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The quantization of a skyrmion in a theory with three flavors is discussed. The conventional choice of octets does not 
maintain correspondence with the large-N limit of the quark model. When the skyrmion is quantized so as to maintain this 
correspondence in the spectrum of states, magnetic moments  computed in the skyrmion model and the large-N quark model 
also agree (in the limit of flavor SU3 symmetry). When flavor SU3 is broken sum rules are found in the quark model valid for 
any number  of colors which connect magnetic moments  of spin 1 /2  baryons. 

Quantum chromodynamics is the theory underly- 
ing hadron physics. However we do not yet know how 
to solve this theory, so that we need approximations. 
One way of approximating the theory is to consider 
the limit as the number of colorsN increases to infin- 
ity [ 1,2]. Witten'has shown that in this limit baryons 
behave as solitons in an effective meson field theory. 
Balachandran, Witten and others [3,4] found that the 
precise connection between baryons and mesons in 
this limit is the one discovered by Skyrme many years 
ago. 

In particular, with quarks of two flavors only, 
Witten has shown that the spectrum of the quantized 
skyrmion 

1= J = 1/2, 3/2, 5/2, ... (1) 

is the same as the spectrum of a multiquark baryon of 

1 Supported by the Alexander S. Onassis Public Benefit 
Foundation.  

large (odd)N. We shall call this multiquark model the 
naive quark model of arbitrary color. The states of  
this system can be derived from the assumption that 
its color state is completely antisymmetric under per- 
mutations. It has also been noted that several matrix 
elements of simple operators computed in the Skyrme 
model have identical ratios in the naive quark model 
of arbitrary color as N becomes large [5,6]. This sug- 
gests that the Skyrme model is a good model of the 
baryon in the large-N limit of QCD. Of course in na- 
ture N = 3 and only multiplets with I = J = 1/2, 3/2 
are physical. 

We are interested here in the same correspondence 
when the quarks are allowed to have three flavors. The 
quantum numbers allowed for the quantized skyrmion 
are more difficult to determine, since as noted by 
Witten the spectrum depends on the choice of the 
Wess-Zumino term in the lagrangian. Witten, 
Guadagnini and others [7,8] have shown that one can 
quantize the skyrmion so that the multiplets have the 
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content under SU3 × SU2 of (8, 1/2) and (10, 3/2), 
in agreement with experiment. The skyrmion model 
quantized in this fashion has been used to compute 
matrix elements for various operators relevant to 
weak and electromagnetic transitions in hyperons 
[9,101. 

We compute here the SU3 × SU2 spectrum ex- 
pected for three flavors in the naive quark model for 
arbitrary color and find that the physical multiplets 
(8, 1/2) and (10, 3/2) do not appear at all for N other 
than three. Thus for three flavors the skyrmion quan- 
tized so as to give octets and decuplets should not be 
thought of as a good model for baryons in the large-N 
limit of QCD, in contrast to the case of two flavors. 

We use the notation (p, q) for an irreducible repre- 
sentation of SU3. In this notation a totally symmetric 
representation of SU3 composed of n quarks is de- 
noted by (n, 0). For example the decuplet is (3, 0). 
To find the SU3 content of an arbitrary baryon com- 
posed of (2k + 1) quarks, it is sufficient to consider 
the states which contain (k + 1) up quarks and k down 
quarks. The up quarks will belong to the ((k + 1), 0) 
representation of SU3, while the down quarks belong 
to the (k, 0) representation. Therefore we have to take 
the direct product of these two representations of 
SU3, and of the corresponding spins: S u = (k + 1)/2 
and S d = k/2. 

We use the SU3 formula 

(k + 1,0) X (k,O) = (2k + 1,0) + (2k - 1,1) 

+ ... + (1, k ) ,  (2) 

where the spin of each multiplet (i,]) is i/2. For exam- 
ple, for k = 1 (N = 3) eq. (3) reduces to the familiar 
result 

(2,0) × (1,0) = (3,0) + (1, 1), (3) 

a decuplet of spin 3/2 and an octet of spin 1/2. There- 
fore in contrast to the two-flavor case the SU3 repre- 
sentation content for N colors is completely different 
at each value of N: a given representation (i,j) of SU3 
occurs at most once at N = 21 + i. In particular the 
octet (1, 1) only occurs f o r N  = 3, while for larger N 
values the spin 1/2 states belong to successively larger 
representations of SU3. With three quark flavors and 
more than three colors not only are the multiplets 
with spin 5/2, 7/2, ... unphysical, but even in the mul- 
tiplets with physical spin there are states with unphysi- 

cal quantum numbers in addition to the states with 
physical quantum numbers. The physical states have 
at most two (at spin 1/2) or three (at spin 3/2) strange 
quarks while the unphysical states have a larger num- 
ber of strange quarks. Even though for large N the 
multiplets have very many unphysical states we may 
still compute matrix elements relevant to the physical 
states, and it is the limit of such matrix elements for 
large N that is of theoretical interest. 

This discussion then suggests that we quantize the 
skyrmion in the same (1, k) representation of SU3 
and take the limit of matrix elements as k becomes 
large, to obtain results relevant to baryons of spin 1/2. 
We discuss here matrix elements of  the magnetic- 
moment operator as a simple example of such a com- 
putation. The formalism we follow has been described 
in the literature by Adkins and Nappi and by Wise et 
al. [9,10], for the special case k = 1 when the mag- 
netic moment of a baryon, say, the proton, is given 
by the expression 

(PlbtzlP)=~"~ Q P P ~r 0 N ' (4) 

where Q is the linear combination (rt 0 + (1/x/3)r/) cor- 
responding to the transformation properties of the 
electric-charge operator in SU3, the second CG coeffi. 
cient accounts for the coupling of the spin of the 
states to the magnetic-moment operator and the inter- 
mediate multiplets n correspond to two octets. In the 
case of arbitrary N the charge Q still transforms like 
an element of an octet but the second and third mul- 
tiplets (in both CG coefficients) are replaced by (1, k), 
and just as in the case of octets the representation 
(1, k) occurs twice in the product (1,1) X (1, k). 

