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Abstract--An algorithm for  efficient learning in feedforward networks is presented. Momentum acceleration is 
achieved by solving a constrained optimization problem using nonlinear programming techniques. In particular, 
minimization o f  the usual mean square error cost function is attempted under an additional condition for  which the 
purpose is to optimize the alignment of  the weight update vectors in successive epochs. The algorithm is applied to 
several benchmark training tasks (exclusive-or, encoder, multiplexer, and counter problems). Its performance, in 
terms o f  learning speed and scalability properties, is evaluated and found superior to the performance o f  reputedly 
fast variants o f  the back-propagation algorithm in the above benchmarks. 
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1. INTRODUCTION 

Multilayer feedforward neural networks (MFNN) have 
been the subject of intensive research efforts because 
of their interesting learning and generalization abilities. 
Of particular importance is the rigorous theoretical es- 
tablishment that these networks are universal approxi- 
mators (Hornik, Stinchcombe, & White, 1989; Funa- 
hashi, 1989), once properly trained. The problem of 
devising efficient algorithms for training MFNNs is 
thus of central importance in neural network research 
and has been thoroughly studied in recent years. Fol- 
lowing the back-propagation (BP) algorithm and its 
momentum acceleration variant (Rumelhart, Hinton, & 
Williams, 1986a,b), a multitude of supervised learning 
algorithms have been devised with the aim of improv- 
ing the learning speed and generalization capability of 
these networks. In particular, methods originating from 
the field of numerical analysis [ second order (Parker, 
1987; Becker & le Cun, 1988) and line search, conju- 
gate gradient (Kramer & Sangiovanni-Vincentelli, 
1988), and quasi-Newton (Watrous, 1987) methods ] 
and from the field of optimal filtering [extended Kal- 
man algorithm (Singhal & Wu, 1989)], as well as heu- 
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ristic optimization techniques that perform a search in 
the weight space [delta-bar-delta (Jacobs, 1988) and 
quickprop (Fahlman, 1988) ], have been proposed. 

A common objective of these algorithms is to adapt 
the synaptic weights until the activation of the net- 
work's output layer nodes matches prespecified val- 
ues-targets. Apart from this sine qua non condition, 
some algorithms incorporate in their formulation ad- 
ditional information about learning in MFNNs. For ex- 
ample, attempts to increase learning speed by imposing 
additional conditions aimed at helping the hidden nodes 
to play a more active role during training (Grossman, 
1990; Grossmann, Meir, & Domany, 1990; Rohwer, 
1990; Krogh, Thorbergsson, & Hertz, 1990), as well 
as attempts to improve generalization by enabling the 
decay of redundant weights (Weigend, Rumelhart, & 
Huberman, 1991 ), have been reported in the literature. 

Along this line of research, the authors have pro- 
posed methods for incorporating useful information in 
the learning algorithm in the form of additional con- 
ditions--apart from the demand for minimization of 
the cost function--that must be satisfied during learn- 
ing. Techniques of nonlinear programming have been 
utilized to solve the resulting constrained optimization 
problems. As specific examples, Algorithms for Learn- 
ing Efficiently with Constrained Optimization tech- 
niques (ALECO) have been proposed, which incor- 
porate information about the desirable behavior of 
hidden units. These algorithms exhibit better learning 
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properties than the BP algorithm and variants thereof 
(Karras & Perantonis, 1993; Perantonis & Karras, 
1993; Varoufakis, Perantonis, & Karras, 1993; Karras, 
Perantonis, & Varoufakis, 1993, 1994). 

Among this multitude of learning algorithms, back 
propagation with momentum acceleration (BPMA) 
(Rumelhart et al., 1986a,b) remains one of the most 
popular learning paradigms for MFNNs, mainly be- 
cause of its faster convergence than the BP method in 
a variety of problems and because of its computational 
simplicity. The incorporation of momentum in the BP 
algorithm has been extensively studied, especially from 
an experimental point of view (Fahlman, 1988; Te- 
sauro & Janssens, 1988; Jacobs, 1988; Minai & Wil- 
liams, 1990; Tollenaere, 1990). It is only recently, 
however, that some theoretical background to this in- 
trinsically heuristic method has been provided (Sato, 
1991; Hagiwara, 1992). 

The purpose of this paper is to establish a link be- 
tween the use of momentum in MFNN learning on the 
one hand, and constrained optimization learning tech- 
niques on the other. Motivated by the BPMA algo- 
rithm, we discuss how the use of momentum can be 
optimized using constrained learning techniques. A 
modified algorithm for constrained learning with mo- 
mentum (ALECO-2) ensues with substantially im- 
proved learning capabilities compared not only to the 
BPMA algorithm, but also to other popular and reput- 
edly fast learning algorithms (quickprop and delta-bar- 
delta) in a variety of binary benchmark problems. 

This paper is organized as follows. In Section 2, the 
BPMA formalism is reviewed and its links to con- 
strained learning are discussed. In Section 3, the new 
constrained learning algorithm with momentum is de- 
rived. Sections 4, 5, and 6 contain experimental work. 
In particular, Section 4 describes the experiments con- 
ducted to test the performance of the algorithm and 
compare it with that of other supervised learning 
algorithms; experimental results are presented in 
Section 5 and discussed in Section 6. Finally, in Sec- 
tion 7, conclusions are drawn and future research 
goals are set. 

