Neural
Networks

PERGAMON Neural Networks 13 (2000) 351-364
www.elsevier.com/locate/neunet

Contributed article

Efficient perceptron learning using constrained steepest descent

S.J. Perantonfs V. Virvilis

Institute of Informatics and Telecommunications, National Research Center “Demokritos”, 153 10 Agia Paraskevi, Athens, Greece

Received 6 February 1998; accepted 25 March 1999

Abstract

An algorithm is proposed for training the single-layered perceptron. The algorithm follows successive steepest descent directions with
respect to the perceptron cost function, taking care not to increase the number of misclassified patterns. The problem of finding these
directions is stated as a quadratic programming task, to which a fast and effective solution is proposed. The resulting algorithm has no free
parameters and therefore no heuristics are involved in its application. It is proved that the algorithm always converges in a finite number of
steps. For linearly separable problems, it always finds a hyperplane that completely separates patterns belonging to different categories.
Termination of the algorithm without separating all given patterns means that the presented set of patterns is indeed linearly inseparable.
Thus the algorithm provides a natural criterion for linear separability. Compared to other state of the art algorithms, the proposed method
exhibits substantially improved speed, as demonstrated in a number of demanding benchmark classificatior2@@k&ublished by
Elsevier Science Ltd. All rights reserved.
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1. Introduction (Rumelhart, Hinton & Williams, 1986; Widrow & Hoff,
1988) can run into serious problems if their parameters
The resurgence of interest in neural network research in (learning rate and momentum) are not chosen correctly.
the past decade has led to the development of numerousProper parameter selection usually relies on heuristics.
types of architectures and learning algorithms. In particular, Even if parameters are chosen optimally, in many problems
feed-forward networks have emerged as efficient tools for with a highly non-uniform distribution of patterns in the
supervised classification and function approximation tasks. input space learning can be exceptionally slow. This diffi-
Although recent research has mainly focused on multi- culty arises especially in solving non-linear problems,
layered networks, the single layer perceptron still deserveswhich are linearized using higher order terms (Telfer &
attention for at least two reasons. Firstly, the design of fast Casasent, 1993). The linearization step not only results in
perceptron learning algorithms is important, because suchan increase in the input space dimensionality, but also
algorithms can form the basis of layer-by-layer learning creates a non-homogeneous input space, that many algo-
schemes for multilayer feedforward networks that have rithms find difficult to negotiate. Indeed, Volper and
received much attention in recent years (Ergenziger & Hamson have highlighted this point, by showing that the
Thompsen, 1995; Hunt & Deller, 1995; Wittner & Denker, perceptron rule may need very high order polynomial
1997). Secondly, many non-linearly separable problems cantimes even in apparently simple problems with just
be cast into linearly separable form by constructing high second-order terms (Volper & Hampson, 1990). The same
order polynomial terms of the data. This type of lineariz- difficulty arises in the case of layer-by-layer learning in
ation is the main step for constructing high order feed- feedforward networks, because in the course of learning
forward networks that are widely studied and used in many hidden units outputs are forced in the saturation
many applications. region, so that the space of hidden layer outputs (output
The most popular stochastic or gradient based algorithmslayer inputs) quickly becomes highly inhomogeneous. An
for training the single layered perceptron, e.g. the percep- extra difficulty with layer by layer learning in feedforward
tron learning rule (Rosenblatt, 1962) and the delta rule networks comes from the fact that in intermediate stages of
learning the internal pattern representations may not be line-
"+ Corresponding author. arly separable. It is then very important to have a natural
E-mail addresssper@iit.demokritos.gr (S.J. Perantonis). termination criterion for the output layer learning algorithm
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so that inseparability can be detected efficiently (Grossman,sion N, by employing a single layer perceptron with a hard
Meir & Domany, 1989; Takahashi, Tomita & Kawabata, limiter activation function. We want to find a vectdf such
1993). This cannot be done using the perceptron rule orthat

the delta rule. T
In this paper, we propose a novel learning algorithm for a oW Xp) =Tp, p=1....P @

single layer perceptron, which is fast and requires no adjust-whereT, is the target for patterp, equal to either zero or
ment of parameters. Learning proceeds by iteratively lower- gne, andj is the step function. The vectdt, consists of the

ing the value of the perceptron cost function (Barnard, 1991; input patternx, of dimensionN plus an extra component
Barnard & Casasent, 1989) under the constraint that alreadyequal to one, andV consists of the weight vectow

correctly classified patterns are not to be affected. The gugmented by the thresholg.

perceptron cost function derivative serves as a guide for |n the N + 1-dimensional weight space, the vectris
f|nd|ng We|ght vectors with lower cost. The We|ght vector represented by a point_ Each Of the patteNBsiS repre_
is found by a line search in the input space, which is termi- gented by a hyperplane which passes through the origin
nated when further advancement leads to misclassificationand divides the weight space into 2 subspaces. Hyperplanes
of a preViOUSly CorreCtly classified pattern. The proper Corresponding to different pattermg SegmentRN+l into
direction for the line search is that of the steepest descentgeyeral convex polytopes, whose common boundaries are
with reSpeCt to the perceptl‘on cost fUnCtion, with additional hyperp'ane segments_ For a g|vw each pattern hyper-
constraints ensuring that the weight update vector does Notplane is classified as Bit Right (BR) if the quanti®y, =
intersect hyperplanes corresponding to already correctly Q(WTXp) is equal toT,, and Bit Wrong (BW) ifO, is not
classified patterns. The problem of finding the appropriate equal toT,
search direction can be stated as a quadratic programming A yseful observation is that the vectdy = (2T, — DX,
task, to which a fast and effective solution is proposed.  always points towards the side of the pattern hyperplane that
It is proved in the paper that the resulting algorithm corresponds to the correct classification of patdégriThus,
always converges in a finite number of steps. For linearly patterns classified as BR are characterized by a positive
separable problems, it always finds a hyperplane thatyajue of the quantityz, = W'd,. To see this, suppose
completely separates patterns belonging to different first that WX, > 0. In this caseT, must be equal to 1
categories. In the case of non-linearly separable problems pecausex, is classified as BR. ThereforeTe— 1= 1>
the algorithm detects the inseparability in a finite number of g andz, is positive. On the other hand WX, < 0, T, must
steps and terminates, having usually found a good separ-e equal to zero. Therefordg— 1= 1 < 0 andZ, is posi-
ation hyperplane. Thus, it provides a natural criterion for tjve. Similarly, we see that patterns classified as BYW\y
linear Separability or inseparability. EXperimental results are characterized by a negative Va|u€'pﬂn the sequeL we
show that the proposed algorithm finds the solution to shall characterize patterns by the vectdgsnstead of the

