
Pergamon

CONTRIBUTED ARTICLE

0893-6080(94) 00067-0

Neural Networks, Vol. 8, No. 2, pp. 237-249, 1995
Copyright © 1995 Elsevier Science Ltd
Printed in the USA. All rights reserved

0893-6080/95 $9.50 + .00

An Efficient Constrained Learning Algorithm With
Momentum Acceleration

STAVROS J. PERANTONIS AND DIMITRIS A. KARRAS

Institute of Informatics and Telecommunications, National Research Center "Demokritos"

(Received 20 April 1993; revised accepted 17 June 1994)

Abstract--An algorithm for efficient learning in feedforward networks is presented. Momentum acceleration is
achieved by solving a constrained optimization problem using nonlinear programming techniques. In particular,
minimization o f the usual mean square error cost function is attempted under an additional condition for which the
purpose is to optimize the alignment of the weight update vectors in successive epochs. The algorithm is applied to
several benchmark training tasks (exclusive-or, encoder, multiplexer, and counter problems). Its performance, in
terms o f learning speed and scalability properties, is evaluated and found superior to the performance o f reputedly
fast variants o f the back-propagation algorithm in the above benchmarks.

Keywords---Feedforward neural networks, Supervised learning, Momentum acceleration, Nonlinear programming,
Constraints, Lagrange multipliers.

1. INTRODUCTION

Multilayer feedforward neural networks (MFNN) have
been the subject of intensive research efforts because
of their interesting learning and generalization abilities.
Of particular importance is the rigorous theoretical es-
tablishment that these networks are universal approxi-
mators (Hornik, Stinchcombe, & White, 1989; Funa-
hashi, 1989), once properly trained. The problem of
devising efficient algorithms for training MFNNs is
thus of central importance in neural network research
and has been thoroughly studied in recent years. Fol-
lowing the back-propagation (BP) algorithm and its
momentum acceleration variant (Rumelhart, Hinton, &
Williams, 1986a,b), a multitude of supervised learning
algorithms have been devised with the aim of improv-
ing the learning speed and generalization capability of
these networks. In particular, methods originating from
the field of numerical analysis [second order (Parker,
1987; Becker & le Cun, 1988) and line search, conju-
gate gradient (Kramer & Sangiovanni-Vincentelli,
1988), and quasi-Newton (Watrous, 1987) methods]
and from the field of optimal filtering [extended Kal-
man algorithm (Singhal & Wu, 1989)], as well as heu-

Requests for reprints should be sent to Dr. Stavros J. Perantonis,
Institute of Informatics and Telecommunications, National Research
Center "Demokritos," 153 10 Aghia Paraskevi, Athens, Greece; E-
mail: sper @iit.nrcps.ariadne-t.gr

237

ristic optimization techniques that perform a search in
the weight space [delta-bar-delta (Jacobs, 1988) and
quickprop (Fahlman, 1988)], have been proposed.

A common objective of these algorithms is to adapt
the synaptic weights until the activation of the net-
work's output layer nodes matches prespecified val-
ues-targets. Apart from this sine qua non condition,
some algorithms incorporate in their formulation ad-
ditional information about learning in MFNNs. For ex-
ample, attempts to increase learning speed by imposing
additional conditions aimed at helping the hidden nodes
to play a more active role during training (Grossman,
1990; Grossmann, Meir, & Domany, 1990; Rohwer,
1990; Krogh, Thorbergsson, & Hertz, 1990), as well
as attempts to improve generalization by enabling the
decay of redundant weights (Weigend, Rumelhart, &
Huberman, 1991), have been reported in the literature.

Along this line of research, the authors have pro-
posed methods for incorporating useful information in
the learning algorithm in the form of additional con-
ditions--apart from the demand for minimization of
the cost function--that must be satisfied during learn-
ing. Techniques of nonlinear programming have been
utilized to solve the resulting constrained optimization
problems. As specific examples, Algorithms for Learn-
ing Efficiently with Constrained Optimization tech-
niques (ALECO) have been proposed, which incor-
porate information about the desirable behavior of
hidden units. These algorithms exhibit better learning

2 3 8 S. J. P e r a n t o n i s a n d D. A. K a r r a s

properties than the BP algorithm and variants thereof
(Karras & Perantonis, 1993; Perantonis & Karras,
1993; Varoufakis, Perantonis, & Karras, 1993; Karras,
Perantonis, & Varoufakis, 1993, 1994).

Among this multitude of learning algorithms, back
propagation with momentum acceleration (BPMA)
(Rumelhart et al., 1986a,b) remains one of the most
popular learning paradigms for MFNNs, mainly be-
cause of its faster convergence than the BP method in
a variety of problems and because of its computational
simplicity. The incorporation of momentum in the BP
algorithm has been extensively studied, especially from
an experimental point of view (Fahlman, 1988; Te-
sauro & Janssens, 1988; Jacobs, 1988; Minai & Wil-
liams, 1990; Tollenaere, 1990). It is only recently,
however, that some theoretical background to this in-
trinsically heuristic method has been provided (Sato,
1991; Hagiwara, 1992).

The purpose of this paper is to establish a link be-
tween the use of momentum in MFNN learning on the
one hand, and constrained optimization learning tech-
niques on the other. Motivated by the BPMA algo-
rithm, we discuss how the use of momentum can be
optimized using constrained learning techniques. A
modified algorithm for constrained learning with mo-
mentum (ALECO-2) ensues with substantially im-
proved learning capabilities compared not only to the
BPMA algorithm, but also to other popular and reput-
edly fast learning algorithms (quickprop and delta-bar-
delta) in a variety of binary benchmark problems.

This paper is organized as follows. In Section 2, the
BPMA formalism is reviewed and its links to con-
strained learning are discussed. In Section 3, the new
constrained learning algorithm with momentum is de-
rived. Sections 4, 5, and 6 contain experimental work.
In particular, Section 4 describes the experiments con-
ducted to test the performance of the algorithm and
compare it with that of other supervised learning
algorithms; experimental results are presented in
Section 5 and discussed in Section 6. Finally, in Sec-
tion 7, conclusions are drawn and future research
goals are set.

2. LEARNING WITH MOMENTUM
ACCELERATION

Consider the standard MFNN architecture with one
layer of input, M layers of hidden, and one layer of
output nodes. The nodes in each layer receive input
from all nodes in the previous layer. The network node
outputs are denoted by 0~7 ~. Here the superscript (m)
labels a layer within the structure of the neural network
(m -- 0 for the input layer, m = k for the kth hidden
layer, m = M + 1 for the output layer), i labels a node
within a layer, and p labels the input patterns. The syn-
aptic weights are denoted by w~ "~, where m, j corre-
spond, respectively, to the layer and the node toward

which the synapse is directed, and i corresponds to the
node in the previous layer from which the synapse em-
anates. Keeping in mind the iterative nature of learning
algorithms, we shall denote the value of node outputs
and weights at the current epoch and at the last (im-
mediately preceding) epoch by the subscripts c and l,
respectively.