2. LEARNING WITH MOMENTUM 
ACCELERATION 

Consider the standard MFNN architecture with one 
layer of input, M layers of hidden, and one layer of 
output nodes. The nodes in each layer receive input 
from all nodes in the previous layer. The network node 
outputs are denoted by 0~7 ~. Here the superscript (m) 
labels a layer within the structure of the neural network 
(m -- 0 for the input layer, m = k for the kth hidden 
layer, m = M + 1 for the output layer), i labels a node 
within a layer, and p labels the input patterns. The syn- 
aptic weights are denoted by w~ "~, where m, j corre- 
spond, respectively, to the layer and the node toward 

which the synapse is directed, and i corresponds to the 
node in the previous layer from which the synapse em- 
anates. Keeping in mind the iterative nature of learning 
algorithms, we shall denote the value of node outputs 
and weights at the current epoch and at the last (im- 
mediately preceding) epoch by the subscripts c and l, 
respectively. 

The ultimate goal of a supervised learning algo- 
rithm, viz. matching the network outputs to prespeci- 
fled target values Tip, can be achieved through mini- 
mization of the cost function 

= = - Oi~ ) . ( 1 )  
ip 

In the BPMA algorithm (off-line version) minimiza- 
tion of E is attempted using the following rule for up- 
dating the weights: 

OE ~m) 
d w ~ m ' = - e - g - 7 ~  +°ffw~2'l , ' -wi,  1,). (2) 

( ~ W  ij c 

Thus, the current weight update vector is a linear 
combination of the gradient vector and the weight up- 
date vector in the immediately preceding epoch. 

The BPMA algorithm is inherently heuristic in na- 
ture, although attempts have been made to invest it with 
theoretical background by taking into account infor- 
mation from the behavior of the weights in more than 
one epoch (Sato, 1991; Hagiwara, 1992). Thus, in 
BPMA the mathematical rigor of gradient descent - -  
where a lot of information is available in the form of 
convergence theorems (Goldstein, 1965; Fletcher, 
1980) - - i s  compromised; in return, it is expected that 
improved speed can be achieved by filtering out high- 
frequency variations of the error surface in the weight 
space (Rumelhart et al., 1986a). 

A good example of relatively successful negotiation 
of high-frequency variations by BPMA is movement 
along long narrow troughs that are fiat in one direction 
and steep in surrounding directions. These features are 
often exhibited by cost function landscapes in various 
small- and large-scale problems solved by MFNN (Sut- 
ton, 1986; Hush, Home, & Salas, 1992). In such land- 
scapes, the cost function exhibits significant eccentric- 
ity and high-frequency variation is present in the 
direction perpendicular to that of the trough. It is well 
known that gradient descent proper is highly inefficient 
in locating minima in such landscapes (Rao, 1984) be- 
cause it settles into zigzag paths and is hopelessly slow. 
In neural network applications, failure to converge to 
the global minimum can sometimes be attributed to zig- 
zag wandering in the bottom of very shallow, steep- 
sided valleys (Hertz, Krogh, & Palmer, 1991 ). An il- 
lustrative example of such undesirable behavior is 
given by Hush et al., (1992).  Supplementing gradient 
descent with momentum acceleration represents a com- 
promise between the need to decrease the cost function 
at each epoch and the need to proceed along relatively 
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FIGURE 1. (a) Cost function landscape with a long, narrow trough. (b) Contour plot of the cost function and zigzag path followed 
by BP, which reaches the minimum in 45 epochs. (c) Smoother path followed by BPMA, reaching the minimum in 17 epochs. 
Initial conditions and algorithm parameters are given in the text. 

smooth  paths in the weight  space. The  fo rmal i sm favors  
configurat ions  where  the current  and previous  weight  
update  vectors  are par t ia l ly  al igned,  thus avoid ing  zig- 
zag paths and accelera t ing learning.  

It is instruct ive to provide  visual  ev idence  o f  the 
improvemen t  achieved by  incorpora t ing  m o m e n t u m  in 
the BP formal ism.  This  is poss ib le  in s imple  two-di-  
mens iona l  problems.  Consider ,  for example ,  a ne twork  
with two input  nodes,  one layer  o f  weights,  and one 

output  node without  bias,  cor responding  to the fo l low-  
ing cost  function E o f  the weights  x and y:  

E(x ,  y) = ~[g(ax + by) - Tl] 2 

+ ~[g(cx  + dy)  - T2] 2. (3) 

Here g is the logis t ic  function g ( x )  = 1/(1  + 
e x p ( - x ) ) .  The  values  a = - 0 . 1 ,  b = - 0 . 0 2 ,  c = 0.1, 
d = - 1 . 0 ,  T~ = 0.5, 7"2 = 0.5 are chosen to create a 
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long trough with the minimum at x = 0, y = 0, as shown 
in Figure 1. The objective is to reach the minimum 
starting from the initial conditions x0 = 10.0, Y0 = 2.5 
within a tolerance of 10-3 for E. Gradient descent with 
relatively low values of e is hopelessly slow in the 
trough, whereas best performance is achieved with 
large values of e, leading to zigzag paths. Figure l a 
shows the path obtained with e = 76.0, which reaches 
the minimum in 45 epochs. Using momentum accel- 
eration leads to partial alignment of  successive weight 
update vectors and to a smoother path that follows the 
direction of the trough more closely. As a result, faster 
convergence is achieved, as shown in Figure lb, where 
the minimum is reached in 17 epochs with e = 24.0, a 
= 0.9. 

Motivated by the analysis of  BPMA made so far, we 
suggest that still better results could be obtained using 
an iterative algorithm that would maximize the align- 
ment of  successive weight update vectors without com- 
promising the need for a decrease of the cost function 
at each epoch. This would allow more efficient nego- 
tiation of cost function landscapes involving long, 
steep-sided troughs. Thus, the proposed algorithm 
(ALECO-2)  should solve f o r  each epoch the following 
constrained optimization problem: 
• Maximize  the function 

= ~.~'~''[Wij(m) - -  Wij(m) [c)(W~?) [ c - w~m)[,) (4) 
t~rn 

to achieve optimal alignment of  successive weight 
vector updates. 