large-scale linearly separable problems much faster thanoriginal vectorsx,. In terms of these vectors, the original
the perceptron rule. Its fast convergence is not hindered perceptron problem of Eq. (1) becomes:

by inhomogeneities in the distribution of training patterns.

Moreover, it exhibits a decisive learning speed advantage W 'dy) =1, p=1,...,P @3]

over other algorithms involving no adjustable parameters.

The paper is organized as follows: In Section 2, basic 5 5 Degeneracies

terminology is established and background information is

introduced concerning characteristics of the perceptron For reasons that will become apparent in subsequent

weight space and cost functions. The design and control sections, we shall consider non-degenerate cases, in which

flow of our algorithm algorithm is discussed in Section 3. anyN + 1 equations of the forri&Npo = 0 have only one

In Section 4 a study of the convergence properties of the solution, namely the originV = 0. In other words, the

algorithm is presented. In Section 5, the problem of finding matrix with elementsd;, has rankN + 1. If degeneracies

optimal search directions for the implementation of the are present in the original training set, they can be lifted,

algorithm is discussed in detail. In Section 6 simulation e.g. by adding random numbers of small magnitude to the

results are presented for various classification problems.training vector components (Strang, 1988). Note that even

Finally, conclusions are drawn in Section 7. under these conditions, the origin is still common to all
pattern hyperplanes. Again, to lift this last degeneracy,
various methods can be followed. A popular technique

2. Terminology and background (Bobrowski & Niemiro, 1984) is to solve the problem
always keepingvg equal to a constant. In the space of the
2.1. Weight space remainingN variables, anN + 1 pattern hyperplanes have

no common points. This method has the disadvantage that
Let us assume that we wish to distinguish between two the two casesvy > 0 andwy < 0 need to be considered
linearly separable classes Bfpatternsx,, each of dimen- separately in two independent learning passes. A second
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e The squared error cost function

=]

Ese = D [6W'dp) — 1° (6)
p=1

counts the number of BW for a certaid and obviously

takes on a constant value for each polytope.

3. Training strategy

We initialize the training procedure with the weight
vectorW in the interior of a certain polytope. Our primary
aim is to reach the minimum of cost functi@ige. Therefore,
Fig. 1. An arrangement of hyperpl_a_nes_ (lines) in two-dimensional space is we devise a strategy that will gradually moVé to poly-
shown, corresp_ond_lng to a class_lflcatlon prpblem. In eac_h polytope the topes of lowelE«.. Our strategy involves updatir\ty along
number of BW is displayed. Starting from point I, our algorithm finds the . SE . . .
solution in one step following a “Fast Moving” weight update. If started SUCCESSive search directions, each characterized by a vector
from point 11, the algorithm finds the solution in two steps, performing a P. To determine these search directions, we shall use infor-
“Moving Near” update up to point lla followed by a “Fast Moving” update. ~ mation related to the gradiedW of the perceptron cost
function E. The plausibility of this dual strategy (using
gradient information of one cost function in order to keep
decreasing the other) will be established in the next
H(Wpo —e)=1 p=12..P 3 fsection_, where its convergence properties will be studied

in detail.

For the first epoch, we choose the ved®or AW and we
updateW according to:

technique that will be adopted here involves solving

instead of Eq. (2), where, are positive random numbers.
Any solution of Eq. (3) is obviously also a solution of Eq.
(2). Following this amendment, our remarks about BR and W e,,= W + nP @)

BW patterns have to be modified accordingly: where n is the learning rate. This is reminiscent of the

o If patternd, is classified as BR bW, thenWTdp -6 > perceptron learning rule, wheneemains constant through-
0. out learning. In our case, the rule of calculation rofs

e If patternd, is classified as BW bW, thenWTdp —6 < constructed by the requirement to cross over as many BW
0. patterns as possible, without crossing over any BR. In this

way, maximum decrease &k can be achieved.
Noting that the classification decision for a pattefn
2 3. Cost functions changes at the point wherwlewdp — =0 ie n=
—(W'd, — )/(P"d,), we consider the following cases:

There are two cost functions related to our problem: 1. Suppose that at least one pattern can be found along our

e The perceptron cost function is defined by search direction which is classified as BRWYy Letnz be
the smallest (positiveh, corresponding to such a BR
P T T pattern.
E= Zl(Tp — OW Xy = — ZBWW dp “ (a) If BW patterns exist with smalley, thanng, let ny
p= p=

be the largest among the, of these BW patterns.
Maximum decrease iresg will be achieved ifn is
chosen so thaty, < n < ng. In practice, we always
chose n = (ny + ng)/2. This procedure of moving
over all BW patterns without crossing any BR pattern
will be called “Fast Moving”. This type of movement
is illustrated in Fig. 1.