The ultimate goal of a supervised learning algo-
rithm, viz. matching the network outputs to prespeci-
fled target values Tip, can be achieved through mini-
mization of the cost function

= = - Oi~) . (1)
ip

In the BPMA algorithm (off-line version) minimiza-
tion of E is attempted using the following rule for up-
dating the weights:

OE ~m)
d w ~ m ' = - e - g - 7 ~ +°ffw~2'l , ' -wi, 1,). (2)

(~ W ij c

Thus, the current weight update vector is a linear
combination of the gradient vector and the weight up-
date vector in the immediately preceding epoch.

The BPMA algorithm is inherently heuristic in na-
ture, although attempts have been made to invest it with
theoretical background by taking into account infor-
mation from the behavior of the weights in more than
one epoch (Sato, 1991; Hagiwara, 1992). Thus, in
BPMA the mathematical rigor of gradient descent - -
where a lot of information is available in the form of
convergence theorems (Goldstein, 1965; Fletcher,
1980) - - i s compromised; in return, it is expected that
improved speed can be achieved by filtering out high-
frequency variations of the error surface in the weight
space (Rumelhart et al., 1986a).

A good example of relatively successful negotiation
of high-frequency variations by BPMA is movement
along long narrow troughs that are fiat in one direction
and steep in surrounding directions. These features are
often exhibited by cost function landscapes in various
small- and large-scale problems solved by MFNN (Sut-
ton, 1986; Hush, Home, & Salas, 1992). In such land-
scapes, the cost function exhibits significant eccentric-
ity and high-frequency variation is present in the
direction perpendicular to that of the trough. It is well
known that gradient descent proper is highly inefficient
in locating minima in such landscapes (Rao, 1984) be-
cause it settles into zigzag paths and is hopelessly slow.
In neural network applications, failure to converge to
the global minimum can sometimes be attributed to zig-
zag wandering in the bottom of very shallow, steep-
sided valleys (Hertz, Krogh, & Palmer, 1991). An il-
lustrative example of such undesirable behavior is
given by Hush et al., (1992). Supplementing gradient
descent with momentum acceleration represents a com-
promise between the need to decrease the cost function
at each epoch and the need to proceed along relatively

Constrained Algori thm With Momentum Acceleration 239

(a)

2

0

-2

-4
-15

I | i i

-10 -5 0 5 10 15
x

(b)

2

0

-2

-4
-15

J i i | i

-10 -5 0 5 10 15
x

(c)

FIGURE 1. (a) Cost function landscape with a long, narrow trough. (b) Contour plot of the cost function and zigzag path followed
by BP, which reaches the minimum in 45 epochs. (c) Smoother path followed by BPMA, reaching the minimum in 17 epochs.
Initial conditions and algorithm parameters are given in the text.

smooth paths in the weight space. The fo rmal i sm favors
configurat ions where the current and previous weight
update vectors are par t ia l ly al igned, thus avoid ing zig-
zag paths and accelera t ing learning.

It is instruct ive to provide visual ev idence o f the
improvemen t achieved by incorpora t ing m o m e n t u m in
the BP formal ism. This is poss ib le in s imple two-di-
mens iona l problems. Consider , for example , a ne twork
with two input nodes, one layer o f weights, and one

output node without bias, cor responding to the fo l low-
ing cost function E o f the weights x and y:

E(x , y) = ~[g(ax + by) - Tl] 2

+ ~[g(cx + dy) - T2] 2. (3)

Here g is the logis t ic function g (x) = 1/(1 +
e x p (- x)) . The values a = - 0 . 1 , b = - 0 . 0 2 , c = 0.1,
d = - 1 . 0 , T~ = 0.5, 7"2 = 0.5 are chosen to create a

240 S. J. Perantonis and D. A. Karras

long trough with the minimum at x = 0, y = 0, as shown
in Figure 1. The objective is to reach the minimum
starting from the initial conditions x0 = 10.0, Y0 = 2.5
within a tolerance of 10-3 for E. Gradient descent with
relatively low values of e is hopelessly slow in the
trough, whereas best performance is achieved with
large values of e, leading to zigzag paths. Figure l a
shows the path obtained with e = 76.0, which reaches
the minimum in 45 epochs. Using momentum accel-
eration leads to partial alignment of successive weight
update vectors and to a smoother path that follows the
direction of the trough more closely. As a result, faster
convergence is achieved, as shown in Figure lb, where
the minimum is reached in 17 epochs with e = 24.0, a
= 0.9.

Motivated by the analysis of BPMA made so far, we
suggest that still better results could be obtained using
an iterative algorithm that would maximize the align-
ment of successive weight update vectors without com-
promising the need for a decrease of the cost function
at each epoch. This would allow more efficient nego-
tiation of cost function landscapes involving long,
steep-sided troughs. Thus, the proposed algorithm
(ALECO-2) should solve f o r each epoch the following
constrained optimization problem:
• Maximize the function

= ~.~'~''[Wij(m) - - Wij(m) [c)(W~?) [c - w~m)[,) (4)
t~rn

to achieve optimal alignment of successive weight
vector updates.

• Lower the cost function E by a specified amount 6E.
After a sufficient number of epochs, the accumulated
changes to the non-negative cost function should suf-
fice to achieve the desired input-output relation.
The proposed algorithm is an iterative procedure

whereby the weights are changed by small amounts
dw~ 5"~ at each iteration so that the quadratic form

. (m) _ (m)
]~ awlj "aw o (5)
ijm

takes on a prespecified value (6p)2. ThUS, at each ep-
och, the search for an optimum new point in the weight
space is restricted to a small hypersphere centered at
the point defined by the current weight vector. If 6P is
small enough, the changes to E and • induced by
changes in the weights can be approximated by the first
differentials d E and d ~ . The problem then amounts to
determining, for given values of 6P and 6E, the values
of dw~ m~, so that the maximum value o f d ~ is attained.
Similar problems where • has an explicit functional
dependence on the node activations only (not the
weights, as is the case here) have been solved (Karras
& Perantonis, 1993; Perantonis & Karras, 1993; Va-
roufakis et al., 1993; Karras et al., 1993, 1994) by
closely following the optimal control method proposed
by Bryson and Denham (1962). In this case, where

exhibits an explicit functional dependence on the
weights, a modification of this method is required. The
solution, based on methods of nonlinear programming,
is presented in the next section.

