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Learning Topic Hierarchies

Document indexing and classification

Document modeling

Reflect relations between concepts or topics

Crucial step for ontology learning
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Hierarchical Clustering

Hard clustering techniques and decision trees are employed

A document is assigned to a single topic

Hinders the efficient retrieval of documents

G. Paliouras Probabilistic Topic Hierarchies



Introduction
Probabilistic Topic Models

Proposed Method 1
Proposed Method 2

Experiments
Conclusions

Bibliography

Our Aim is..

.. to learn topic hierarchies where:

nodes reflect the shared terminology between documents

nodes reflect the intended meaning of documents

nodes high in the hierarchy reflect abstract notions

predict unseen documents

have a non-parametric nature

learning is language and domain independent
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Probabilistic Topic Models

Generative models for documents ( [SG07])

Based on the “bag-of-words” theorem ( [Fin31])

Differ in their generative process
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Categories

Flat modeling:

Probabilistic Latent Semantic Analysis (PLSA) ( [Hof99])

Latent Dirichlet Allocation (LDA) ( [BNJ03])

Hierarchical Dirichlet Processes (HDP) ( [TJBB06])

Hierarchical modeling:

Hierarchical Probabilistic Latent Semantic Analysis (HPLSA)
( [GGPC02])

Hierarchical Latent Dirichlet Allocation (hLDA) ( [BGJT04])

PAM - HPAM - NPPAM ( [LM06], [MLM07], [LBM07])
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Flat Generative Process
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Hierarchical Generative Process
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Model Estimation

Observations: words in documents

Task: learn the latent hierarchy

Usual a priori requirements:

Number of topics

Number of hierarchy levels
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Proposed Method
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Hierarchy Construction

Find a topic C of level L given which, topics A and B of level
L+1 are conditionally independent
| P̂(A ∩ B | C )− P̂(A | C )P̂(B | C ) |≤ th
Topic C is broader than A and B, and contains at least the
mutual information of A and B
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Hierarchy Depth

Iterate until the latent topics are as “specific” as possible
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Example of a Learned Hierarchy
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Summing Up

Statistical method

Language and domain independence

Calculation of hierarchy depth and branching factor

Naive definition of number of topics
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Motivations

Represent all topics as distributions over words

Allow subtopics to be shared among supertopics

Allow topics to be shared among documents

Infer the size of the hierarchy automatically

Predict unseen documents

Represent probabilities over relations
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The hHDP model
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Generative Process

1 Choose N ∼ Poisson(ξ)

2 For each of the N words:
3 For each level λ, 0 < λ < Λ:

1 Choose global probability measure G0λ ∼ DP(γ,H)
2 Choose probability measure Giλ ∼ DP(α,G0λ)
3 Choose a topic θλj ∼ P(· | Giλ, θλ−1)

4 For the level Λ:
1 Choose global probability measure G0 ∼ DP(γ,H)
2 Choose probability measure GΛ ∼ DP(α,G0)
3 Choose a topic θΛj ∼ P(· | GΛ, θλ−1)
4 Choose a word wΛj ∼ P(· | θΛj )
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Model Estimation from Data

Data: Term - Document matrix of frequencies
Result: Estimated topic hierarchy
set M=number of documents
set V =vocabulary size
estimate leaf topics K
set T = K
while | T |> 1 do

// transform document space
set M = K
set input=MxV matrix of frequencies
estimate topics K of next level up
set T = K

end
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Model Estimation from Data (Coarse estimation)

Data: Term - Document matrix of frequencies
Result: Estimated coarse topic hierarchy
set M=number of documents
set V =vocabulary size
estimate leaf topics K
set T = K
while | T |> 1 do

// transform term space
set V = K
set input=MxV matrix of frequencies
estimate topics K of next level up
set T = K

end
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Example of Learned Hierarchy
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Experiments

Application to three tasks:

1 Analysis of artificial data

2 Ontology Learning

3 Document modeling
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Analysis of Artificial Data
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Numeric Results

Precision Recall Experiment

Topics Edges Topics Edges Case

1.0 1.0 1.0 0.93 1a-b

1.0 1.0 0.88 0.83 2a-b

1.0 1.0 1.0 0.71 3a-b

1.0 0.72 1.0 1.0 4a-b

1.0 1.0 1.0 1.0 5a-b

1.0 1.0 1.0 0.88 6a-b

1.0 0.88 1.0 1.0 7a-b

G. Paliouras Probabilistic Topic Hierarchies



Introduction
Probabilistic Topic Models

Proposed Method 1
Proposed Method 2

Experiments
Conclusions

Bibliography

Ontology Learning

Genia and Lonely Planet datasets

Genia documents: #2000

LonelyPlanet documents: #300

Genia and Lonely Planet ontologies as Gold Standard

Evaluation using the method of [ZPV08]
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Numeric Results

Genia LonelyPlanet

Model P R F P R F

hHDP 0.65 0.60 0.624 0.22 0.15 0.17

hHDP-pruned 0.88 0.80 0.838 0.35 0.23 0.27

hLDA 0.62 0.55 0.58 0.07 0.01 0.017

OL LDA-based 0.89 0.70 0.78 0.42 0.31 0.35
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Document Modeling

Comparison with: LDA, hLDA, OM, MEM

Evaluation with the measure of Perplexity

Perplexity(D) = exp{−
∑N

i=1

1

N
log p(wi )}

Evaluation in five datasets: Genia, LP, Seafood, Elegance,
NIPS

Perform 10-fold cross validation and provide mean values
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Mean Perplexity on Genia Dataset
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Mean Perplexity on Seafood Dataset
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Mean Perplexity on Lonely Planet Dataset

G. Paliouras Probabilistic Topic Hierarchies



Introduction
Probabilistic Topic Models

Proposed Method 1
Proposed Method 2

Experiments
Conclusions

Bibliography

Mean Perplexity on Elegance Dataset
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Mean Perplexity on NIPS Dataset
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Conclusions

Statistical Methods

Language and Domain independence

No need for user parameters

Infer the size of the hierarchy

Represent all nodes as distributions over words

Suitable for Ontology Learning and Document Modeling

Promising results

G. Paliouras Probabilistic Topic Hierarchies



Introduction
Probabilistic Topic Models

Proposed Method 1
Proposed Method 2

Experiments
Conclusions

Bibliography

Future Directions

Study word burstiness in topic models

Adaptive Gibbs sampler in the hHDP model

Semantics of Hierarchical Probabilistic Topic Models

Use different priors on HPTMs

Evaluation in different types of dataset (e.g. images)

Use the model for Folksonomy learning
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Thank you!
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