(b) On the other hand, if no BW patterns exist with

where the second sum runs over all patterns that are
classified as BW byV. According to the last remark in
Section 2.1, this cost function is positive. It is also piece-
wise linear inR""* and has constant gradiektV in each
polytope given by

—AW = zP: (Tp — Op)Xp = — Z d, (5) smallem, thatng, we cannot decreagge by following
p=1 p=BW the gradient direction. In this case, the first pattern
encountered in the\W direction is a BR pattern.
Performing gradient descent using this cost function The best we can do is kedfe constant by moving
gives the offline (batch) version of Rosenblatt's percep- close to the BR pattern. This pattern is added to an

tron learning rule. internal “list of active patterns” (i.e., pattermg for
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which the equatiorWTdp — € = 0 holds) so that the polytope to find the steepest feasible search direction.
next move will be parallel to the hyperplane of the Once againW is updated according to Eq. (7) with
specified pattern. This procedure of moving to zero  n determined as in cases 1 or 2 above.

distance from a BR pattern will be called “Moving

Near”, and is also illustrated in Fig. 1. Termination and convergence properties of the algorithm
At this point, note the usefulness of lifting degenera- are discussed in detail in the next section.
cies, as explained in Section 2.2. If more tihat- 1 We note that our algorithm provides a natural way of

pattern hyperplanes were allowed to have common performing steepest descent in the perceptron weight
points, our search directions could intersect two or space. In this sense it is related to the algorithm proposed
more pattern hyperplanes with the same valuenof by Bobrowski and Niemiro (Bobrowski & Niemiro, 1984;

rendering problematical the “Moving Near” weight Bobrowski, 1991), whose algorithm is designed to chose

update. steepest polytope edges, rather than steepest feasible
2. If no BR pattern can be found along our search direction, directions. We shall refer to this method as the BN-
then: method.

(a) If BW patterns can be found, we only have to cross
over all BW patterns to solve the problem (last Fast
Moving update). Thua must be chosen larger than all
Np.
(b) If neither BR nor BW patterns can be found, then
P = 0 and the algorithm terminates.

4. Proof of convergence

The purpose of this section is to prove the following
statements:
The first epoch of the algorithm has now been completed.

Weight updating in subsequent epochs is performed asl. The proposed algorithm always terminates in a finite
follows: number of steps (epochs).

2. Upon termination, the proposed algorithm correctly

1. If in the previous epoch the weight vector was updated  ¢|assifies all the patterns in linearly separable problems.

using the “Moving Near” process, the weight vector still

resides in the same polytope as before. Obviou&dyjs An immediate corollary of the above statements is the
the same as in the previous epoch. In this case, we updatéollowing: If, upon termination, which always occurs in a

the weight vector using a new search direction, in the finite number of steps, there are still misclassified patterns,
hope that it will lead us to a BW pattern hyperplane, so the pattern classification problem presented to the
that the “Fast Moving” procedure can be used in the network is not linearly separable. Thus, the proposed

present epoch. algorithm can detect linear inseparability in a finite
2. To select the search directiéh we use the perceptron  number of steps.

cost functionE. We wish to updat&V so that the new

vector Wy, remains in the current polytope and

E(Wew < E(W). In fact, if we wish E to decrease  4.1. Finiteness

locally at the fastest possible rate, we can choose the

search direction of steepest descent that has common The following lemma introduces an ordering of sub-

points with the current polytope (steepest feasible searchsequent points reached by the algorithm inside a polytope,
direction). If there are currentliX active patterns, this  in terms of the angles formed by the subsequent search

search direction is the feasible search directiohd, = directions AW. This ordering is then used to prove the
0) which forms the smallest possible anglewith the main Theorem.

gradientAW of E. A method for finding this direction
will be studied in detail in Section 5. At this point, it
suffices to say that in general this search direction will
be parallel to some of the pattern hyperplanes, so that
after finding it, we have to update the list of active
patterns. Once the appropriate search direction, char-

Lemma 1. Let A and B be points in a certain polytope,
which are reached by the algorithm in two subsequent
epochs. Ifp, and ¢g are the angles formed by the steepest
feasible direction®, and Pg at A and B, respectively, then

acterized by vectoP has been foundW is updated A < b
using Eqg. (7) withn determined as in cases 1 or 2
above. Proof. Let us assume, for the sake of the argument, that

3. On the other hand, if the previous epoch weight ¢g < ¢ (equality of the angles is not an option, because
update was performed using the “Fast Moving” they would correspond to the same feasible direction at A).
procedure, the weight vector now resides in a new Consider the vectoP where P=P, + Pz and let ¢¢
polytope of lowerEge than in the previous epoch. We be the angle formed bi? and AW. Since ¢g < ¢, We
must now use the nev, corresponding to the new have cospg > cosps. The following consecutive relations
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determined by the number of active patterns at this point.
Since there are at mo$t pattern hyperplanes forming the
boundary of the polytope, there is a finite number of active
constraint combinations and, consequently, a finite number
of possible values op. Moreover, according to Lemma 1,
the sequence of successigeis strictly increasing, so that
each of the possible values ¢f can be attained by the
algorithm at most once. Thus the number of epochs spent

; in a polytope is bounded by the finite number of possible
AN values ofp. O

BR

", /! BW\}"‘\\ 4.2. Linearly separable problems
---d /II / . . . .
T To prove that the algorithm will always find a solution to
't=0,/ T linearly separable problems, we must ensure that it can
g / always escape from polytopes corresponding to incorrect
Ws /

K classification of some patterns. In particular, it is important
, to show that it cannot terminate at points corresponding to
K minima of E in polytopes with non-zergse. This is ensured

, by the important Lemma 3, which states that for linearly
g separable problems the minimum of the cost funckdn a
certain polytope# occurs at points belonging to at least one

Fig. 2. Geometry involved in the proof of Lemma 2. The line segment with BW pattern hyperplane. In turn, the idea of the proof in

end-points at the current weight vectrand the solution weight vectdv

intersects the current polytope at a BW hyperplane Lemma 3 is to show that for every point in the interior of
' R, there exists a point with loweE, which lies on the
hold: boundary ofR and belongs to a BW pattern, so Lemma 3
is preceded by Lemma 2, which shows how to construct
PTAW  PAAW + PLAW such a point.
COS¢¢c = =

P[ [AW] — |Ps + Pg| [AW] )
Lemma 2. Consider a set of patterng¢dy} that are

_ |Pa| cosa + |Pg| cos¢g linearly separable, so that system of inequalities (3) has at

|Pa + Pg| least one solutioiW,. Moreover, consider a weight vector
W belonging to the interior of a polytop# characterized
([Pl + |Pg|) cos¢a > coSdp ® by a positive number of wrong bits. Then, there exists a
[Pa + Pg|

pattern dg belonging to the boundary of? classified as
with the last relation following from the triangular inequality BW byW and a vectoWs that satisfies

|Pa| + |Pg| > |Pa + Pgl|. Thus,¢c < ¢a. Since the polytope T .