• Lower the cost function E by a specified amount 6E. 
After a sufficient number of  epochs, the accumulated 
changes to the non-negative cost function should suf- 
fice to achieve the desired input-output relation. 
The proposed algorithm is an iterative procedure 

whereby the weights are changed by small amounts 
dw~ 5"~ at each iteration so that the quadratic form 

. (m) _ (m) 
]~ awlj "aw o (5) 
ijm 

takes on a prespecified value (6p)2. ThUS, at each ep- 
och, the search for an optimum new point in the weight 
space is restricted to a small hypersphere centered at 
the point defined by the current weight vector. If  6P is 
small enough, the changes to E and • induced by 
changes in the weights can be approximated by the first 
differentials d E  and d ~ .  The  problem then amounts to 
determining, for given values of  6P and 6E, the values 
of  dw~ m~, so that the maximum value o f d ~  is attained. 
Similar problems where • has an explicit functional 
dependence on the node activations only (not the 
weights, as is the case here) have been solved (Karras 
& Perantonis, 1993; Perantonis & Karras, 1993; Va- 
roufakis et al., 1993; Karras et al., 1993, 1994) by 
closely following the optimal control method proposed 
by Bryson and Denham (1962). In this case, where 

exhibits an explicit functional dependence on the 
weights, a modification of this method is required. The 
solution, based on methods of nonlinear programming, 
is presented in the next section. 

3. DERIVATION OF ALECO-2 

Maximization of d~p is attempted with respect to vari- 
ations in w ~  ~ and o !  '~) In the language of nonlinear tp • 

programming, the synaptic weights correspond to de- 
cision variables and the node outputs correspond to 
state (solution) variables (Beightler, Phillips, & Wilde, 
1979). These quantities must satisfy the state equa- 
tions, that is, the constraints describing the network ar- 
chitecture 

(m) t (m)~(m--l)~ / f j ,  ( O , w ) = g  ~ w  0 u, r --o)vm)=0. (6) 

Here g is the logistic function g ( x )  = 1/(1 + 
exp ( - x ) )  and biases are treated as weights emanating 
from nodes of  constant, pattern-independent activation 
equal to 1. In addition, the following two constraints 
must be satisfied: 

dE = 6E (7) 

E dw~;')dw~ ''  = ( 6 p )  2. ( 8 )  
qm 

This constrained maximization problem is solved by 
introducing suitable Lagrange multipliers. Hence, to 
take account of  the architectural constraints, we con- 
struct the functions 

y jp (m)  r~ (m) (9) e = E + ~, ,.~ j jp 
jpm 

,~ = ,I, + Z x~"(")e !") ...,. j jp (10) 
jpm 

where the he and k .  are Lagrange multipliers to be 
determined in due course. Consider the differentials 

de = Z-A----- + ~ dwq (11) 
jpm .. ( ] W  q c 

04~ [do!m) ~ O ~  dw~ ' .  (12) 
d6 = .Z OOJ~,,---'---5 -~m + "g- '~,  

jpm c " ( ] W  ij [c 

We choose the he and h,~ to eliminate all dependence 
of de  and d~b on the o !m). ~ j p  • 

°e I %, n~,, ~ = 0, = 0. 13) 
Ovjp c ~ , .  ( 

This leads to closed formulas for determining the 
Lagrange multipliers. From eqns (1) ,  (4) ,  (6) ,  (9) ,  
(10) ,  and (13) we readily obtain 

k j p ( M + I )  [.)!M+ 1) 
e = ~ ; p  l, - Th-, ( 1 4 )  

)ki~(m) ~ , j p ( m + l )  (m+l)~(m+l) D(m+l) 
-- A~ wu uj,, I , . ( 1 - ~ j , ,  I,), 

J 

m = 1,2 . . . . .  M (15) 
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k~ t~)=O, m =  1,2 . . . . .  M +  1 (16) 

for all nodes j and patterns p .  
The Lagrange multipliers can thus be determined in 

the following systematic way. Multipliers correspond- 
ing to the output layer are evaluated. Multipliers of the 
mth layer are readily determined once the ones corre- 
sponding to the (m + 1 )th layer have been evaluated. 
This procedure can be considered as a back propagation 
of the Lagrange multiplier values. 

Differentiating eqns (9) and (10) with respect to the 
synaptic weights and having eliminated all dependence 
on the state variables, we obtain the following equa- 
tions for points satisfying the architectural constraints: 

d E  = de  = ~ . "  " ( m )  dijmaWij , d¢7~ : d ~  = Z Fij~,dw~ m) ( 1 7 )  
ijm ijra 

with 

Jijra ~ x j p ( m ) f ) ( m )  O !  m) I . ~ ! = - 1 )  I = Z ~ , , E  ,--jp I , ( 1  - ( 1 8 )  ~ j p  i c . ' ~ l p  I¢ 

P 

FOr,, ~ (m) , (m) , = : W i j  Ic - -  W i j  II" 
O c 

( 1 9 )  

We now introduce new Lagrange multipliers h~ and h 2 

to take account of the remaining constraints in the prob- 
lem [eqns (7) and (8)]  

where 

h2 =21_ I~Jee ' -~e~  J ' 

hi = (IE~ -- 2k26E)/lee (24) 

lEE = Y. (jq,,)2 (25) 
/jm 

IE~ = ~, JomVom (26) 
ijm 

I¢~ = ]~ (Fi)m) 2 * (27) 
/jm 

and the positive square root value was chosen for kz to 
ensure maximum (rather than minimum) d ~  [relation 
(22)] .  