We have computed the CG coefficients relevant to 
the evaluation of the magnetic moment of the proton, 
neutron and other baryons of spin 1/2, some of which 
are given below. Because the representation (1, k) oc- 
curs twice there is an arbitrariness in the choice of 
multiplets n which we have taken advantage of to sim- 
plify the algebraic expressions of the CG coefficients. 
In the case k = 1 our choices do not reduce to the 
well-known 8a, 8s basis traditional for the product of 
two octets in the literature. However, the final an- 
swers for physical quantities like magnetic moments 
does not depend on arbitrary choices, as may be seen 
by computing the ratio of the magnetic moment of 
the proton to the magnetic moment of the neutron. 
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We give below some CG coefficients for the multipli- 
cation of (1, k) by (1,1); the states in the octet (1, 1) 
are denoted by meson labels while the elements of 
(1, k) are denoted by baryons with the appropriate 
quantum numbers. We denote the two (1, k) multi- 
plets by A and B in these formulae, 

(8 (1,k) (1pile)A)= [k/6(k + 2)] 1/2 
~0 p 

(8 (1,k) (1 ,k)A]=_[k /2(  k + 2)11/2 , 
P P l 

8 (1,k) (1,k)B\ 
rt 0 P P J /=(k+3) / [6 (k+2) (k+4)]  112 , 

(8 (a,k) (1,k)B~ 
rt P P l=(k+l ) / [2 ( k+2) ( k+4) ] l / 2 '  (5) 

in particular, for k = 1, we have the values 1 ],v/i'8, 
- 1 /w~ ,  4 / V ~ ,  2/Vr~. It can be checked that these 
values are linear combinations of CG coefficients for 
the more usual 8a and 8s in the literature. Using these 
values we can evaluate formula (7) with the intermedi- 
ate multiplets 8 A and 8 B and find for the magnetic 
moments of  the proton and neutron 

# ( P ) = - 4 ~ ' / 1 5 ,  and /a(N)=3~']15, (6) 

and therefore the ratio 

#(P)/#(N) = - 4 / 3 ,  (7) 

in agreement with the result in the literature [9,10] 
corresponding to the quantization of the skyrmion as 
an octet. On the other hand we can take the limit of 
the CG coefficients as k becomes very large and then 
compute from the formula (7) the values 

/.t(P) = - ~ / 3  and #(N) = ~/3,  (8) 

and therefore the ratio g(P)/g(N) = - 1 .  This ratio is 
in agreement with the result obtained for the naive 
quark model in the limit of large numbers of colors 
[5]. The agreement between these two results suggests 
that the ratio of  minus one is characteristic for the 
large-N limit of  QCD. 

In the same limit o f k  becoming large we can com- 
pute the ratio of other magnetic moments, and again 
the results of  the Skyrme model and the naive quark 
model agree. These results are relevant to the flavor 

SU3 symmetry limit when the strange quark and the 
down quark are degenerate and have the same mag- 
netic moments. In this limit we find 

/a(X+)//s(P) = 1 , /a(Y,- )]/l(P) = -1  , 

/a(A)/#(P) = 0 ,  /a(~-)//a(P) = 1/3,  

#(ZA)/u(P) = 1 , /a(E0)//a(P) = - 1 / 3 .  (9) 

When flavor SU3 is broken, the down quark and the 
strange quark have different magnetic moments and in 
the naive quark model or arbitrary color the magnetic 
moment of a baryon is a function of k and of the mag- 
netic moments of  the up, down and strange quark. 
With seven "stable" baryons of spin one half we can 
eliminate four parameters and obtain three sum rules 
which are valid for arbitrary color group SU(2k + 1) 
and arbitrary breaking of flavor SU3. We find the fol- 
lowing sum rules: 

4[u(P) + u(N)] + 2u(A) = 3 [u(z +) + u ( Z - ) l ,  (10) 

- ~ ( P )  +/a(N)l + 8#(A) = 3 ~ ( ~  0) +/.t(-~-)l,  (11) 

~ (P)  - /~  (N)] - 2 ~ ( Z  +) - # ( Z - ) ]  

= 3 [#(Z 0) - /a (Z- ) ] .  (12) 

These sum rules are satisfied for the magnetic mo- 
ments (9), and also by the usual quark model or SU6 
formulae; as far as we know the sum rules are new 
since there is no particular motivation to take these 
linear combinations when there are only three colors. 
The last sum rule relates the isovector components of  
the magnetic moments of baryons with different num- 
bers of strange quarks and is fairly badly violated by 
the experimental values, by about 25%. This might be 
due to the neglect of  isovector contributions coming 
from pions, etc. which are not considered in these for- 
mulae. The first two sum rules relate isoscalar com- 
ponents which should not be affected by our neglect 
of pions. The first sum rule is not well obeyed by the 
data (error of 20%) while the second sum rule is very 
well obeyed by the data (error of 1%). It is tempting 
to conclude that there is some experimental error in 
the isoscalar component of the magnetic moment of 
the ~ baryons but it may be that the agreement of  
eq. (11) with the data is fortuitous. More details on 
these issues will be presented elsewhere. 
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