: ) A ; = = + - <tg <

is convex andP,, Py are feasible directions at consecutive Weds = eg andWp = W+ tg(W = W) With 0 <t < 1
points A and BP is also feasible at A. From Eq. (8) it follows ©
thatP is feasible at A and steeper th@g This contradicts the

original hypothesis, according to whidp, is the steepest

feasible direction at A. The contradiction originated from

. ) Proof. Let us consider the straight ling passing through
the false assumption thats < ¢p5, which means that the W andW. which is parametrizeg by 906 9 9
statementpg > ¢ is true. O s

W, = W + t(W — Wy). (10
Theorem 1. The algorithm will always terminate in a

finite number of epochs Fig. 2 illustrates the geometry involved in the simple two-

dimensional case. It is essentially required to show that the
Proof. The number of successive polytopes negotiated by line segment with end points 8 andW; cannot be inter-
the algorithm is at most equal to the initial number of wrong sected by BR hyperplanes. It is only intersected by BW
bits, which is obviously bounded by the total number of pattern hyperplanes and the pattehx mentioned in the
patternsP. Therefore, to prove this theorem, it suffices to Lemma is the BW pattern which is intersected first, as we
show that a finite number of epochs is spent by the algorithm move fromW to W4
in a certain polytope. The anglg formed by the steepest Indeed, given a pattewt, classified as BW byV, its point
feasible direction at a certain point of a polytope &Wl, is of intersection with line t) is characterized by a weight
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vectorW, satisfying:

Wpd, = €, = Wid, + t,(W — Wy)'d, 11

ie.

to(Ws —W)'d, = Wid, — e, 12

SinceW,is a solution of Eq. (3) all patterrug are classified
as BR byW,, and thereforew] d, — €, > 0. Sinced, is

classified as BW byVv, thenw' d, < 0, so that

(Ws—W)" d, > Wsdp —€>0 (13

Therefore we can expregsas
T
_ Wsdy— 5

B W, - wd, e

and obviously it follows from relation (13) thatQt, < 1.
On the other hand, ifl, is classified as BR byV then
W'd, — €, >0and it follows from Eq. (14) that

<0, if Ws—W)'d, <0
to 15

>1, if Ws—W)'d, >0

Let us now consider the pattedy with the largestt,
satisfying 0<t, <1. According to our analysis, this
pattern is classified as BW by and its intersectioWg
with the straight linet) can be written in the form required
by relations (9). There remains to prove theg lies on the
boundary of#. SinceWgdg = €g, it suffices to prove that
all other patterns excepl are classified byg in the same
way they are classified by. Given a patterml, # dg, we
have

Wgdy = Wid, + ts(W — Wg)'d, (16)

If patternd is classified as BW, then & t; < tg and(W —
Wy dq <0, so that:

Wgdy < Widg + t(W — Wy)'d, 1

Substitutingt, from Eq. (14) we find thaWgd, < €, S0
thatd, is classified as BW byVg.

Similarly, if dq is classified as BR by, we must exam-
ine two cases, according to relations (15). ThugWf; —
w)T dq <0, thent; < 0 < tg. If, on the other handW —
W)Td > 0, then 0< tg < 1 <t Inboth cases, we can use
Eq. (16) to write:

Wgdy > Widg + t(W — Wy)'d,. (18

Substituting from Eq. (14) we find thi¥gd, > €. Thus, in
both casesl, is classified as BR byVg and the proof is
completed. O

Lemma 3. Consider a set of linearly separable patterns
and a polytope# corresponding to Ez # 0. Then, the mini-
mum of E inZ occurs at points belonging to at least one BW
pattern hyperplane

Proof. Given a vectoW belonging to the interior o2,
we construct the corresponding vectig given by Lemma

2. From Eq. (9), taking the inner product with any of the
vectorsd,, we obtain:

—~Wgd, = (tg — D(Widy) + tg(—W'd)) (19

SinceWs s a solution of the linearly separable problem, all
patterns are classified as BR W and thereforewlolp >
0. Also, tg — 1 < 0 according to Lemma 2, so that:

Wgd, < ts(—W'd,) (20)

Summing over patterns classified as BW W and using
Eq. (4) we conclude that:

E(Wp) = tgE(W) < E(W) 21)

because <tz <1 From the last equation and from
Lemma 2, it follows that for every weight vect@Y in the
interior of # there exists a vector with a lower value Bf
that belongs to the boundary af and satisfiez*«lvgdp =€
for at least one pattert, classified as BW by vectors #2.
Obviously, the minimum oE in Z is to be found among all
vectorsWg, and the proof is completed.(]

Theorem. Upon termination, the proposed algorithm
correctly classifies all the patterns in linearly separable
problems

Proof. Let us consider a polytope corresponding to a posi-
tive number of BW patterns. At points of the polytope not
corresponding to the minimum &, there are always avail-
able feasible directions and the algorithm cannot terminate,
even if it cannot follow a “Fast Moving” trajectory. On the
other hand, let us consider a point corresponding to the
minimum of E. The algorithm cannot terminate at this
point either. Indeed, according to Lemma 3, at least one
of the pattern hyperplanes that surround this point corre-
sponds to a BW pattern and the algorithm will follow a
“Fast Moving” trajectory passing through the point and
continue in another polytope. It follows that the algorithm
can only terminate in the polytope where all patterns are
correctly classified. O

