledge about the users, i.e. user models.
- Can we build user models from recorded usage data?
- Respecting user privacy.

Active User Communities

### Our approach

- Focus on generic user models (stereotypes and communities).
- Off-line user modeling, on-line personalization.
- Early work: Personalize Web sites.
  - Model common user interests.
  - Identify patterns in user navigation.
- Current work: Personalize the Web.
  - Personalize Web directories.
  - Include semantics in navigation patterns.



### Beyond the Web

- New opportunities:
  - Mobile access to the Web.
  - New types of device on the Internet.
  - New network types.
  - More content and new services.
- New problems:
  - Increased information overload.
  - More noise (e.g. spam).
  - New dangers.
- Our proposal: discovery of active user communities.



Motivation

# Constructing Stereotypes [UM1999]

- Assume registered users.
- Users provide personal information, e.g. occupation, age, gender etc.
- ► Record usage of the site (Web page requests): [ses301, usr15, sports.html, football.html, basketball.html, racing.html]
- ► Web pages may be organized into categories: SPORTS=[sports.html, football.html, basketball.html, racing.html]

# Constructing Stereotypes

► Target: Models that associate stereotypical behavior with personal characteristics, e.g.

```
IF age IN [20..30] AND gender=male
THEN [football.html, racing.html]
```

- Discovery method:
  - 1. Group pages into categories (unsupervised).
  - Identify patterns in user behavior (unsupervised),
     e.g. [football.html, racing.html]
  - 3. Associate patterns with personal information (supervised).

Summary and other stuff

Model common user interests

# Constructing Communities

[ECDL1998,SMC1999, AAAI2000, ICML2000, IwC2002]

- Problems with stereotypes:
  - Hard to acquire accurate personal information.
  - Privacy issues.
- Solution: Restrict models to patterns in user behavior.
- We call these user communities.
- Initial approach: cluster users/sessions.

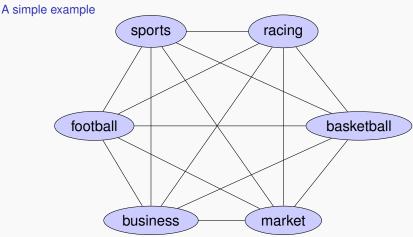
Model common user interests

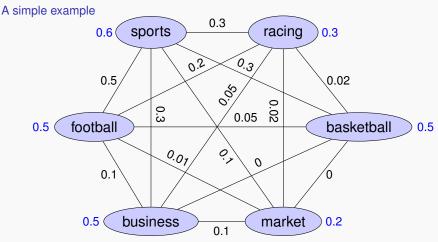
# Constructing Communities

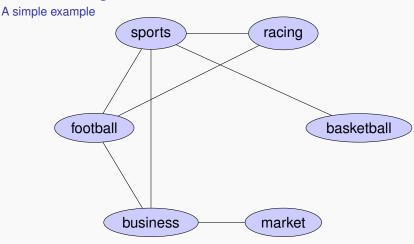
Our Approach

Motivation

- We are interested in behavior patterns rather than user clusters.
- Community models ≡ clusters of pages.
- Such models can be used directly for personalization, e.g. recommendation.
- Essential to allow overlapping clusters.


#### Graph-based clustering


#### Community models $\equiv$ cliques of Web pages:


1. Represent Web pages as bags of sessions:

```
[sports.html: ses1, ses12, ses123, ...]
[racing.html: ses1, ses351, ...] ...
```

- 2. Generate Graph  $G=<E,V,W_e,W_v>$ , where: V: pages,  $W_v$  freq. of occurrence, E: pairs of pages,  $W_e$ : freq. of co-occurrence.
- 3. Reduce graph connectivity by requiring  $W'_e > T_c$ , where  $W'_e = W_e / \max(W_v^1, W_v^2)$ .
- 4. Identify cliques in normalized G'.







Identify patterns in user navigation

## Modeling Web site navigation

- Model how users view the information.
- Initial approach: community models on page transitions, i.e. V is a set of page pairs in G,

```
e.g. [ses12, usr3, (sports.html, football.html),
(football.html, racing.html)
```

- Interesting results, but may model discontinuous paths, [(sports.html, football.html), (basketball.html, racing.html)]
- Simplistic solution: remove discontinuous models.