3. DERIVATION OF ALECO-2

Maximization of d~p is attempted with respect to vari-
ations in w ~ ~ and o ! '~) In the language of nonlinear tp •

programming, the synaptic weights correspond to de-
cision variables and the node outputs correspond to
state (solution) variables (Beightler, Phillips, & Wilde,
1979). These quantities must satisfy the state equa-
tions, that is, the constraints describing the network ar-
chitecture

(m) t (m)~(m--l)~ / f j , (O , w) = g ~ w 0 u, r --o)vm)=0. (6)

Here g is the logistic function g (x) = 1/(1 +
exp (- x)) and biases are treated as weights emanating
from nodes of constant, pattern-independent activation
equal to 1. In addition, the following two constraints
must be satisfied:

dE = 6E (7)

E dw~;')dw~ '' = (6 p) 2. (8)
qm

This constrained maximization problem is solved by
introducing suitable Lagrange multipliers. Hence, to
take account of the architectural constraints, we con-
struct the functions

y jp (m) r~ (m) (9) e = E + ~, ,.~ j jp
jpm

,~ = ,I, + Z x~"(")e !") ...,. j jp (10)
jpm

where the he and k . are Lagrange multipliers to be
determined in due course. Consider the differentials

de = Z-A----- + ~ dwq (11)
jpm .. (] W q c

04~ [do!m) ~ O ~ dw~ ' . (12)
d6 = .Z OOJ~,,---'---5 -~m + "g- '~,

jpm c " (] W ij [c

We choose the he and h,~ to eliminate all dependence
of de and d~b on the o !m). ~ j p •

°e I %, n~,, ~ = 0, = 0. 13)
Ovjp c ~ , . (

This leads to closed formulas for determining the
Lagrange multipliers. From eqns (1) , (4) , (6) , (9) ,
(10) , and (13) we readily obtain

k j p (M + I) [.)!M+ 1)
e = ~ ; p l, - Th-, (1 4)

)ki~(m) ~ , j p (m + l) (m+l)~(m+l) D(m+l)
-- A~ wu uj,, I , . (1 - ~ j , , I,),

J

m = 1,2 M (15)

C o n s t r a i n e d A l g o r i t h m With M o m e n t u m A cce l e ra t i on 241

k~ t~)=O, m = 1,2 M + 1 (16)

for all nodes j and patterns p .
The Lagrange multipliers can thus be determined in

the following systematic way. Multipliers correspond-
ing to the output layer are evaluated. Multipliers of the
mth layer are readily determined once the ones corre-
sponding to the (m + 1)th layer have been evaluated.
This procedure can be considered as a back propagation
of the Lagrange multiplier values.

Differentiating eqns (9) and (10) with respect to the
synaptic weights and having eliminated all dependence
on the state variables, we obtain the following equa-
tions for points satisfying the architectural constraints:

d E = de = ~ . " " (m) dijmaWij , d¢7~ : d ~ = Z Fij~,dw~ m) (1 7)
ijm ijra

with

Jijra ~ x j p (m) f) (m) O ! m) I . ~ ! = - 1) I = Z ~ , , E ,--jp I , (1 - (1 8) ~ j p i c . ' ~ l p I¢

P

FOr,, ~ (m) , (m) , = : W i j Ic - - W i j II"
O c

(1 9)

We now introduce new Lagrange multipliers h~ and h 2

to take account of the remaining constraints in the prob-
lem [eqns (7) and (8)]

where

h2 =21_ I~Jee ' -~e~ J '

hi = (IE~ -- 2k26E)/lee (24)

lEE = Y. (jq,,)2 (25)
/jm

IE~ = ~, JomVom (26)
ijm

I¢~ =]~ (Fi)m) 2 * (27)
/jm

and the positive square root value was chosen for kz to
ensure maximum (rather than minimum) d ~ [relation
(22)] .

Note the bound] tE[< 6Pl~ee set on the value of
6E by eqn (24), which forces us to choose 6E adap-
tively. The simplest choice for adapting 6E, namely

6 E = - ~ 6 P l ~ e e , 0 < ~ < 1 (28)

is most attractive because of its learning convergence
properties. Indeed, as in BP, it is possible to show for
small enough 6P that the algorithm converges to global
or local minima of the cost function of eqn (1). To see
this, we use eqns (25) , (11), and (17) to rewrite eqn
(28) as

(/ rijmaWij + hi 6E - ~. Jijmdwij
ijm ijm

. (ra)__ (m)q
-[-)k2 (t P) 2 - ~ a w 0 awlj J . (2 0)

qm

Note that the quantities multiplying ha and ~k 2 a r e equal
to zero by eqns (17) and (8) and that 6P and 6E are
known quantities. We obtain maximum change in ~ at
each iteration of the algorithm by ensuring that

d 2¢b = ~, (Fore - X.J o. - 2X2dw~m))d2w~ m' = 0 (21)
ijm

~'~ J 2 (m) 1 2 (ra)
d 3 ~ = -2h2 Z. a w o "a w o < O. (22)

ijm

To satisfy eqn (21) we set

d (,~) hl jOm+ I_I_F..
w° = - 2h-~ 2k2 um" (23)

In effect, weight updates are formed at each epoch as
a linear combination of the cost function derivative J~m
with respect to the corresponding weight [see eqn
(17)] and of the weight update Fijm at the immediately
preceding epoch [see eqn (19)] . This weight update
rule is similar to that of BPMA. However, unlike
BPMA, where the coefficients of F,jm and Jura are con-
stant, in ALECO-2 the coefficients are chosen adap-
tively. To see this, we use eqns (8) , (21), and (17) to
obtain

6E = - (6 P (0e/Ow~m)) 2 . (29)

Hence, it suffices to show that for a given positive real
number ~ there exists an epoch number v0, so that 10
e/Ow~ m) I < ,7 for all subsequent epochs. Indeed, in the
opposite case, an infinity of changes in E at least equal
to - ~ 6 P would accumulate and drive E to minus in-
finity as learning progressed. This is not possible, be-
cause E is bounded from below by zero.

In short, eqn (23) describes the weight updating for-
mula of ALECO-2, which optimizes the weight steps
in each epoch and converges to minima of the cost
function. Taking into account eqn (28) we are left with
two free learning parameters 6P and ~, which should
be adjusted to achieve optimum performance.