5. Finding the search direction
5.1. General remarks

As illustrated in the previous section, our algorithm
decomposes the original classification problem into a series
of successive subproblems, whereby the steepest feasible
search direction must be found. In this section we show
that the problem of finding the steepest feasible search direc-
tion can be formulated as a quadratic programming
problem. An interesting question is whether we can
compute these successive feasible directions (a task requir-
ing the successive application of a quadratic programming
algorithm) with complexity that outperforms related



S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351364 357

methods that can be used for training the perceptron. Anvector whose distance froW is minimum is the projec-
immediate adversary is the BN-method, whereby steepesttion of AW uponS. Reordering the patterns, so that the
polytope edges, rather than steepest feasible directions, aractive constraints are numbered from 1Ltahe projection
used and therefore no quadratic programming task needs tacan be readily obtained using the well known Gramm-—
be solved. In this section, we propose a method for solving Smidt procedure (see, e.g. Strang, 1988):

the quadratic p.rogramming fcask. In Sectionn 6itis _demorj— L AwTw -1 4Ty
stra.ted t_hat using .the algorlthm propo;ed in Section 3 inp=Aw — o u; with u; = d; — Z '_21 !
conjunction with this method, it is possible to solve classi- i=1 Ui =g
fication problems much faster than other well known
perceptron training algorithms (including the perceptron
rule and the BN-algorithm).

(23

The final solution can be found by an exhaustive search
among the projections &fW on the space$ obtained for
all possible subsets ofi",. From these projections, non-
feasible ones are eliminated. From the rest, the projection
that yields the minimum value df is the final solution.

Let us assume tha¥ € RN resides at the intersection However, this procedure takes exponential time with

5.2. Mathematical formulation of the problem

of K = N + 1 hyperplanes with normal vectods. Without and is unacceptable. Still, the fact tHitis a projection is
loss of generality, we may reorder the patterns, so thathe ~useful information, and will play an important role in form-
active patterns are numbered from 1 ko p € A4/, = ing an efficient algorithm for solving program (22).

{1...K}, K =N + 1. We wish to find a directior® which
is feasible in the current polytopié’po = 0) and forms the
smallest possible angl¢ with the gradiendW of E. Note To facilitate solution of program (22), we firstly trans-

that in 3 dimensions, this problem has a simple mechanical ¢, it g an equivalent problem with mutually orthogonal
equivalent, namely the problem offinding the path followed constraint hyperplanes. The reason for this transformation is

by a particle falling under the influence of gravity Starting nat given an initial non-feasible search direction, we can

from :che mhtersectlon OfK s'3|plaf1es.. N X easily form a feasible search direction by simply eliminating
To find the steepest feasible direction, it is easy to see t aton-feasible components.

we must solve the following quadratic programming The K vectorsd, define a subspace K where the

5.3. Transformation to orthogonal constraints

problem: solution should be searched for. Let us decompose the
Minimize F = 1|AW — P|2 vectorsAW and P into components respectively parallel

2 22 and perpendicular t&".
subject toP'd, = 0, p=1..K AW = AW, + AW, andP = AW, + Q (24)

Indeed, given any feasible direction, minimum Euclidean  The influence of the constraints is limited to {@epart of
distance between a vector along this direction aWl is the final solutionP. Using the relationdW] AW, = 0 and
achieved ifP is the projection oAW. Therefore, solutionof ~ AWTQ = 0, we can rewrite the first line of Eq. (22) as
program (22) should be sought among projection&\f. It F =12 AW, — Q|2. Note thatQ and AW, are vectors
follows thatPTAW = |P|2. Using this relation, and taking  with N + 1 components but are lying in thé“ subspace.

into account that cas= AWTP/|AW||P| we obtainF = It is therefore possible to write them as linear combinations
1/2|AW ’sirf ¢, so that minimization of also means mini-  of K linear independent vectors of this subspace.
mization of¢. In the kK subspace, the intersection of aky- 1 pattern

Program (22) is a special form of the generic quadratic hyperplanes is a straight line. In all, there Krsuch straight
programming problem, for which various solutions have lines. It is convenient to use th¢ direction vectorsy, of
been proposed in the past (Pang, 1983; Rao, 1984; Bazaraahese lines as the (generally orthogonal) basis fordthe
Sherali & Shetty, 1993; and references cited therein). Note subspace. Each of thig vectors is the projection af, on the
that in program (22) the number of constraints is always less intersection of all other normal vectors and is formed
or equal to the dimensionality + 1 of the input plus bias  following the Gramm-Smidt technique, so that
space and the objective functiéris a hyperspherical quad- (Vdej)/(ViTVi) = &. Now we can writeQ andAW as:
ratic form (there are no terms involving products of the form

P, P, with i # j). For this type of problem, the new approach Q= iqi i, g=Pd=0 (25)

proposed in this paper is a feasible directions method based = v 227 .

on preliminary (a priori) knowledge about the solution of

the problem. Suppose, for the sake of the argument, that we K v T

have been able to determine the active constraitd, = AW = Zai |V—2al =AW d, (26)
1= 1

0, i €.« C ./ for the solution of program (22). Lét <
K be the number of active constraints. Among all vectors In the same spirit, anyN + 1)-dimensional vectorX
belonging to the spac® defined byP'd; = 0, i € .#, the belonging to the®X subspace can be transformed to
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yield a K-dimensional vectox and vice versa, using the
relations:

X=Vx=x=DX 27
whereV is a (N + 1) x K matrix with the vector;/|vi|?
in the ith column andD is a K X (N + 1) matrix with
the vectord; in the ith row.

We can now proceed to rewriteé and the constraints

using the new vectors:

=l@-o9'R@-q), q=0 (28)

whereR is symmetric and equal td'V.

It follows that the original problem has been transformed
from minimizing a hyperspherical quadratic form (22)
subject to non orthogonal constraints to minimizing a hyper-
elliptical quadratic form subject to orthogonal constraints.