### Discovering grammatical models [ICGI2004]

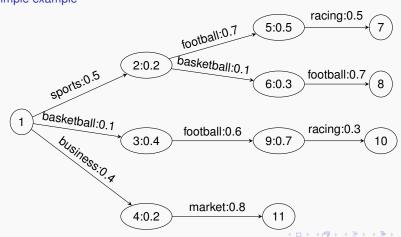
- Each Web page is a terminal symbol of a language L.
- Each user session is a string of the language.
- Assume strings are generated by an unknown grammar, modeled by a deterministic probabilistic SFA.
- Use grammatical inference to discover the automaton.

Identify patterns in user navigation

000000

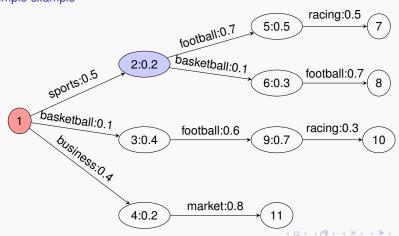
Motivation

## Discovering grammatical models


Grammatical inference

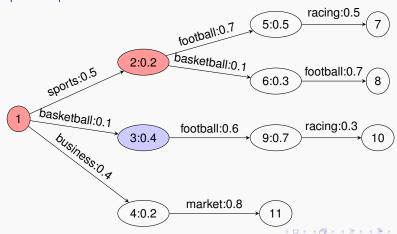
- Represent the data as a tree, in particular a PPTA: probabilistic prefix tree automaton.
- Iteratively merge compatible states, preserving determinism.
- Compatibility ≡ similar outward transitions.
- Heuristic search of the space of compatible states.

# Discovering grammatical models


A simple example

Motivation




Identify patterns in user navigation

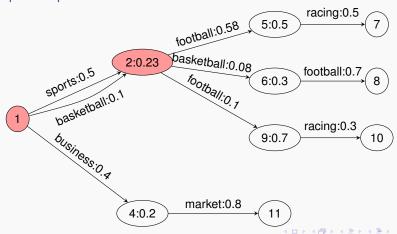
# Discovering grammatical models



Identify patterns in user navigation

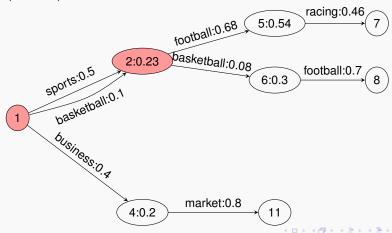
# Discovering grammatical models




Single-site user models

Identify patterns in user navigation

# Discovering grammatical models

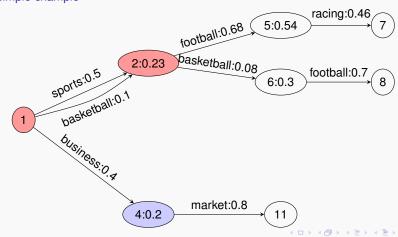

A simple example

Motivation



Identify patterns in user navigation

# Discovering grammatical models




000000

# Discovering grammatical models

A simple example

Motivation



Active User Communities

Identify patterns in user navigation

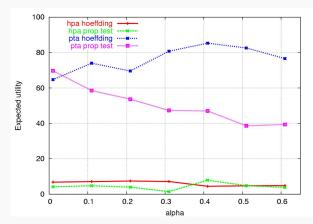
000000

# Discovering grammatical models

#### **Experiments**

- Recommendation on two large Web sites: MSWeb and a portal for chemistry.
- Evaluation process:

Single-site user models


- Build model on part of the usage data.
- Hide the last page in the remaining sessions.
- Trace observed path on the automaton.
- 4. Build recommendation list from current node's children.
- Evaluation measure (Expected Utility):

$$EU_a = \sum_{j=0}^{n-1} \frac{v_{aj}}{2^{j/h}}$$

00000

Motivation

### Discovering grammatical models Results



Motivation

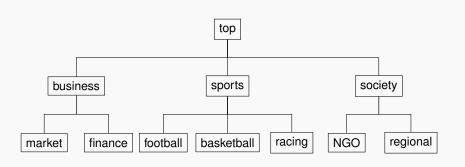
### Modeling usage of the whole Web The challenge

- The challenge of acquiring user models on the Web:
  - Usage data is voluminous.
  - Web structure is unknown and complex.
  - The users' interests, knowledge and behavior is diverse.
  - The thematic coverage of the data is very broad.