Before testing the performance of ALECO-2 on spe-
cific benchmark tests, we return to the two-dimensional
cost function of eqn (3) and illustrate in Figure 2 the
ability of ALECO-2 to negotiate cost function land-
scapes with long, steep-sided troughs. The behavior of
ALECO-2 in the landscape of Figure 1 is shown, start-
ing from the same initial conditions x0 = 10.0, yo =
2.5. The learning parameters d P = 1.1 and ~ = 0.3
were used. Note that optimal alignment of successive
weight update vectors leads to a path that is smoother
and more closely aligned to the axis of the trough than
gradient descent (with or without momentum). As a
result, the minimum is reached within the allowed tol-
erance in just 10 epochs.

242 S. J. Perantonis and D. A. Karras

4 A L E C O - 2

0

-2

-4 " ' ' ' '
-15 -10 -5 0 5 10 15

x

FIGURE 2. Path followed by ALECO-2 in the cost function landscape of Figure la, with the same initial conditions as in Figure
l b a n d c . The minimum is reached in j u s t 1 0 e p o c h s . A l g o r i t h m parameters are given in the t e x t .

4. ORGANIZATION OF EXPERIMENTS

In evaluating the performance of a learning algorithm,
three key issues should be addressed: the learning
speed of the algorithm; its scalability properties (i.e.,
its ability to cope with large network architectures and
problems with a large number of training patterns); and
the generalization capabilities of networks trained us-
ing this algorithm. In the remaining sections of this
paper we present experimental work carried out to test
learning speed and scalability properties, and comment
briefly on generalization properties, a full study of
which is deferred for papers currently under prepara-
tion.

We compare ALECO-2 not only with BPMA (both
the off-line version referred to in the previous sections
of this work, as well as the well-known on-line ver-
sion), but also with other supervised learning algo-
rithms that reputedly improve its performance signifi-
cantly. We have selected some representative,
well-known, and reputedly fast algorithms that have
fixed and predefined model architecture--so we have
excluded algorithms like cascade correlation (Fahlman
& Lebiere, 1990). These algorithms are the quickprop
learning rule (Fahlman, 1988) and delta-bar-delta (Ja-
cobs, 1988). Our simulation program is based on the
one referred by Pao (1989). We also used the public
domain quickprop simulation program created by
Fahlman in Common Lisp and translated into C by
Regier.

There is no wide consensus about benchmark
selection for testing learning speed and scalability.
Nevertheless, binary benchmark problems--encoder,
counter (van Ooyen & Nienhuis, 1992), multiplexer
(Jacobs, 1988) - - a r e the ones that most authors are in
favor of. Among them, encoder problems are used by
an increasing number of authors (Fahlman, 1988;
Schmidhuber, 1988; Tollenaere, 1990; van Ooyen &
Nienhuis, 1992) as seeming to be acceptable in terms
of generalization. XOR, the well known and popular
benchmark, is also frequently used for historical rea-
sons (Minsky & Papert, 1969). Thus, in our experi-
ments we use XOR and rather small-size counter (4-5-
5 architecture), multiplexer (6-6-1), and encoder

(8-3-8) problems to test learning speed. In general,
these are the benchmarks used by the authors of the
algorithms to which we compare ALECO-2. In this
way we ensure performance evaluation of ALECO-2
in the environment proved to be best for the other al-
gorithms. We also use large-scale benchmarks with ei-
ther a large number of synaptic weights and biases (64-
6-64 and 256-8-256 encoders) or a large number of
patterns in the training set (11-11-1 multiplexer with
2048 input patterns) to test scalability properties. For
the small-scale benchmarks we ran our program on the
small SUN-sparcstation network of our laboratory,
whereas for the large-scale benchmarks we used the
Convex supercomputer and the Silicon Graphics Crim-
son workstation at NRCPS "DEMOKRITOS."

For reasons of uniformity and fair algorithm com-
parison, the following factors were used for all algo-
rithms. Random initial weights with uniform distribu-
tion in [-0 .5 ,0 .5] were selected. The cost function of
eqn (1) was used. Patterns were presented to the net-
works in a fixed order, sequentially indexed in their
categories. The sigmoid-logistic function g (x) = 1/(1
+ e x p (- x)) was used as activation function in our
MFNN. We adopted Fahlman's suggestion of adding
to the derivative of the logistic function a small con-
stant S'. This was found to accelerate all five algo-
rithms. Finally, we adopted the 0.4-0.6 convergence
criterion reported by Fahlman (1988) for all algorithms
and benchmarks.

Each algorithm has its own learning parameters and
a fair comparison requires that the best parameter val-
ues be chosen for each algorithm and benchmark (Tol-
lenaere, 1990; van Ooyen & Nienhuis, 1992). The
learning parameters of the algorithms we have com-
pared in this experimental study, as defined by the au-
thors who proposed them, are:
• B P M A : the learning rate e, the momentum factor a

(Rumelhart et al., 1986a,b).
• Q u i c k p r o p : the learning rate e, the momentum factor

a, the maximum growth factor #, and the weight
decay term ~ (Fahlman, 1988).

• D e l t a - B a r - D e l t a : the learning rate e, the learning
rate increment K, the learning rate proportion dec-
rement ~o, the base of the exponential average of the

Constrained Algorithm With Momentum Acceleration

TABLE 1
Experimental Results for the 4-5-5 Counter Problem

243

Experiment Type: COUNTER Categories: 5 Input Samples: 16 Ref: van Ooyen & Nienhuis, 1992

MFNN System
Architecture Input Units: 4 Hidden Layers: 1 Hidden Units: 5 Output Units: 5

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta

Learning Parameters 6P = 1.2 e = 0.50 e = 0.50 e = 3.00, e = 0.20, x = 0.09
=0 .85 a = 0 . 7 0 a = 0 . 5 # = 1 . 7 5 ! P = 0 - 1 2 , 0 = 0 . 7 0

= -0.0001, a = 0.70
a = 0.0

Allowed Epochs 3000 3000 3000 3000 3000
Trials 1000 1000 1000 1000 1000
Successes (%) 86.4 85.2 90.2 92.5 89.0
Failures (%) 13.6 14.8 9.8 7.5 11.0
Mean 97.45 247.57 520.10 603.18 227.92
Stdv 111.25 76.25 504.28 517.51 241.86
Maximum 1740 992 2965 2921 2053
Minimum 46 155 148 78 53

derivatives 0, and the momentum factor a (Jacobs,
1988).

• ALECO-2: the parameters 6P and (defined in Sec-
tion 3.
For each algorithm, the relevant parameters are

carefully adjusted to achieve the best possible per-
formance. Results are considered optimum when
small minima and averages for the number of epochs
needed to complete each benchmark task are ob-
tained, subject to the condition that at least 70% of
the experimental trials have passed the 0 .4 -0 .6 con-
vergence criterion.