Note the bound ] tE[  < 6Pl~ee set on the value of  
6E  by eqn (24),  which forces us to choose 6E adap- 
tively. The simplest choice for adapting 6E,  namely 

6 E = - ~ 6 P l ~ e e ,  0 < ~ <  1 (28) 

is most attractive because of  its learning convergence 
properties. Indeed, as in BP, it is possible to show for 
small enough 6P that the algorithm converges to global 
or local minima of the cost function of eqn ( 1 ). To see 
this, we use eqns (25) ,  (11 ), and (17) to rewrite eqn 
(28) as 

( / rijmaWij + hi 6E - ~. Jijmdwij 
ijm ijm 

. (ra)__ (m)q 
-[- )k2 ( t P )  2 - ~ a w  0 awlj  J . ( 2 0 )  

qm 

Note that the quantities multiplying ha and ~k 2 a r e  equal 
to zero by eqns (17) and (8) and that 6P and 6E are 
known quantities. We obtain maximum change in ~ at 
each iteration of the algorithm by ensuring that 

d 2¢b = ~, (Fore - X.J o. - 2X2dw~m))d2w~ m' = 0 (21) 
ijm 

~'~ J 2  (m)  1 2  (ra) 
d 3 ~  = -2h2 Z. a w o "a w o < O. (22) 

ijm 

To satisfy eqn (21) we set 

d (,~) hl jOm+ I_I_F.. 
w°  = - 2h-~ 2k2 um" (23) 

In effect, weight updates are formed at each epoch as 
a linear combination of the cost function derivative J~m 
with respect to the corresponding weight [see eqn 
( 17)] and of the weight update Fijm at the immediately 
preceding epoch [see eqn (19)] .  This weight update 
rule is similar to that of  BPMA. However, unlike 
BPMA, where the coefficients of  F,jm and Jura are con- 
stant, in ALECO-2 the coefficients are chosen adap- 
tively. To see this, we use eqns (8) ,  (21),  and (17) to 
obtain 

6E = - ( 6 P  (0e/Ow~m)) 2 . (29) 

Hence, it suffices to show that for a given positive real 
number ~ there exists an epoch number v0, so that 10 
e/Ow~ m) I < ,7 for all subsequent epochs. Indeed, in the 
opposite case, an infinity of changes in E at least equal 
to - ~ 6 P  would accumulate and drive E to minus in- 
finity as learning progressed. This is not possible, be- 
cause E is bounded from below by zero. 

In short, eqn (23) describes the weight updating for- 
mula of  ALECO-2, which optimizes the weight steps 
in each epoch and converges to minima of the cost 
function. Taking into account eqn (28) we are left with 
two free learning parameters 6P  and ~, which should 
be adjusted to achieve optimum performance. 

Before testing the performance of ALECO-2 on spe- 
cific benchmark tests, we return to the two-dimensional 
cost function of eqn (3) and illustrate in Figure 2 the 
ability of  ALECO-2 to negotiate cost function land- 
scapes with long, steep-sided troughs. The behavior of 
ALECO-2 in the landscape of Figure 1 is shown, start- 
ing from the same initial conditions x0 = 10.0, yo = 
2.5. The learning parameters d P  = 1.1 and ~ = 0.3 
were used. Note that optimal alignment of successive 
weight update vectors leads to a path that is smoother 
and more closely aligned to the axis of the trough than 
gradient descent (with or without momentum). As a 
result, the minimum is reached within the allowed tol- 
erance in just 10 epochs. 
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FIGURE 2. Path followed by ALECO-2 in the cost function landscape of Figure la,  with the same initial conditions as in Figure 
l b  a n d  c .  The minimum is reached in j u s t  1 0  e p o c h s .  A l g o r i t h m  parameters are given in the t e x t .  

4. ORGANIZATION OF EXPERIMENTS 

In evaluating the performance of a learning algorithm, 
three key issues should be addressed: the learning 
speed of the algorithm; its scalability properties (i.e., 
its ability to cope with large network architectures and 
problems with a large number of training patterns); and 
the generalization capabilities of networks trained us- 
ing this algorithm. In the remaining sections of this 
paper we present experimental work carried out to test 
learning speed and scalability properties, and comment 
briefly on generalization properties, a full study of 
which is deferred for papers currently under prepara- 
tion. 

We compare ALECO-2 not only with BPMA (both 
the off-line version referred to in the previous sections 
of this work, as well as the well-known on-line ver- 
sion), but also with other supervised learning algo- 
rithms that reputedly improve its performance signifi- 
cantly. We have selected some representative, 
well-known, and reputedly fast algorithms that have 
fixed and predefined model architecture--so we have 
excluded algorithms like cascade correlation (Fahlman 
& Lebiere, 1990). These algorithms are the quickprop 
learning rule (Fahlman, 1988) and delta-bar-delta (Ja- 
cobs, 1988). Our simulation program is based on the 
one referred by Pao (1989).  We also used the public 
domain quickprop simulation program created by 
Fahlman in Common Lisp and translated into C by 
Regier. 

There is no wide consensus about benchmark 
selection for testing learning speed and scalability. 
Nevertheless, binary benchmark problems--encoder,  
counter (van Ooyen & Nienhuis, 1992), multiplexer 
(Jacobs, 1988 ) - - a r e  the ones that most authors are in 
favor of. Among them, encoder problems are used by 
an increasing number of authors (Fahlman, 1988; 
Schmidhuber, 1988; Tollenaere, 1990; van Ooyen & 
Nienhuis, 1992) as seeming to be acceptable in terms 
of generalization. XOR, the well known and popular 
benchmark, is also frequently used for historical rea- 
sons (Minsky & Papert, 1969). Thus, in our experi- 
ments we use XOR and rather small-size counter (4-5- 
5 architecture), multiplexer (6-6-1),  and encoder 

(8-3-8) problems to test learning speed. In general, 
these are the benchmarks used by the authors of the 
algorithms to which we compare ALECO-2. In this 
way we ensure performance evaluation of ALECO-2 
in the environment proved to be best for the other al- 
gorithms. We also use large-scale benchmarks with ei- 
ther a large number of synaptic weights and biases (64- 
6-64 and 256-8-256 encoders) or a large number of 
patterns in the training set (11-11-1 multiplexer with 
2048 input patterns) to test scalability properties. For 
the small-scale benchmarks we ran our program on the 
small SUN-sparcstation network of our laboratory, 
whereas for the large-scale benchmarks we used the 
Convex supercomputer and the Silicon Graphics Crim- 
son workstation at NRCPS "DEMOKRITOS."  