Motivation

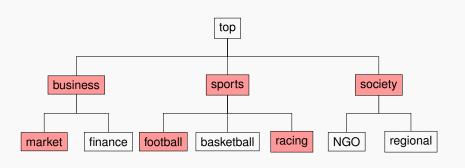
# Community Web directories

[EWMF2003,HDMS2003,LNCS2004,UM2005]

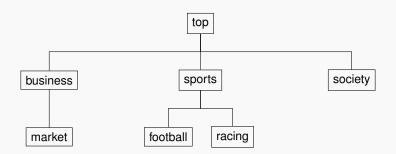

- Our approach: Combine modeling with Web directories
- A win-win scenario:
  - Web directories introduce thematic structure.
  - The size/dimensionality of the search space is reduced.
  - Directories are themselves in need of personalization.

### Community Web directories

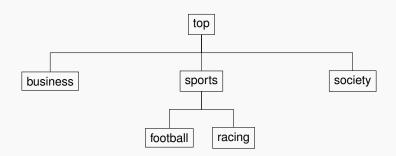
- Off-line user modeling:
  - Map user sessions on the directory categories, i.e. each session becomes a small subdirectory.
  - 2. Create community Web directories.
  - 3. Prune non-representative branches.
  - 4. Remove redundant nodes, e.g. those without siblings.
- Personal Web directories constructed by assigning users to community directories and merging them.
- Personalized directories are small and provide quick access to interesting information.




### Community Web directories




Motivation


### Community Web directories



### Community Web directories



### Community Web directories



# Community Web directories

#### Graph-based clustering

- ▶ A modified version of the method used for Web sites:
  - 1. Each directory category  $k_i$  becomes a node in the graph.
  - 2. Each page  $p_j$  is assigned a set  $K_j$  of categories, including all ancestors.
  - 3. For each occurrence of page  $p_j$  increase the weight of all  $k_{ii} \in K_j$ .
  - 4. For each co-occurrence of  $p_j$  and  $p_l$  increase the weight of all  $(k_{ii}, k_{lm}), k_{ii} \in K_i, k_{lm} \in K_l$  edges.
  - 5. Reduce connectivity of the graph and find cliques.
  - 6. Construct a community directory for each clique.

Summary and other stuff

Personalize Web directories

### Community Web directories

#### Latent-factor modeling

- $\triangleright$  Assume: a session  $u_i$  is due to a latent factor  $z_k$ , characterizing a community.
- ▶ Model the probability  $P(u_i, c_i)$ , where  $c_i$  a directory category:

$$P(u_i, c_j) = \sum_k P(z_k) P(u_i|z_k) P(c_j|z_k)$$

- Use Expectation Maximization to estimate the probabilities from the data.
- Construct a community directory for each factor, using the most representative categories:  $P(c_i|z_k) > T_z$ .

# Community Web directories

#### **Evaluation**

Motivation

- ▶ 781,069 records from ISP proxy server log.
- After cleaning and sessionization: 2,253 sessions
- Initial Web directory constructed with agglomerative document clustering (998 nodes).
- Repeated split of the data for modeling and evaluation.
- Hide last page from each evaluation session.
- Use observed pages to construct personal directory.

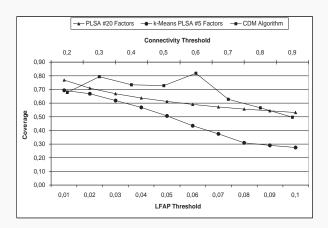


### Community Web directories

#### **Evaluation metrics**

- Coverage: percentage of hidden pages covered by the personalized directories.
- User Gain:
  - 1. Position hidden page  $p_i$  in the directory.
  - 2. Measure Click path:

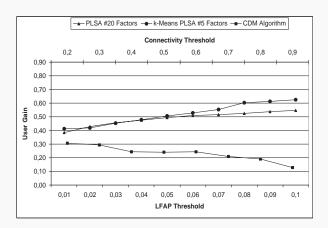
$$\mathit{CP}_i = \sum_j^{\text{depth}} j imes \text{branch\_factor}_j$$


3. Measure average gain over original directory:

$$UG = \sum_{i} \frac{CP_{i}^{\text{gen}} - CP_{i}^{\text{pers}}}{CP_{i}^{\text{gen}}}$$