In MFNN training algorithms, trials are started
by random initialization of the weights. The search
for a minimum varies in terms of difficulty at each
trial. Therefore, it is very important to test our al-
gorithms for a sufficient number of trials to ensure
an adequate level of statistical significance for our
results and a fair comparison of different training
algorithms.

In this work, a test of statistical significance was
performed on the average number of epochs needed
to successfully complete a training task. It should be
emphasized that for a specific training task the num-
ber of successful training trials needed to obtain a
certain level of statistical significance for this aver-
age can depend heavily on the training algorithm. We
denote by ~ and cr the experimental sample average
and standard deviation of the number of epochs in
successful trials, respectively. An estimate of the
minimum number v of training epochs needed to ob-
tain an experimental average differing from the true
average of the distribution less than a fraction y of

with probability greater than b can be obtained
using the Central Limit Theorem of Probability The-
ory (Papoulis, 1965). An estimate proportional to
(~r/fftt) 2 is obtained:

v ~ ~-~ [erf - ' (b)] 2,

where erf (x)= e x p (- u E) d u . (30)

A short derivation of this formula is given in the Ap-
pendix. Because different training algorithms can yield
significantly differing values of (~r/,?tt) 2, the number
of trials needed to obtain a certain level of statistical
significance will vary from algorithm to algorithm for
the same benchmark. Taking into account eqn (30),
we have performed enough experimental trials, using
new initial weights, for each learning algorithm and
benchmark to ensure at least 99% probability that the
experimental average number of epochs in successful
trials differed from the true average by less than 10%.

5. PRESENTATION OF EXPERIMENTAL
RESULTS

Complete results about the performance of all algo-
rithms are reported in Tables 1-7, each table corre-
sponding to one of the benchmarks. In each table suf-
ficient information is given to allow other researchers
to reproduce our results (taking into account the factors
common for all algorithms and benchmarks reported in
Section 4). Thus, a brief benchmark description is
given (benchmark identification, number of patterns
and categories, reference where a full description can
be found); the architecture of the MFNN that is called
upon to solve the benchmark is described; the learning
parameters used for each algorithm are reported; the
maximum allowed number of epochs before declara-
tion of failure is shown; finally, the number of trials
performed for each algorithm, starting from different
initial weights, is given.

244 S. J. Perantonis and D. A. Karras

TABLE 2
Experimental Results for the 6-6-1 Multiplexer Problem

Experiment Type: ENCODER Categories: 8 Input Samples: 8 Ref: Fahlman, 1988

MFNN System
Architecture Input Units: 8 Hidden Layers: 1 Hidden Units: 3 Output Units: 8

Algor i thms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta

Learning Parameters 6P = 2.0 ~ = 2.50 ~ = 1.50 ~ = 5.00, ~ = 0.50, K = 0.45
= 0.75 a = 0.50 e = 0.50 # = 1.75 v~ = 0.15, 0 = 0.40

= -0 .0001, ~ = 0.80
= 0.0

Al lowed Epochs 1000 1000 1000 1000 1000
Trials 1000 1000 1000 1000 1000
Successes (%) 100.0 100.0 100.0 100.0 99.9
Failures (%) 0.0 0.0 0.0 0.0 0.1
Mean 37.81 172.06 145.77 83.26 68.34
Stdv 15.58 79.50 53.62 97.51 64.08
Maximum 120 517 370 946 941
Minimum 17 25 56 16 25

Detailed results are shown, including the percent-
age of successful and unsuccessful trials, as well as
the mean, maximum, minimum, and standard devia-
tion of the number of epochs required to solve the
problems for the selected number of trials with dif-
ferent weight initializations. In principle, learning
speed can be evaluated using either the concept of
epoch, which is widely accepted, or similar ones
(Fahlman, 1988) or the concept of computational
complexity as partially involved in the work of Shah,
Palmieri, and Datum (1992). Here we have chosen a
scheme based on the number of epochs, rather than
computational complexity, motivated by the follow-
ing considerations:
1. The epoch, apart from being a convenient and gen-

erally accepted unit for measuring learning time

.

(Fahlman, 1988), is also compatible with the con-
cept of the "100-step program" constraint (Feld-
man, 1985) extended in the training procedure. In
biological learning, the number of "training set"
presentations involved in a learning task is a small
number, rather than a number of the order of
thousands. Moreover, we can assume that whenever
exponential time is involved in computations within
the same epoch, neural networks (the biological
ones, as well as the models we investigate) may be
able to provide speed at the cost of an excessive
network size (Abu-Mostafa, 1986).
Nevertheless, implementation of current generation
neural networks on serial computers calls for algo-
rithms that can afford us with acceptable overall
training times. In this respect, it is important to note

TABLE 3
Experimental Results for the 8-3-8 Encoder Problem

Experiment Type: MULTIPLEXER Categories: 2 Input Samples: 64 Ref: Jacobs, 1988

MFNN System
Architecture Input Units: 6 Hidden Layers: 1 Hidden Units: 6 Output Units: 1

Algor i thms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta

Learning Parameters 6P = 1.8 c = 1.50 c = 0.30 ~ = 0.5, # = 2.5 ~ = 0.20, K = 0.09
= 0.85 (x = 0.0 a = 0.80 w = -0 .0001, ~o = 0.12, 0 = 0.50

(x = 0.0 ~ = 0.80

2000 2000 2000 2000 2000
2000 1000 1000 1000 2000
97.4 99.6 84.0 96.1 82.1
2.6 0.4 16.0 3.9 17.9

88.37 166.47 124.33 236.04 135.76
138.09 74.74 114.66 230.60 204.72
1971 1145 996 1968 1959

23 86 41 48 28

Al lowed Epochs
Trials
Successes (%)
Failures (%)
Mean
Stdv
Maximum
Minimum

Constrained Algorithm With Momentum Acceleration

TABLE 4
Experimental Results for the XOR Problem

245

Experiment Type: XOR Categories: 2 Input Samples: 4 Ref: Minsky & Papert, 1969

MFNN System
Architecture Input Units: 2 Hidden Layers: 1 Hidden Units: 2 Output Units: 1

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta

Learning Parameters ~P = 1.4 s = 0.90 s = 4.50 s = 2.00,/z = 1.20 ~ = 7.0, K = 0.25
= 0.85 e = 0.70 ~ = 0.80 0J = --0.0001, ~ = 0.12, 8 = 0.70