5.4. Double search technique

In order to solve program (22), we shall employ an itera-
tive algorithm based on minimization Bfalong successive
search directions. Given an initial position vectpin the
feasible region and a feasible search directdap we can
find the position wheré attains its minimum value in the
feasible region along this search direction. The uncon-
strained minimum resides af = q + MgAd, where g is
found by linear minimization across the search direction:

VFTAQ
Ng = — |Ag|2 , whereAQ =V Aq (29
and the gradienVF, of F is given by:
VFq=-R@-q)=V'(P-AW) (30)

Note thatVF, can be calculated in terms of vectors in the
original (N + 1)-dimensional space.
The position vector characterized iy may of course lie

outside the feasible region. In this case, we have to take into

account the constraintg; = 0, i € ./",. The position of
lowestF along our search direction, that lies on the bound-
ary of the feasible region, is given loy = q + n.Aq, where

7. is the minimum among all positive; = —q/Aq; :

G

:my > 0andi € A
In all cases, the new poirt + nAq that yields the lowest
value ofF is charactgri.z_ed by = min{ e, 779}~

Of course, if our initial positiong satisfiesq, = 0 for
somei € ./, a given search directiong” may not be
feasible. However, the orthogonality of the constraints
allows us to find a new feasible search direction by starting
from Ag® and removing (setting to zero) non-feasible

Me = min{n, = (3D

components. Formally, the appropriate search direction is

given by a vectorAqg, with components:
{0, if ¢ =0andAq* <0

Ain, otherwise
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The proposed algorithm uses two search directions
exploiting advantages from both. The first is theadient
search direction

Agh = —VF, (33
which always leads to lower values of the cost function.
However, it is well known that always following this direc-
tion may lead to zig-zag paths and slow down convergence.
The second direction, which we shall cptbjection search
direction, points to the projectiodWssof AW on the zero
space of the currently active constraints:

Agq” = D(AWgs — P) (34)

If the active constraints of the solution of program (22) had
already been found, this would locate the solution in just one
step. However, if only this direction is followed, the algo-
rithm may terminate before the minimum has been found.
To find the solution in a small number of steps, both
gradient and projection information must be combined in
the same iterative algorithm. In each iteration the proposed
Double Search Algorithm tests both gradient and projection
search directions, and selects the one leading to the lower
final value ofF. Iterations of the Double Search algorithm
will be called “internal epochs”, to distinguish them from
the epochs of the main algorithm discussed in Section 5. The
algorithm avoids zig-zag paths, and our experience shows
that it locates the exact solution in a few iterations as
demonstrated in the experimental section.
There follows a full description of the algorithm:
Initialization: SetQ = 0 (Equivalentlyq = 0). Initialize
the list of currently active constraints to containiadf ./".
Internal epoch updateAt each epoch of the algorithm
follow the following steps:

1. Perform the following operations using the gradient
search directiol\g” given by Eq. (33):
(a) Calculate the feasible directidwg using Eq. (32).
(b) Calculateng using Eq. (32) and using Eq. (31).
Find n = min(n, ng).
(c) Calculate the cost function changd- between
pointsg + nAq andq.
2. Repeat steps a—c above for the projection search direc-
tion given by Eq. (34).
3. Compare the two resultingF for the gradient and
projection search directions. Find the more negafite
of the two and note the corresponding valuenof
4. Using the search directiakq that led to the most nega-
tive AF and the corresponding value qf updateq as
q'=q+ nAq.
5. Update the list of currently active constraints.

Termination: The algorithm terminates when no further
move is possible, i.e. whehg, = 0 for all i.

In Fig. 3 we show the steps followed by the algorithm in a
simple two-dimensional problem, illustrating how zig-zag
paths are avoided and rapid convergence is achieved.
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Table 1

Average CPU time (in secs) and number of epochs (given in parentheses) required by the proposed method, the BN-algorithm, the perceptron fale and the C
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algorithm for various classification problems. All problem data sets but the last two (ionospheric data and OCR2) are linearly separable

Proposed BN Perceptron CG
Uniform
P=100 N=2 0.006 (4.6) 0.015 (6.5) 0.435 (581) 0.326 (12.6)
P=1000 N=14 0.243 (16.4) 0.527 (32.0) 1.379 (157) 4.466 (18.5)
P=2000Q N =10 33.0 (76.9) 108.6 (205) 3600 (14 439) 184.1 (208)
Ellipse
P=100 N=4 0.023 (13.4) 0.031 (19.5) 0.059 (63.1) 0.227 (9.0)
P=1000Q N = 20 74.3 (214.0) 259.4 (567) 2661.4 (14 749) 328.2 (104.5)
P=2000Q N =40 647.6 (488.7) 4554 (2162) 3600 (6082) 582.9 (77.8)

Sonar 117.8 (223.8) 405.9 (190.5)
OCR1 4.75 (16.0) 5.65 (17.9)
lonosphere 22.1 (155.5) 31.8 (142.8)
OCR2 308.3 (294.4) 1337.7 (533.9)

1174.9 (146 047)
42.38 (94.4)
3600 (430 735)
3600 (4554)

3600 (123 549)
3600 (2855)

3600 (101 658)
3600 (589.3)

In short, our algorithm achieves a decrease in error at
each iteration and avoids zig-zagging by employing the
projection search direction when needed. We have not
been able to provide a formal proof of convergence in a
finite number of steps. However, in our simulations, the
exact minimum, that satisfies the Kuhn—Tucker conditions,
has always been found in a finite number of steps in more
that 9000 quadratic programming problems whose solution
was required in the various benchmarks. Thus, the existence

of a rigorous proof is not ruled out and is left for future 4.

work.

6. Simulations 5

6.1. Classification benchmarks

The following classification problems are studied:

1. Linearly separable problem with random distribution of
points Points are randomly distributed in Id-dimen-
sional cube and a randomly chosen hyperplane forms
the decision region between two classes. Three problems
with different values o andN are considered.