For reasons of uniformity and fair algorithm com- 
parison, the following factors were used for all algo- 
rithms. Random initial weights with uniform distribu- 
tion in [ -0 .5 ,0 .5  ] were selected. The cost function of 
eqn ( 1 ) was used. Patterns were presented to the net- 
works in a fixed order, sequentially indexed in their 
categories. The sigmoid-logistic function g (x) = 1/( 1 
+ e x p ( - x ) )  was used as activation function in our 
MFNN. We adopted Fahlman's suggestion of adding 
to the derivative of the logistic function a small con- 
stant S'.  This was found to accelerate all five algo- 
rithms. Finally, we adopted the 0.4-0.6 convergence 
criterion reported by Fahlman (1988) for all algorithms 
and benchmarks. 

Each algorithm has its own learning parameters and 
a fair comparison requires that the best parameter val- 
ues be chosen for each algorithm and benchmark (Tol- 
lenaere, 1990; van Ooyen & Nienhuis, 1992). The 
learning parameters of the algorithms we have com- 
pared in this experimental study, as defined by the au- 
thors who proposed them, are: 
• B P M A :  the learning rate e, the momentum factor a 

(Rumelhart et al., 1986a,b). 
• Q u i c k p r o p :  the learning rate e, the momentum factor 

a, the maximum growth factor #, and the weight 
decay term ~ (Fahlman, 1988). 

• D e l t a - B a r - D e l t a :  the learning rate e, the learning 
rate increment K, the learning rate proportion dec- 
rement ~o, the base of the exponential average of the 
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Experiment Type: COUNTER Categories: 5 Input Samples: 16 Ref: van Ooyen & Nienhuis, 1992 

MFNN System 
Architecture Input Units: 4 Hidden Layers: 1 Hidden Units: 5 Output Units: 5 

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta 

Learning Parameters 6P = 1.2 e = 0.50 e = 0.50 e = 3.00, e = 0.20, x = 0.09 
=0 .85  a = 0 . 7 0  a = 0 . 5  # = 1 . 7 5  ! P = 0 - 1 2 , 0 = 0 . 7 0  

= -0.0001, a = 0.70 
a = 0.0 

Allowed Epochs 3000 3000 3000 3000 3000 
Trials 1000 1000 1000 1000 1000 
Successes (%) 86.4 85.2 90.2 92.5 89.0 
Failures (%) 13.6 14.8 9.8 7.5 11.0 
Mean 97.45 247.57 520.10 603.18 227.92 
Stdv 111.25 76.25 504.28 517.51 241.86 
Maximum 1740 992 2965 2921 2053 
Minimum 46 155 148 78 53 

derivatives 0, and the momentum factor a (Jacobs, 
1988). 

• ALECO-2:  the parameters 6P and ( defined in Sec- 
tion 3. 
For each algorithm, the relevant parameters are 

carefully adjusted to achieve the best possible per- 
formance. Results are considered optimum when 
small minima and averages for the number of  epochs 
needed to complete each benchmark task are ob- 
tained, subject to the condition that at least 70% of 
the experimental trials have passed the 0 .4 -0 .6  con- 
vergence criterion. 

In MFNN training algorithms, trials are started 
by random initialization of  the weights. The search 
for a minimum varies in terms of  difficulty at each 
trial. Therefore,  it is very important to test our al- 
gorithms for a sufficient number of  trials to ensure 
an adequate level of  statistical significance for our 
results and a fair comparison of  different training 
algorithms. 

In this work, a test of  statistical significance was 
performed on the average number of  epochs needed 
to successfully complete a training task. It should be 
emphasized that for a specific training task the num- 
ber of  successful training trials needed to obtain a 
certain level of  statistical significance for this aver- 
age can depend heavily on the training algorithm. We 
denote by ~ and cr the experimental sample average 
and standard deviation of  the number of  epochs in 
successful trials, respectively. An estimate of the 
minimum number v of  training epochs needed to ob- 
tain an experimental average differing from the true 
average of the distribution less than a fraction y of  

with probability greater than b can be obtained 
using the Central Limit Theorem of  Probability The- 
ory (Papoulis, 1965). An estimate proportional to 
(~r/fftt) 2 is obtained: 

v ~ ~-~ [erf - ' (b)]  2, 

where erf (x)= e x p ( - u E ) d u .  (30) 

A short derivation of this formula is given in the Ap- 
pendix. Because different training algorithms can yield 
significantly differing values of (~r/,?tt) 2, the number 
of trials needed to obtain a certain level of statistical 
significance will vary from algorithm to algorithm for 
the same benchmark. Taking into account eqn (30),  
we have performed enough experimental trials, using 
new initial weights, for each learning algorithm and 
benchmark to ensure at least 99% probability that the 
experimental average number of epochs in successful 
trials differed from the true average by less than 10%. 