CX = 0.0 ~X = 0.80

Al lowed Epochs 2000 2000 2000 2000 2000
Trials 5000 2000 1000 5000 1000
Successes (%) 80.5 73.5 91.9 80.2 92.7
Failures (%) 19.5 26.5 8.1 19.8 7.3
Mean 48.37 175.12 73.88 130.60 66.02
Stdv 93.77 215.96 79.16 272.95 72.59
Maximum 981 1978 1176 1999 1245
Minimum 8 24 25 28 28

that the CPU time required to complete an epoch is
similar for all algorithms quoted in this paper. In-
deed, all these algorithms require the evaluation of
the derivatives Jiim of the cost function with respect
to the weights. The number of operations per weight
needed to complete this evaluation is proportional
to the number of patterns in the training set [cf. eqn
(18)]. Once the Jij,, have been evaluated, only a
relatively small number of additional operations per
weight independent of the number of training pat-
terns is needed to complete an update [for ALECO-
2 cf. eqns (19), (23) - (27)] . Although this addi-
tional computational burden is less for off-line
BPMA than all other algorithms quoted here, it
takes much less CPU time than the calculation of
the Ju,, in all these algorithms. This is confirmed by
the actual CPU times measured in our binary bench-
marks. Utilizing optimized codes for use with a se-

rial computer, the following ratios of CPU times
needed to complete an epoch in ALECO-2 and off-
line BPMA have been measured on a SUN-sparc2
workstation, accurate to two decimal places: 1.06
for the 4-5-5 counter, 1.02 for the 6-6-1 multiplexer,
1.09 for the 8-3-8 encoder, 1.17 for XOR, 1.02 for
the 64-6-64 encoder, 1.00 for the 256-8-256 en-
coder, and 1.00 for the 11-11-1 multiplexer.
In the literature, there exist two approaches for re-

porting the number of epochs required by learning al-
gorithms to complete training tasks, reported by Jacobs
(1988) and Fahlman (1988), respectively. The first ap-
proach favors algorithms that give better mean value
of epochs whereas the second, using the restart proce-
dure, favors algorithms that give better minima of the
number of epochs. Which of these is a better measure
of learning speed performance depends heavily on the
shape of the distribution of epochs needed to success-

TABLE 5
Experimental Results for the 64-6-64 Encoder Problem

Experiment Type: ENCODER Categories: 64 Input Samples: 64 Ref: Fahlman, 1988

MFNN System
Architecture Input Units: 64 Hidden Layers: 1 Hidden Units: 6 Output Units: 64

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta

Learning Parameters 6P = 1.5 s = 0.50 s = 4.00, # = 1.75
= 0.50 ,x = 0.70 No convergence ~ = -0.0001, e = 0.0 No convergence

Al lowed Epochs 1000 1000 1000 1000 1000
Trials 100 100 100 100 100
Successes (%) 100.0 100.0 0.0 98.0 0.0
Failures (%) 0.0 0.0 100.0 2.0 100.0
Mean 158.72 276.83 402.09
Stdv 13.94 35.80 143.97
Maximum 202 412 984
Minimum 128 213 124

246 S. J. Perantonis and D. A. Karras

TABLE 6
Experimental Results for the 256-8-256 Encoder Problem

Experiment Type: ENCODER Categories: 256 Input Samples: 256 Ref: Fahlman, 1988

MFNN System
Architecture Input Units: 256 Hidden Layers: 1 Hidden Units: 8 Output Units: 256

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta

Learning Parameters 6P = 1.8 e = 0.40
= 0.50 a = 0.60 No convergence No convergence No convergence

1000 1000 1000 1000 1000
50 50 50 50 50

100.0 100.0 0.0 0.0 0.0
0.0 0.0 100.0 100.0 100.0

293.07 476.68
15.88 89.96
323 699
257 358

Allowed Epochs
Trials
Successes (%)
Failures (%)
Mean
Stdv
Maximum
Minimum

fully complete a task. For example, it is clearly desir-
able that an algorithm exhibit a small standard devia-
tion to mean value ratio for this distribution; it is then
reliable in its performance as regards learning speed
and the mean value is an adequate parameter by which
to judge performance. On the other hand, if this ratio
is large, the distribution will extend far beyond its peak
towards infinity and the peak can be closer to the min-
imum number of epochs than to the mean; this mini-
mum may then be considered as a better measure of
learning speed, provided that the user of the algorithm
is prepared to disregard the trouble caused by trials in
which an excessive number of epochs is needed to
achieve convergence. With these thoughts in mind, we
try to be as informative as possible in reporting our
results and include in Tables 1 -7 detailed information
about the distribution of epochs required to success-
fully complete each task. The mean and minimum of

the distribution of epochs are highlighted, to help the
reader focus his/her attention.

6. DISCUSSION OF EXPERIMENTAL
RESULTS

Evidently, ALECO-2 outperforms off-line BPMA in all
four small-scale benchmarks in terms of learning speed.
Ratios of the average number of epochs needed to solve
the tasks using the two algorithms range from 5.34 in
the 4-5-5 counter problem to 1.41 in the 6-6-1 multi-
plexer problem, always in favor of ALECO-2. The cor-
responding ratios for the minimum number of epochs
needed to solve these tasks range from 3.29 in the 8-
3-8 encoder to 1.78 in the 6-6-1 multiplexer. Moreover,
our method also achieves much faster learning than on-
line BPMA, quickprop, and delta-bar-delta: much bet-
ter averages are obtained than both algorithms for all

TABLE 7
Experimental Results for the 11-11-1 Multiplexer Problem

Experiment Type: MULTIPLEXER Categories: 2 Input Samples: 2048 Ref: Jacobs, 1988

MFNN System
Architecture Input Units: 11 Hidden Layers: 1 Hidden Units: 11 Output Units: 1

Algorithms ALECO-2 On BP Off BP Quickprop Delta-Bar-Delta

Learning Parameters 6P = 0.8 s = 0.60
c = 0.50 ~ = 0.70 No convergence No convergence No convergence

1000 1000 1000 1000 1000
100 100 100 100 100

100.0 94.0 0.0 0.0 0.0
0.0 6.0 100.0 100.0 100.0

140.25 279.68
54.26 91.68
481 548
82 160

Allowed Epochs
Trials
Successes (%)
Failures (%)
Mean
Stdv
Maximum
Minimum

Constrained Algori thm With Momentum Acceleration 247

benchmarks; the minimum number of epochs is much
better than that achieved by delta-bar-delta and on-line
BPMA in all cases and better or, at worst, comparable
to that achieved by quickprop. Compared to the other
methods regarding the percentage of successful trials,
our method has mixed fortunes. It can be said that none
of the algorithms examined shows a clear advantage
over the others regarding convergence ability in the
small-scale benchmarks.