Personalize Web directories

## Community Web directories


#### Results



Personalize Web directories

### Community Web directories

#### Results

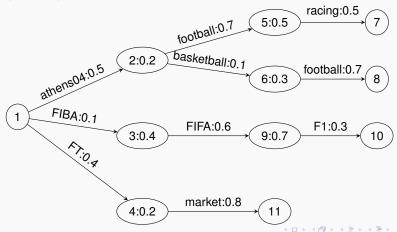


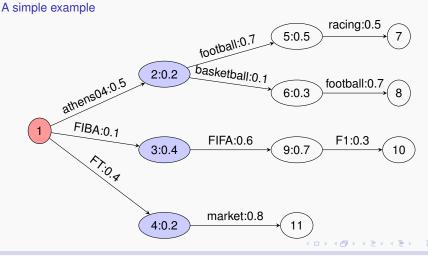
### Modeling navigation on the Web

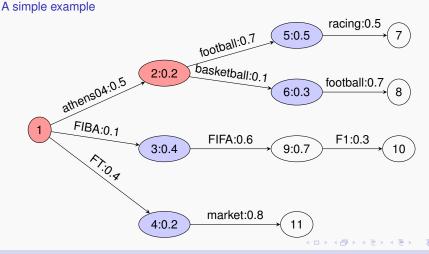
- Model how people navigate the Web.
- Acquire models from Web usage data, e.g. ISP.
- Can we apply the same methods as for a Web site?
- Statistics of Web page co-occurrence does not allow that.
- Our approach: model Web page similarity.

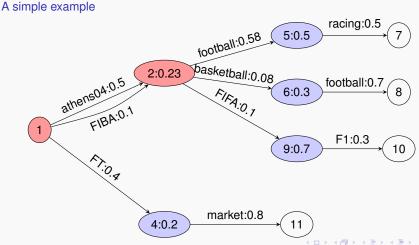
Include semantics in navigation patterns

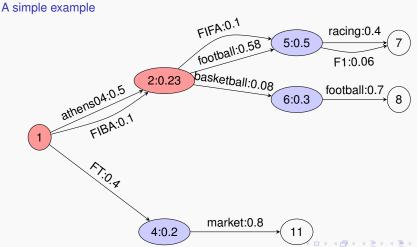
# Content-Aware Navigation User Modeling with GI [AAI:under review]

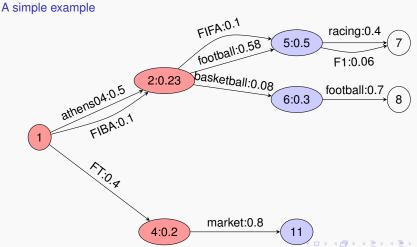

- Stick to grammars as navigation models.
- Key: each state is a cluster of the pages that lead to it.
- Each page (cluster) is represented as a word-frequency vector: [goal=0.2, shot=0.1, basket=0, money=0.05].
- We can measure state compatibility by vector similarity, e.g. using the cosine metric.


# Content-Aware Navigation User Modeling with GI Off-line modeling process


- Extend state compatibility to use content similarity:
  - 1. Measure usage and content similarity:  $u(s_1, s_2)$ ,  $c(s_1, s_2)$ .
  - 2. Reject merge if  $u(s_1, s_2) < T_u$  or  $c(s_1, s_2) < T_s$ .
  - 3. Normalize using the metric distributions in the PPTA.
  - 4. Combine by min, max, or weighted average.
  - 5. Merge most compatible pair of states.


## Content-Aware Navigation User Modeling with GI


A simple example














## Content-Aware Navigation User Modeling with GI

On-line recommendation process

- Unlikely to trace a specific path of Web pages in the model.
- Modify recommendation process to use content similarity:
  - 1. Given a state  $s_i$ , with children  $S_i$ , and the next observed page of the user's session a, select  $\arg \max_i sim(a, s_{ij})$ .
  - 2. If  $arg \max_{i} sim(a, s_{ij}) < T_{sim}$  return to start state.
  - 3. At the end of the observed path, build recommendation list combining:
    - ▶ The transition probability to the final state's children.
    - The distance of each page in a state to the state's centroid.

- ▶ Data: the ISP data used for personalized directories also.
- Modification of the Expected Utility measure:

$$EU_a = \sum_{j=0}^{n-1} \frac{sim(a, p_j)}{2^{j/h}}$$

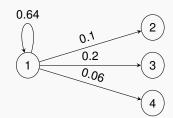
- Comparison to content-only recommendation:
  - 1. Store all pages in the modeling phase.
  - 2. Score stored pages, according to average distance from the observed path.
  - 3. Produce a list of the n top-scoring pages.

Motivation

| method    | EU    |
|-----------|-------|
| CANUMGI-A | 8.57  |
| CANUMGI-B | 21.72 |
| CANUMGI-C | 20.59 |
| CONTENT   | 24.25 |

Motivation

# Content-Aware Navigation User Modeling with GI Results


| method    | EU    |
|-----------|-------|
| CANUMGI-A | 8.57  |
| CANUMGI-B | 21.72 |
| CANUMGI-C | 20.59 |
| CONTENT   | 24.25 |

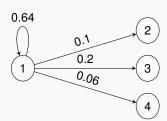
Does the navigation model help?