5. PRESENTATION OF EXPERIMENTAL 
RESULTS 

Complete results about the performance of all algo- 
rithms are reported in Tables 1-7,  each table corre- 
sponding to one of the benchmarks. In each table suf- 
ficient information is given to allow other researchers 
to reproduce our results (taking into account the factors 
common for all algorithms and benchmarks reported in 
Section 4).  Thus, a brief benchmark description is 
given (benchmark identification, number of patterns 
and categories, reference where a full description can 
be found); the architecture of  the MFNN that is called 
upon to solve the benchmark is described; the learning 
parameters used for each algorithm are reported; the 
maximum allowed number of epochs before declara- 
tion of failure is shown; finally, the number of trials 
performed for each algorithm, starting from different 
initial weights, is given. 
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TABLE 2 
Experimental Results for the 6-6-1 Multiplexer Problem 

Experiment Type: ENCODER Categories: 8 Input Samples: 8 Ref: Fahlman, 1988 

MFNN System 
Architecture Input Units: 8 Hidden Layers: 1 Hidden Units: 3 Output Units: 8 

Algor i thms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta 

Learning Parameters 6P = 2.0 ~ = 2.50 ~ = 1.50 ~ = 5.00, ~ = 0.50, K = 0.45 
= 0.75 a = 0.50 e = 0.50 # = 1.75 v~ = 0.15, 0 = 0.40 

= -0 .0001,  ~ = 0.80 
= 0.0 

Al lowed Epochs 1000 1000 1000 1000 1000 
Trials 1000 1000 1000 1000 1000 
Successes (%) 100.0 100.0 100.0 100.0 99.9 
Failures (%) 0.0 0.0 0.0 0.0 0.1 
Mean 37.81 172.06 145.77 83.26 68.34 
Stdv 15.58 79.50 53.62 97.51 64.08 
Maximum 120 517 370 946 941 
Minimum 17 25 56 16 25 

Detailed results are shown, including the percent- 
age of successful and unsuccessful trials, as well as 
the mean, maximum, minimum, and standard devia- 
tion of the number of  epochs required to solve the 
problems for the selected number of trials with dif- 
ferent weight initializations. In principle, learning 
speed can be evaluated using either the concept of 
epoch, which is widely accepted, or similar ones 
(Fahlman, 1988) or the concept of computational 
complexity as partially involved in the work of Shah, 
Palmieri, and Datum (1992).  Here we have chosen a 
scheme based on the number of epochs, rather than 
computational complexity, motivated by the follow- 
ing considerations: 
1. The epoch, apart from being a convenient and gen- 

erally accepted unit for measuring learning time 

. 

(Fahlman, 1988), is also compatible with the con- 
cept of the "100-step program" constraint (Feld- 
man, 1985) extended in the training procedure. In 
biological learning, the number of "training set" 
presentations involved in a learning task is a small 
number, rather than a number of the order of 
thousands. Moreover, we can assume that whenever 
exponential time is involved in computations within 
the same epoch, neural networks (the biological 
ones, as well as the models we investigate) may be 
able to provide speed at the cost of an excessive 
network size (Abu-Mostafa,  1986). 
Nevertheless, implementation of current generation 
neural networks on serial computers calls for algo- 
rithms that can afford us with acceptable overall 
training times. In this respect, it is important to note 

TABLE 3 
Experimental Results for the 8-3-8 Encoder Problem 

Experiment Type: MULTIPLEXER Categories: 2 Input Samples: 64 Ref: Jacobs, 1988 

MFNN System 
Architecture Input Units: 6 Hidden Layers: 1 Hidden Units: 6 Output Units: 1 

Algor i thms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta 

Learning Parameters 6P = 1.8 c = 1.50 c = 0.30 ~ = 0.5, # = 2.5 ~ = 0.20, K = 0.09 
= 0.85 (x = 0.0 a = 0.80 w = -0 .0001,  ~o = 0.12, 0 = 0.50 

(x = 0.0 ~ = 0.80 

2000 2000 2000 2000 2000 
2000 1000 1000 1000 2000 
97.4 99.6 84.0 96.1 82.1 
2.6 0.4 16.0 3.9 17.9 

88.37 166.47 124.33 236.04 135.76 
138.09 74.74 114.66 230.60 204.72 
1971 1145 996 1968 1959 

23 86 41 48 28 

Al lowed Epochs 
Trials 
Successes (%) 
Failures (%) 
Mean 
Stdv 
Maximum 
Minimum 
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TABLE 4 
Experimental Results for the XOR Problem 
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Experiment Type: XOR Categories: 2 Input Samples: 4 Ref: Minsky & Papert, 1969 

MFNN System 
Architecture Input Units: 2 Hidden Layers: 1 Hidden Units: 2 Output Units: 1 

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta 

Learning Parameters ~P = 1.4 s = 0.90 s = 4.50 s = 2.00,/z = 1.20 ~ = 7.0, K = 0.25 
= 0.85 e = 0.70 ~ = 0.80 0J = --0.0001, ~ = 0.12, 8 = 0.70 