2. Elliptical discrimination problem In this problem, it is
required to discriminate between points lying inside and
outside a hyperellipse embedded M-dimensional
space, whose points are characterized by the equation
SM. (% — ¢)¥a? = 1. Obviously, the problem can be
made linearly separable, if second order termg; iare
used. Thus input vectors of dimensionality= 2M are
formed byx andy, =2 (i = 1,2,...,M). This task is
closely related to Casasent type networks (Block, 1988;
Telfer & Casasent, 1993). The special case of a hyper-
sphere has been studied by Volper and Hamson who have
shown that the perceptron rule requi@@® N weight

. Invariant

known problem of distinguishing between the reflected
sonar signals from two kinds of submarine objects: rocks
and metal cylinders. We use the original data set studied
by Gorman and Sejnowski (1988a, b), that consists of
208 input vectors, each with 60 components. In this
problem, Gorman and Sejnowski reported only 85%
success for the single layered perceptron, rising to
100% only after introducing 12 hidden units into their
network architecture.

lonospheric dataThis is a task regarding the classifi-
cation of radar returns from the ionosphere (Sigillito,
Wing, Hutton & Baker, 1989). It consists of 350 input
vectors, each with 34 components.

character recognition using3rd order
correlations From a number of character images digi-
tized on a 25<25 pixel screen, 32 features approxi-
mately invariant in scaling and rotation are extracted
using third order correlations according to the method
of Perantonis and Lisboa (1992). Two benchmark tasks

ql

adaptations (Volper & Hampson, 1990). Again, three
such problems with different values & and N are
considered.

3. Sonar target recognition problemThis is the well-

Fig. 3. Solution of a quadratic programming problem with mutually ortho-
gonal constraint hyperplanes using the double search method. This method
finds the minimum at point S in two steps (solid curve), while gradient
descent displays an oscillatory behaviour (dotted curve).
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Table 2 corresponding number of epochs shown in parentheses.
Average classification performance (percentage of correctly classified bits) Tha percentage of correctly classified patterns achieved
hi h Igorithm, the BN-method, th I L . . )
achieved by the proposed algorithm, the BN-method, the perceptron rule e rmination of the algorithm is shown in Table 2.
and the CG algorithm for various classification problems . . .
All results are averages over ten trials starting from differ-

Proposed BN Perceptron  CG ent initial weights selected from a random uniform distribu-
Uniform tion between—0.5 and 0.5_. The algorithm propose_d in this
P—100 N=2 100 100 100 100 paper and the BN-algorithm are executed until normal
P—100QN =4 100 100 100 100 termination, whereby no further weight update is possible.
P=20000 N=10 100 100 99.91 100 The termination criterion for the perceptron rule and the CG
Ellipse method is one hour of execution. All simulations were
P=100 N=4 100 100 100 100 performed using a locally developed neural network simu-
P=1000Q N=20 100 100 99.90 100 lator (billnet) on a Pentium computer at 133 MHz.
P=20000 N=40 100 100 99.72 100 Compared to the perceptron rule, our method exhibits a
Sonar 100 100 100 9413 definitive advantage in terms of learning speed (see Table
OCR1 100 100 100 97.51 . :
lonosphere 96.35 04.87 92.92 9707 1). The advantage is already apparent in the _small-sgale
OCR2 99.72 09.64 97.47 9436 benchmarks, but becomes more pronounced in medium

and large-scale problems. Fig. 4 shows a typical learning
session for our algorithm for the sonar data problem. In Fig.
are included in the simulations. The first task (OCR1) 4a, the number of wrong bits is plotted against the number of
involves a small set consisting of 160 character images epochs. The corresponding curve for the perceptron rule is
to be classified in 32 character categories, for which a also plotted for comparison. In Fig. 4b, the number of active
network with 32 inputs and 32 outputs is used. The data patternsK is plotted against the number of epochs for our
set for this task is linearly separable. The second task algorithm. Note that at the beginning of learning the number
(OCR2) involves 240 character images corresponding of wrong bits drop at a relatively slow rate (in comparison
to 12 letters of the alphabet. Each of the characters iswith the perceptron rule). As learning progresses, building
transformed using 3 different scaling and 5 different up of the active patterns list helps locate more efficient
rotation factors, so that a data set of 2405 = 3240 search directions, and convergence is achieved in a few
patterns is formed. A network with 32 inputs and 12 epochs, while the perceptron rule is still far from the solu-
outputs is used to discriminate between character classestion and its learning curve is almost flat.

The corresponding problem is not entirely linearly separ-  Moreover, note that our algorithm has correctly classified
able. In similar experiments described in (Perantonis & all patterns in the linearly separable problems, while the
Lisboa, 1992) it was reported that single layered percep- perceptron rule has not been able to separate the patterns
trons had difficulties in solving this kind of problem, and in the larger scale synthetic benchmarks (uniform linearly
consequently a hidden layer of nodes was employed to separable and elliptically separable problem) in the allo-
improve classification accuracy. Here we examine the cated time. For the sonar data problem, our algorithm has
problem again under the light of our analysis of the completely separated the two classes. Thus, the sonar data
perceptron presented in this paper. problem is linearly separable, a fact that, to the best of our
knowledge, has not been pointed out in the literafuxete

that the perceptron rule required more than 100 000 epochs
to separate the patterns for the sonar data problem.

In order to assess the learning speed of the algorithm There is also a definitive learning speed advantage over
proposed in this paper, we compare it with two other algo- the BN-algorithm, as is also evident in Table 1. This advan-
rithms used to train the single layered perceptron with hard tage originates from two sources:
limiter activation function. These are the BN-method of
following polytope edges for lowering the perceptron cost e

6.2. Learning speed

Firstly, from the ability of our algorithm to find better

function at each epoch and Rosenblatt’s perceptron rule. If
the requirement for a hard limiter activation function is
relaxed, improved methods based on gradient information
can also be used. One of the most successful of these
methods is conjugate gradient (CG) (Johansson, Dowla &
Goodman, 1992). For the sake of completeness, we have
also used the Polak—Rilsie variant of this method to
solve our benchmarks.

search directions, since it is not limited by weight updates
performed along polytope edges, but rather finds the true
feasible steepest descent direction. In most problems, this
allows our algorithm to reach termination in a smaller
number of epochs than the BN-technique, as is evident in
Table 1.