Motivation

# Content-Aware Navigation User Modeling with GI

| method    | EU    |
|-----------|-------|
| CANUMGI-A | 8.57  |
| CANUMGI-B | 21.72 |
| CANUMGI-C | 20.59 |
| CONTENT   | 24.25 |




Does the navigation model help?

Motivation

# Content-Aware Navigation User Modeling with GI

| method    | EU    |
|-----------|-------|
| CANUMGI-A | 8.57  |
| CANUMGI-B | 21.72 |
| CANUMGI-C | 20.59 |
| CONTENT   | 24.25 |

Does the navigation model help?



Navigation sequences are thematic

Active User Communities

Active User Communities on the Web

### Two facets of Web community discovery

- Discovery of Web user communities.
  - Analysis of usage data.
  - Discovery of interest and navigation patterns.
  - Communities of content consumers.
- Discovery of Web communities.
  - Analysis of Web structure.
  - Discovery of graph patterns (linkage of pages).
  - Communities of content creators.



Active User Communities

Active User Communities on the Web

#### Active Web users

- Web users are increasingly becoming content creators and service providers.
- At the same time they remain content consumers and service users.
- Active users are both creators and consumers.
- Many new services support active users:
  - Users as publishers, e.g. blogs, fora etc.
  - Collaborative creation of content and knowledge, e.g. flickr, del.icio.us, Yahoo!Answers, Wikipedia, bibsonomy, etc.

Active User Communities on the Web

### Community discovery

- Active user community discovery combines the existing approaches.
- Discovery needs to take into account:
  - Usage: what the user has chosen to see.
  - Content: what the user has contributed; how it relates to what the user read.
  - Structure: links between content created by different users.
- Active user community models combine this information into commonly observed patterns of community behavior.
- Discovery can also help evolve manually created communities



Active User Communities beyond the Web

### Extending the Web

- Search engines:
  - Content creation and access on the mobile (e.g. Yahoo!Go).
  - Web as a medium of communication, even on the move.
- SensorPlanet (Nokia):
  - Mobile terminals as sensors providing user context.
  - Facilitate instant communities and nets, based on sensed locality and user profile.
- Ambient Semantics (MIT MediaLab):
  - Wearable RFID sensors to track things you pick up and people you meet.
  - Personal serendipity assistant: "What did my friends think of this book?" "What common interests do I share with this person?"
- and many others . . .



Active User Communities beyond the Web

#### With or without the Web

- Digital switch-over in communication and broadcasting:
  - Traditional consumer services (e.g. TV) are becoming interactive.
  - New business opportunities for broadcasting and telecom providers to support active users.
- EU FP7 networked media:
  - Systems and application platforms to support media creation and management.
  - Support for individuals and self-organised creative communities.
- Applications remain mostly related to the Internet.



Active User Communities beyond the Web

### Community discovery

- Increased availability makes information itself less useful. It is just there.
- We need to answer new questions:
  - Where does the information come from?
  - Where and how should I contribute my content?
- Communities (local and global) become essential.
- Knowledge discovery can facilitate self-organising and dynamic communities.
- The KD approach is similar to the Web, but ...
- the nature and scale of the data is different.



### Summary of our work so far

- Personalization is a major requirement for the Web.
- User modeling is a great challenge for Web personalization.
- Can we discover good models in usage data?
- We have developed methods for:
  - Discovering communities and stereotypes for a Web site.
  - Discovering navigation grammars for a Web site.
  - Personalizing Web directories.
  - Discovering navigation grammars for the Web.

#### **Future directions**

- Focus is on whole-Web personalization.
- Test further navigation-does-not-help hypothesis.
- Use Web directories to improve navigation modeling.
- Personalising Web search.
- Discovery of active user communities on the Web and beyond.

# Tools, Systems and Applications [PCHCI2001, KES2006, CROSSMARC, M-PIRO, INDIGO]

- KOINOTITES: a tool for community discovery
- PServer: A generic personalization server
- CROSSMARC: Personalized e-business (product comparison)
- ► M-PIRO, INDIGO: Personalized e-museum guidance
- PNS: Multi-source personalized news service

Other Stuff

Motivation

## **User Modeling 2007**

11th International Conference on User Modeling (UM 2007) Corfu , Greece , 25-29 June, 2007

Organized by
the National Center for Scientific Research "Demokritos",
in collaboration with
the Ionian University and User Modeling Inc.

http://www.iit.demokritos.gr/um2007/