Results in the three large-scale benchmarks can be
summarized as follows:
• Concerning convergence ability, we notice that off-

line BP and delta-bar-delta cannot converge at all in
the benchmarks tried within the specified limit of
epochs until failure, whereas quickprop converges
only in the 64-6-64 encoder. By contrast, on-line BP
and ALECO-2 exhibit good convergence ability in
all three tasks tried, with ALECO-2 slightly out-
performing on-line BP in the 11-11-1 multiplexer
problem.

• Concerning learning speed, measured either by the
average or the minimum of the distribution of epochs
needed to successfully complete a task, ALECO-2
clearly outperforms its closest rival (on-line BP) in
all the tasks by, approximately, a factor of 2.

• ALECO-2 exhibits a relatively small standard de-
viation in the distribution of epochs needed
to successfully complete a task, thus exhibiting
reliability of performance regarding learning
speed.
These results are in compliance with work by Fo-

gelman Soulie (1991) reporting that on-line BP exhib-
its very good learning abilities in large-scale problems.
Moreover, they demonstrate the emergence of an ex-
cellent new learning algorithm, ALECO-2, for large-
scale networks and problems.

Practical guidelines can be given for selecting op-
timal values for the learning parameters 6P and 4: for
all small-scale benchmarks, similar performances
were recorded with 0.5 < (< 0.9 and 1.0 < 6P <
2.0, indicating that results are not very sensitive to
the exact values of the parameters. Following the ex-
ample of Jacobs (1988) , we performed additional
runs of ALECO-2 using common values (rP = 1.5
and (= 0.85) for all four small-scale benchmarks.
Deterioration of the mean number of epochs, com-
pared to the optimal values shown in Tables 1 -4 , was
never more than 30%. Larger-scale problems are
more sensitive to the selection of dP, but not to the
selection of (for which a value around 0.5 works
well for all benchmarks.

Finally, we add a few words regarding the general-
ization ability of ALECO-2. Preliminary results in
large-scale optical character recognition problems in-
dicate that the improvement in MFNN learning speed
achieved by ALECO-2 has no adverse effect on gen-
eralization ability (Gatos, Karras, & Perantonis, 1993).

In these problems, the classification accuracy achieved
by ALECO-2 was superior to that achieved by on-line
BPMA. We plan to carry out extensive tests of the gen-
eralization ability of ALECO-2 in OCR problems, to
fully confirm these preliminary results. Moreover, in
the same spirit of constrained learning, it is possible to
augment the algorithm with weight elimination tech-
niques (Weigend et al., 1991) that will hopefully fur-
ther improve its generalization ability without adverse
effect on its learning speed.

7. CONCLUSION AND PROSPECTS

A learning algorithm for MFNNs was proposed incor-
porating momentum acceleration in its formalism and
exhibiting the following attractive features:
• Solid theoretical background, based on rigorous non-

linear programming techniques.
• Proved convergence to global or local minima of the

mean squared error cost function for small enough
learning step. This property is shared with the BP
algorithm, but not with some of its descendants of
heuristic origin.

• Faster learning than the BPMA algorithm, from
which it is inspired, and from other reputedly fast
learning algorithms.

• Good scalability properties.
However, the most attractive feature of this algo-

rithm is its potential for further improvement. In the
same framework for constrained learning, it is possible
to augment it with further information about learning
in MFNNs, including methods for constructing suitable
internal representations (Karras & Perantonis, 1993;
Karras et al., 1993) and weight elimination techniques.
It is the concerted incorporation of such detailed infor-
mation into the same algorithm that will hopefully lead
to increasingly efficient MFNN training schemes com-
bining fast learning, good scalability properties, and
powerful generalization capabilities.

REFERENCES

Abu-Mostafa, Y. S. (1986). Neural networks for computing? AlP
Conference Proceedings 151, Snowbird, UT, 1-6.

Becker, S., & le Cun, Y. (1988). Improving the convergence of back
propagation learning with second-order methods. In D. Tou-
retzky, G. Hinton, & T. Sejnowski (Eds.), Proceedings of the
Connectionist Models Summer School (pp. 29-37) . San Mateo:
Morgan Kaufmann.

Beightler, C. S., Phillips, D. T., & Wilde, D. J. (1979). Foundations
of optimization. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall.

Bryson, A. E., & Denham, W. F. (1962). A steepest-ascent method
for solving optimum programming problems. Journal of Applied
Mechanics, 29, 247-257.

Fahlman, S. E. (1988). Faster learning variations on back-prop-
agation: An empirical study. In D. Touretzky, G. Hinton, & T.
Sejnowski (Eds.), Proceedings o f the Connectionist Models
Summer School (pp. 38-51). San Mateo: Morgan Kaufmann.

248 S. J. Perantonis and D. A. Karras

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learn-
ing architecture. In D. S. Touretzky (Ed.), Advances in neural
information processing systems (Vol. 2, pp. 524-532). San Ma-
teo: Morgan Kaufmann.

Feldman, J. A. (1985). Connectionist models and their applications:
Introduction. Cognitive Science, 9, 1-2.

Fletcher, R. (1980). Practical methods of optimization (Vol. 1).
New York: Wiley.

Fogelman Soulie, F. (1991). Neural network architectures and al-
gorithms: A perspective. In T. Kohonen, K. Makisara, O. Simula,
& J. Kangas (Eds.), Artificial neural networks (pp. 605-615).
New York: Elsevier.

Funahashi, K-1. (1989). On the approximate realization of continu-
ous mappings by neural networks. Neural Networks, 2, 183-192.

Gatos, B., Karras, D., & Perantonis, S. (1993). Optical character
recognition using novel feature extraction and neural network
classification techniques. Proceedings of Workshop on Neural
Networks: Techniques and Applications. Liverpool, UK, 65-
72.

Goldstein, A. A. (1965). On steepest descent. Journal of SIAM Con-
tributions Series A, 3 (1), 147-151.

Grossman, T. (1990). The CHIR algorithm for feed forward net-
works with binary weights. In D. S. Touretzky (Ed.), Advances
in neural information processing systems (Vol. 2, pp. 516- 523).
San Mateo: Morgan Kaufmann.

Grossman, T., Meir, R., & Domany, E. (1990). Learning by choice
of internal representations. In D. S. Touretzky (Ed.), Advances
in neural information processing systems (Vol. 1, pp. 73-80).
San Mateo: Morgan Kaufmann.

Hagiwara, M. (1992). Theoretical derivation of momentum term in
back propagation. Proceedings of the International Joint Confer-
ence on Neural Networks, Baltimore, 1, 682-686.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the
theory of neural computation. Reading, MA: Addison-Wesley.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-
forward networks are universal approximators. Neural Networks,
2, 359-366.