Secondly, the fact that the BN-method follows only

Results regardlng speed of convergence are presented N While the manuscript of this paper was under review, it came to the
Tables 1 and 2. In Table 1, the performance of each algo- 5ythors' attention that Torres Moreno and Gordon (1998) had come to the

rithm is shown in terms of the total CPU time, with the

same conclusion using a different classification method.
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Fig. 4. (2) Number of wrong bits versus number of epochs for our method (solid curve) and the perceptron rule (dotted curve) in the sonar datarclassificat
problem. (b) Number of active patterns versus number of epochs for our algorithm.

edges after the firdl + 1 epochs means that the number by the quadratic search algorithm to the average time spent
of active patterns soon saturates at the vaélue 1. In to calculate the basis vectoks is generally small (and
our case, the numbét of active patterns remains lower decreases with increasin). Therefore, no significant
thanN + 1. A related issue is the behaviour, in terms of improvement to the learning speed would be possible if a
complexity, of the double search algorithm employed to more efficient algorithm were used to solve Eq. (28) instead
solve the problem of determining the direction of steepest of the double search method.

descent at each epoch. In our benchmarks, we observed Finally, our method has a learning speed advantage over
that the average number of internal epochs required bythe CG method. Lower average training times were
the double search algorithm was much lower than the recorded using our method for all problems, with the excep-
current number of active patterié. This means that  tion of theP = 2000Q N = 40 ellipse benchmark whereby
the average time spent on determining iteratively the a slightly larger training time was required by our method.
steepest descent direction is less than the time neededNote, moreover, that the CG algorithm was unable to
to calculate the basis vectowg which is of the order  separate the patterns corresponding to the two real world
NK3. Therefore, the total time spent by the double search linearly separable datasets (sonar data and OCR1 problem)
algorithm is less than K3, Thus our method has a in the allocated time limit of one hour of CPU time.
definitive advantage over the BN-technique, which

needs time of ordeN* to determine the edges. 6.3. Detection of linear inseparability

Fig. 5 displays the maximum and average number of The OCR2 and ionospheric data classification problems
internal epochs, required by the double search algorithm, are not linearly separable, as confirmed by the fact that our
plotted against the number of active patterns for the direc- algorithm reaches termination with a non-zero number of
tion of steepest descent found by the algorithm. Cumulative wrong bits. Of course, our method and the BN-method exit
data from all benchmarks are shown, so that valuds§ op upon termination having detected inseparability, while for
to 50 dimensions are included. Note the definitely sublinear the perceptron rule and the CG algorithm there is no natural
trend of the plots. The average number of epochs is alwaystermination criterion. In both linearly inseparable problems,
much smaller thaK (even the maximum number of epochs a better solution than that obtained using the perceptron rule
is lower in most cases). An interesting conclusion drawn is reached in much less CPU time. Indeed, upon termination,
from Fig. 5 is that the ratio of the average CPU time required our algorithm has correctly classified 99.72% of the patterns
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Table 3 our method in the ionospheric data problem, and slightly
Average generalization ability (percentage of correctly classified bits inthe patter in the OCR2-probIem. In short. in Iinearly inseparable
test set) achieved by the proposed algorithm, the BN-method and the roblems our method has the com,bined advantages of a
perceptron rule P . . L L 9
natural termination criterion for promptly detecting insepar-
Proposed BN Perceptron  ability having at the same time reached good solutions (in
terms of wrong bits) upon termination.

Uniform

P=100 N=2 97.13 96.93 96.27

P=100Q0 N =4 99.90 99.94 99.89

P =20000Q N = 10 99.96 99.95 99.85 6.4. Generalization ability

Ellipse

P=100 N=4 96.93 96.53 97.60 We have also conducted experiments concerning the
P =1000Q N =20 99.82 99.85 99.80 generalization ability of our method and the other two learn-
P =20000 N =40 99.77 87.47 99.57 ing algorithms (perceptron rule and BN-method) that utilize
g%”;; 97;'28 97;1.'8;’ ;96.'2: the same perceptron architecture (step activation function).
lonosphere 86.77 86.87 85 75 To assess generalization ability, each dataset was par-
OCR2 99.20 99.11 98.94 titioned into a training set consisting of 80% of the

available input vectors and a test set consisting of the
remaining 20% of the data. Ten different partitions were
in the OCR2 problem, which compares favorably with chosen at random and for each partition 10 different
97.47% obtained by the perceptron rule. We note that this restarts of the algorithms were performed with different
level of performance is the same as that obtained by ainitial weights selected from a random uniform distribution
network with one hidden layer and 20 hidden nodes using between—0.5 and 0.5. The same termination criteria as
the back-propagation rule. Similarly, in the ionospheric data before were used. Generalization ability results are given
problem our algorithm has correctly classified 96.35% of in Table 3 as average percentages of correctly classified
the data, which is to be compared with 92.22% obtained bits in the test sets of the resulting 100 training sessions
by the perceptron rule. From Table 2 it is also evident that per benchmark and algorithm. In four of the benchmarks
the performance of our algorithm upon termination is also our method exhibits better generalization ability than the
better than the performance of the BN-algorithm, possibly other methods, while in the remaining six its generalization
as a result of the better search directions followed by our ability is second best. Hence, we observe that generalization
algorithm during learning. The solution found by the CG- ability is not compromised by the improved speed offered
algorithm is considerably worse than the solution found by by our method.

50 y T r r . . : T .
45 b N
4| .
35 b -
30 F s

25

Internal Epochs

0 5 10 15 20 25 30 35 40 45 50
Active patterns

Fig. 5. Plot of the number of internal epochs required for convergence of the double search algorithm as a function of the number of active gattegns. Bot
maximum (dotted curve) and average number of epochs (solid curve) are shown.



S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351364 363

7. Conclusions Results from this line of research will be presented in a
forthcoming paper.
In this paper, we have introduced an efficient learning
algorithm for the single layered perceptron. The algo-
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