CX = 0.0 ~X = 0.80 

Al lowed Epochs 2000 2000 2000 2000 2000 
Trials 5000 2000 1000 5000 1000 
Successes (%) 80.5 73.5 91.9 80.2 92.7 
Failures (%) 19.5 26.5 8.1 19.8 7.3 
Mean 48.37 175.12 73.88 130.60 66.02 
Stdv 93.77 215.96 79.16 272.95 72.59 
Maximum 981 1978 1176 1999 1245 
Minimum 8 24 25 28 28 

that the CPU time required to complete an epoch is 
similar for all algorithms quoted in this paper. In- 
deed, all these algorithms require the evaluation of 
the derivatives Jiim of the cost function with respect 
to the weights. The number of operations per weight 
needed to complete this evaluation is proportional 
to the number of patterns in the training set [cf. eqn 
(18)]. Once the Jij,, have been evaluated, only a 
relatively small number of additional operations per 
weight independent of the number of training pat- 
terns is needed to complete an update [ for ALECO- 
2 cf. eqns (19), (23) - (27) ] .  Although this addi- 
tional computational burden is less for off-line 
BPMA than all other algorithms quoted here, it 
takes much less CPU time than the calculation of 
the Ju,, in all these algorithms. This is confirmed by 
the actual CPU times measured in our binary bench- 
marks. Utilizing optimized codes for use with a se- 

rial computer, the following ratios of CPU times 
needed to complete an epoch in ALECO-2 and off- 
line BPMA have been measured on a SUN-sparc2 
workstation, accurate to two decimal places: 1.06 
for the 4-5-5 counter, 1.02 for the 6-6-1 multiplexer, 
1.09 for the 8-3-8 encoder, 1.17 for XOR, 1.02 for 
the 64-6-64 encoder, 1.00 for the 256-8-256 en- 
coder, and 1.00 for the 11-11-1 multiplexer. 
In the literature, there exist two approaches for re- 

porting the number of epochs required by learning al- 
gorithms to complete training tasks, reported by Jacobs 
(1988) and Fahlman (1988), respectively. The first ap- 
proach favors algorithms that give better mean value 
of epochs whereas the second, using the restart proce- 
dure, favors algorithms that give better minima of the 
number of epochs. Which of these is a better measure 
of learning speed performance depends heavily on the 
shape of the distribution of epochs needed to success- 

TABLE 5 
Experimental Results for the 64-6-64 Encoder Problem 

Experiment Type: ENCODER Categories: 64 Input Samples: 64 Ref: Fahlman, 1988 

MFNN System 
Architecture Input Units: 64 Hidden Layers: 1 Hidden Units: 6 Output Units: 64 

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta 

Learning Parameters 6P = 1.5 s = 0.50 s = 4.00, # = 1.75 
= 0.50 ,x = 0.70 No convergence ~ = -0.0001, e = 0.0 No convergence 

Al lowed Epochs 1000 1000 1000 1000 1000 
Trials 100 100 100 100 100 
Successes (%) 100.0 100.0 0.0 98.0 0.0 
Failures (%) 0.0 0.0 100.0 2.0 100.0 
Mean 158.72 276.83 402.09 
Stdv 13.94 35.80 143.97 
Maximum 202 412 984 
Minimum 128 213 124 
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TABLE 6 
Experimental Results for the 256-8-256 Encoder Problem 

Experiment Type: ENCODER Categories: 256 Input Samples: 256 Ref: Fahlman, 1988 

MFNN System 
Architecture Input Units: 256 Hidden Layers: 1 Hidden Units: 8 Output Units: 256 

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta 

Learning Parameters 6P = 1.8 e = 0.40 
= 0.50 a = 0.60 No convergence No convergence No convergence 

1000 1000 1000 1000 1000 
50 50 50 50 50 

100.0 100.0 0.0 0.0 0.0 
0.0 0.0 100.0 100.0 100.0 

293.07 476.68 
15.88 89.96 
323 699 
257 358 

Allowed Epochs 
Trials 
Successes (%) 
Failures (%) 
Mean 
Stdv 
Maximum 
Minimum 

fully complete a task. For example, it is clearly desir- 
able that an algorithm exhibit a small standard devia- 
tion to mean value ratio for this distribution; it is then 
reliable in its performance as regards learning speed 
and the mean value is an adequate parameter by which 
to judge performance. On the other hand, if this ratio 
is large, the distribution will extend far beyond its peak 
towards infinity and the peak can be closer to the min- 
imum number of epochs than to the mean; this mini- 
mum may then be considered as a better measure of 
learning speed, provided that the user of the algorithm 
is prepared to disregard the trouble caused by trials in 
which an excessive number of epochs is needed to 
achieve convergence. With these thoughts in mind, we 
try to be as informative as possible in reporting our 
results and include in Tables 1 -7  detailed information 
about the distribution of epochs required to success- 
fully complete each task. The mean and minimum of 

the distribution of epochs are highlighted, to help the 
reader focus his/her attention. 

6. DISCUSSION OF EXPERIMENTAL 
RESULTS 

Evidently, ALECO-2 outperforms off-line BPMA in all 
four small-scale benchmarks in terms of learning speed. 
Ratios of the average number of epochs needed to solve 
the tasks using the two algorithms range from 5.34 in 
the 4-5-5 counter problem to 1.41 in the 6-6-1 multi- 
plexer problem, always in favor of ALECO-2. The cor- 
responding ratios for the minimum number of epochs 
needed to solve these tasks range from 3.29 in the 8- 
3-8 encoder to 1.78 in the 6-6-1 multiplexer. Moreover, 
our method also achieves much faster learning than on- 
line BPMA, quickprop, and delta-bar-delta: much bet- 
ter averages are obtained than both algorithms for all 

TABLE 7 
Experimental Results for the 11-11-1 Multiplexer Problem 

Experiment Type: MULTIPLEXER Categories: 2 Input Samples: 2048 Ref: Jacobs, 1988 

MFNN System 
Architecture Input Units: 11 Hidden Layers: 1 Hidden Units: 11 Output Units: 1 

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta 

Learning Parameters 6P = 0.8 s = 0.60 
c = 0.50 ~ = 0.70 No convergence No convergence No convergence 

1000 1000 1000 1000 1000 
100 100 100 100 100 

100.0 94.0 0.0 0.0 0.0 
0.0 6.0 100.0 100.0 100.0 

140.25 279.68 
54.26 91.68 
481 548 
82 160 

Allowed Epochs 
Trials 
Successes (%) 
Failures (%) 
Mean 
Stdv 
Maximum 
Minimum 
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benchmarks; the minimum number of epochs is much 
better than that achieved by delta-bar-delta and on-line 
BPMA in all cases and better or, at worst, comparable 
to that achieved by quickprop. Compared to the other 
methods regarding the percentage of successful trials, 
our method has mixed fortunes. It can be said that none 
of the algorithms examined shows a clear advantage 
over the others regarding convergence ability in the 
small-scale benchmarks. 