Hush, D. R., Home, B., & Salas, J. M. (1992). Error surfaces for
muitilayer perceptrons. IEEE Transactions on Systems, Man, and
Cybernetics, 22(5), 1152-1161.

Jacobs, R. A. (1988). Increased rates of convergence through learn-
ing rate adaptation. Neural Networks, 1, 295-307.

Karras, D. A., & Perantonis, S, J. (1993). Efficient constrained train-
ing algorithm for feedforward networks. IEEE Transactions on
Neural Networks (under revision).

Karras, D. A., Perantonis, S. J., & Varoufakis, S. J. (1993). Con-
strained learning: A new approach to pattern classification. Pro-
ceedings of the World Conference on Neural Networks. Oregon,
USA, 4, 235-238.

Karras, D. A., Perantonis, S. J., & Varoufakis, S. J. (1994). An ef-
ficient constrained learning algorithm for optimal linear separa-
bility of the internal representations. Proceedings of World Con-
gress on Computational Intelligence, Orlando, USA, 285-
289.

Kramer, A. H., & Sangiovanni-Vincentelli (1988). Efficient parallel
learning algorithms for neural networks. In D. S. Touretzky (Ed.),
Advances in neural information processing systems (pp. 40-48).
San Mateo: Morgan Kaufmann.

Krogh, A., Thorbergsson, G. I., & Hertz, J. A. (1990). A cost func-
tion for internal representations. In Touretzky, D. S. (Ed.), Ad-
vances in neural information processing systems (Vol. 2, pp.
733-740). San Mateo: Morgan Kaufmann.

Minai, A. A., & Williams, R. D. (1990). Back-propagation heuris-
tics: A study of the extended delta-bar-delta algorithm. Proceed-
ings of the International Joint Conference on Neural Networks,
San Diego, I, 595-600.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA:
MIT Press.

Pao, Y-H. (1989). Adaptive pattern recognition and neural net-
works. Reading, MA: Addison-Wesley.

Papoulis, A. (1965). Probability, random variables, and stochastic
processes. Tokyo: Mc Graw-Hill Kogakusha.

Parker, D. B. (1987). Optimal algorithms for adaptive networks:
Second order back propagation, second order direct propagation
and second order Hebbian learning. Proceedings of the IEEE
First International Conference on Neural Networks, San Diego,
593 600.

Perantonis, S. J., & Karras, D. A. (1993). A fast constrained
learning algorithm based on the construction of suitable
internal representations. Proceedings of the International
Joint Conference on Neural Networks, Nagoya, Japan, 536-
539.

Rao, S. S. (1984). Optimization theory and applications. New Delhi:
Wiley Eastern.

Rohwer, R. (1990). The 'moving targets' training algorithm. In
D. S. Touretzky (Ed.), Advances in neural information process-
ing systems (Vol. 2, pp. 558-565), San Mateo: Morgan Kauf-
mann.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Learning
internal representations by error propagation. In D. E. Rumelhart
& J. L. McClelland (Eds.), Parallel distributed processing : Ex-
plorations in the microstructure of cognition (pp. 318-362).
Cambridge, MA: MIT Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Learning
representations by back-propagating errors. Nature, 323, 533-
536.

Sato, A. (1991). An analytical study of the momentum term in a
back-propagation algorithm. In T. Kohonen, K. Makisara, O. Si-
mula, & J. Kangas (Eds.), Artificial neural networks (pp. 617-
622). New York: Elsevier.

Schmidhuber, J. (1988). Accelerated learning in back propagation
nets. (Techn. Rep.). Institut for Informatik, Technische Univer-
sitat Miinchen.

Shah, S., Palmieri, F., & Datum, M. (1992). Optimal filtering algo-
rithms for fast learning in feedforward neural networks. Neural
Networks, 5, 779-787.

Singhal, S., & Wu, L. (1989). Training feed-forward networks with
the extended Kalman filter. Proceedings of the IEEE Interna-
tional ConJerence on Acoustics, Speech and Signal Processing,
1187-1190.

Sutton, R. S. (1986). Two problems with back-propagation and other
steepest-descent learning procedures for networks. Proceedings
of the Eighth Annual Conference of Cognitive Science Society,
823-831.

Tesauro, G., & Janssens, B. (1988). Scaling relationships in back
propagation learning. Complex Systems, 2, 39-44.

Tollenaere, T. (1990). SuperSAB: Fast adaptive back propaga-
tion with good scaling properties. Neural Networks, 3, 561-
573.

van Ooyen, A., & Nienhuis, B. (1992). Improving the conver-
gence of the back propagation algorithm. Neural Networks, 5,
465-471.

Varoufakis, S., Perantonis, S., & Karras, D. (1993). A class
of efficient learning algorithms for feedforward networks
based on constrained optimization techniques. Proceed-
ings of NEURONET" 93, Prague, Czech Republic, 1-
9.

Watrous, R. L. (1987). Learning algorithms for connectionist net-
works: Applied gradient methods of nonlinear optimization. Pro-
ceedings of the IEEE First International Conference on Neural
Networks, San Diego, 2, 619-627.

Weigend, A. S., Rumelhart, D, E., & Huberman, B. A. (1991).
Generalization by weight elimination with application to fore-
casting. In D. S. Touretzky (Ed.), Advances in neural infor-
mation processing systems (pp. 875 882). San Mateo: Mor-
gan Kaufmann.

Constrained Algorithm With Momentum Acceleration 249

APPENDIX

Let us denote by ei the number of epochs recorded in the ith suc-
cessful trial. The expected value of any of the ei represents the " t rue"
average ~)-tof the epoch distribution. Moreover, let Y- denote the stan-
dard deviation of any of the ei. According to the Central Limit The-
orem, the distribution of the sample average number of epochs flit =
(el + e2 + . . . + e,)/~, for a sufficiently large number u of indepen-
dent trials tends to the normal distribution N(,.q'[, Y./x/-~u). It follows
that (~ t - ~Dx/-~ £ -~ tends to the normal distribution N(0, 1). It is
required that the probability

$[],~t - ~/l ----- 3 ' ~] = 'P[l~t - ~/]~/~v£-' _< 3 , ~ / ~ u £ - ' l (31)

be greater or equal to b. Therefore,

2 fv .~/Tz '
- ~ ~o e x p (- t 2 / 2) dt >- b, (32)

which can be rewritten as

err f \--~--] -->b. (33)

By substituting ~'[and Z by their experimentally determined esti-
mates ~ t and a, we readily obtain the experimental estimate given
by eqn (30) for the minimum number Vmi. of trials required to achieve
the desired level of statistical significance for ~t.