Results in the three large-scale benchmarks can be 
summarized as follows: 
• Concerning convergence ability, we notice that off- 

line BP and delta-bar-delta cannot converge at all in 
the benchmarks tried within the specified limit of 
epochs until failure, whereas quickprop converges 
only in the 64-6-64 encoder. By contrast, on-line BP 
and ALECO-2 exhibit good convergence ability in 
all three tasks tried, with ALECO-2 slightly out- 
performing on-line BP in the 11-11-1 multiplexer 
problem. 

• Concerning learning speed, measured either by the 
average or the minimum of the distribution of epochs 
needed to successfully complete a task, ALECO-2 
clearly outperforms its closest rival (on-line BP) in 
all the tasks by, approximately, a factor of  2. 

• ALECO-2 exhibits a relatively small standard de- 
viation in the distribution of  epochs needed 
to successfully complete a task, thus exhibiting 
reliability of  performance regarding learning 
speed. 
These results are in compliance with work by Fo- 

gelman Soulie ( 1991 ) reporting that on-line BP exhib- 
its very good learning abilities in large-scale problems. 
Moreover, they demonstrate the emergence of an ex- 
cellent new learning algorithm, ALECO-2, for large- 
scale networks and problems. 

Practical guidelines can be given for selecting op- 
timal values for the learning parameters 6P and 4: for 
all small-scale benchmarks, similar performances 
were recorded with 0.5 < ( < 0.9 and 1.0 < 6P < 
2.0, indicating that results are not very sensitive to 
the exact values of the parameters. Following the ex- 
ample of  Jacobs (1988) ,  we performed additional 
runs of  ALECO-2 using common values (rP = 1.5 
and ( = 0.85) for all four small-scale benchmarks. 
Deterioration of  the mean number of  epochs, com- 
pared to the optimal values shown in Tables 1 -4 ,  was 
never more than 30%. Larger-scale problems are 
more sensitive to the selection of  dP, but not to the 
selection of ( for which a value around 0.5 works 
well for all benchmarks. 

Finally, we add a few words regarding the general- 
ization ability of ALECO-2. Preliminary results in 
large-scale optical character recognition problems in- 
dicate that the improvement in MFNN learning speed 
achieved by ALECO-2 has no adverse effect on gen- 
eralization ability (Gatos, Karras, & Perantonis, 1993). 

In these problems, the classification accuracy achieved 
by ALECO-2 was superior to that achieved by on-line 
BPMA. We plan to carry out extensive tests of the gen- 
eralization ability of  ALECO-2 in OCR problems, to 
fully confirm these preliminary results. Moreover, in 
the same spirit of  constrained learning, it is possible to 
augment the algorithm with weight elimination tech- 
niques (Weigend et al., 1991 ) that will hopefully fur- 
ther improve its generalization ability without adverse 
effect on its learning speed. 

7. CONCLUSION AND PROSPECTS 

A learning algorithm for MFNNs was proposed incor- 
porating momentum acceleration in its formalism and 
exhibiting the following attractive features: 
• Solid theoretical background, based on rigorous non- 

linear programming techniques. 
• Proved convergence to global or local minima of the 

mean squared error cost function for small enough 
learning step. This property is shared with the BP 
algorithm, but not with some of its descendants of 
heuristic origin. 

• Faster learning than the BPMA algorithm, from 
which it is inspired, and from other reputedly fast 
learning algorithms. 

• Good scalability properties. 
However, the most attractive feature of this algo- 

rithm is its potential for further improvement. In the 
same framework for constrained learning, it is possible 
to augment it with further information about learning 
in MFNNs, including methods for constructing suitable 
internal representations (Karras & Perantonis, 1993; 
Karras et al., 1993) and weight elimination techniques. 
It is the concerted incorporation of such detailed infor- 
mation into the same algorithm that will hopefully lead 
to increasingly efficient MFNN training schemes com- 
bining fast learning, good scalability properties, and 
powerful generalization capabilities. 
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APPENDIX 

Let us denote by ei the number of  epochs recorded in the ith suc- 
cessful trial. The expected value of any of the ei represents the " t rue"  
average ~)-tof the epoch distribution. Moreover, let Y- denote the stan- 
dard deviation of any of  the ei. According to the Central Limit The- 
orem, the distribution of  the sample average number of  epochs flit = 
(el + e2 + . . .  + e,)/~, for a sufficiently large number u of  indepen- 
dent trials tends to the normal distribution N(,.q'[, Y./x/-~u). It follows 
that ( ~ t  - ~Dx/-~ £ -~ tends to the normal distribution N(0,  1 ). It is 
required that the probability 

$[],~t - ~/l  ----- 3 ' ~ ]  = 'P[l~t - ~/]~/~v£-' _< 3 , ~ / ~ u £ - '  l (31) 

be greater or equal to b. Therefore, 

2 fv .~/Tz ' 
- ~  ~o e x p ( - t 2 / 2 )  dt >- b, (32) 

which can be rewritten as 

err f \--~-- ] -->b. (33) 

By substituting ~'[ and Z by their experimentally determined esti- 
mates ~ t  and a,  we readily obtain the experimental estimate given 
by eqn (30) for the minimum number Vmi. of  trials required to achieve 
the desired level of  statistical significance for ~t. 


