
Contributed article

Efficient perceptron learning using constrained steepest descent

S.J. Perantonis* , V. Virvilis

Institute of Informatics and Telecommunications, National Research Center “Demokritos”, 153 10 Agia Paraskevi, Athens, Greece

Received 6 February 1998; accepted 25 March 1999

Abstract

An algorithm is proposed for training the single-layered perceptron. The algorithm follows successive steepest descent directions with
respect to the perceptron cost function, taking care not to increase the number of misclassified patterns. The problem of finding these
directions is stated as a quadratic programming task, to which a fast and effective solution is proposed. The resulting algorithm has no free
parameters and therefore no heuristics are involved in its application. It is proved that the algorithm always converges in a finite number of
steps. For linearly separable problems, it always finds a hyperplane that completely separates patterns belonging to different categories.
Termination of the algorithm without separating all given patterns means that the presented set of patterns is indeed linearly inseparable.
Thus the algorithm provides a natural criterion for linear separability. Compared to other state of the art algorithms, the proposed method
exhibits substantially improved speed, as demonstrated in a number of demanding benchmark classification tasks.q 2000 Published by
Elsevier Science Ltd. All rights reserved.

Keywords: Perceptron; Learning algorithm; Quadratic programming; Feasible directions

1. Introduction

The resurgence of interest in neural network research in
the past decade has led to the development of numerous
types of architectures and learning algorithms. In particular,
feed-forward networks have emerged as efficient tools for
supervised classification and function approximation tasks.
Although recent research has mainly focused on multi-
layered networks, the single layer perceptron still deserves
attention for at least two reasons. Firstly, the design of fast
perceptron learning algorithms is important, because such
algorithms can form the basis of layer-by-layer learning
schemes for multilayer feedforward networks that have
received much attention in recent years (Ergenziger &
Thompsen, 1995; Hunt & Deller, 1995; Wittner & Denker,
1997). Secondly, many non-linearly separable problems can
be cast into linearly separable form by constructing high
order polynomial terms of the data. This type of lineariz-
ation is the main step for constructing high order feed-
forward networks that are widely studied and used in
many applications.

The most popular stochastic or gradient based algorithms
for training the single layered perceptron, e.g. the percep-
tron learning rule (Rosenblatt, 1962) and the delta rule

(Rumelhart, Hinton & Williams, 1986; Widrow & Hoff,
1988) can run into serious problems if their parameters
(learning rate and momentum) are not chosen correctly.
Proper parameter selection usually relies on heuristics.
Even if parameters are chosen optimally, in many problems
with a highly non-uniform distribution of patterns in the
input space learning can be exceptionally slow. This diffi-
culty arises especially in solving non-linear problems,
which are linearized using higher order terms (Telfer &
Casasent, 1993). The linearization step not only results in
an increase in the input space dimensionality, but also
creates a non-homogeneous input space, that many algo-
rithms find difficult to negotiate. Indeed, Volper and
Hamson have highlighted this point, by showing that the
perceptron rule may need very high order polynomial
times even in apparently simple problems with just
second-order terms (Volper & Hampson, 1990). The same
difficulty arises in the case of layer-by-layer learning in
feedforward networks, because in the course of learning
many hidden units outputs are forced in the saturation
region, so that the space of hidden layer outputs (output
layer inputs) quickly becomes highly inhomogeneous. An
extra difficulty with layer by layer learning in feedforward
networks comes from the fact that in intermediate stages of
learning the internal pattern representations may not be line-
arly separable. It is then very important to have a natural
termination criterion for the output layer learning algorithm

Neural Networks 13 (2000) 351–364PERGAMON

Neural
Networks

0893-6080/00/$ - see front matterq 2000 Published by Elsevier Science Ltd. All rights reserved.
PII: S0893-6080(00)00016-2

www.elsevier.com/locate/neunet

* Corresponding author.
E-mail address:sper@iit.demokritos.gr (S.J. Perantonis).

so that inseparability can be detected efficiently (Grossman,
Meir & Domany, 1989; Takahashi, Tomita & Kawabata,
1993). This cannot be done using the perceptron rule or
the delta rule.

In this paper, we propose a novel learning algorithm for a
single layer perceptron, which is fast and requires no adjust-
ment of parameters. Learning proceeds by iteratively lower-
ing the value of the perceptron cost function (Barnard, 1991;
Barnard & Casasent, 1989) under the constraint that already
correctly classified patterns are not to be affected. The
perceptron cost function derivative serves as a guide for
finding weight vectors with lower cost. The weight vector
is found by a line search in the input space, which is termi-
nated when further advancement leads to misclassification
of a previously correctly classified pattern. The proper
direction for the line search is that of the steepest descent
with respect to the perceptron cost function, with additional
constraints ensuring that the weight update vector does not
intersect hyperplanes corresponding to already correctly
classified patterns. The problem of finding the appropriate
search direction can be stated as a quadratic programming
task, to which a fast and effective solution is proposed.

It is proved in the paper that the resulting algorithm
always converges in a finite number of steps. For linearly
separable problems, it always finds a hyperplane that
completely separates patterns belonging to different
categories. In the case of non-linearly separable problems,
the algorithm detects the inseparability in a finite number of
steps and terminates, having usually found a good separ-
ation hyperplane. Thus, it provides a natural criterion for
linear separability or inseparability. Experimental results
show that the proposed algorithm finds the solution to
large-scale linearly separable problems much faster than
the perceptron rule. Its fast convergence is not hindered
by inhomogeneities in the distribution of training patterns.
Moreover, it exhibits a decisive learning speed advantage
over other algorithms involving no adjustable parameters.

The paper is organized as follows: In Section 2, basic
terminology is established and background information is
introduced concerning characteristics of the perceptron
weight space and cost functions. The design and control
flow of our algorithm algorithm is discussed in Section 3.
In Section 4 a study of the convergence properties of the
algorithm is presented. In Section 5, the problem of finding
optimal search directions for the implementation of the
algorithm is discussed in detail. In Section 6 simulation
results are presented for various classification problems.
Finally, conclusions are drawn in Section 7.

2. Terminology and background

2.1. Weight space

Let us assume that we wish to distinguish between two
linearly separable classes ofP patternsxp, each of dimen-

sionN, by employing a single layer perceptron with a hard
limiter activation function. We want to find a vectorW such
that

u�WTXp� � Tp; p� 1;…;P �1�
whereTp is the target for patternp, equal to either zero or
one, andu is the step function. The vectorXp consists of the
input patternxp of dimensionN plus an extra component
equal to one, andW consists of the weight vectorw
augmented by the thresholdw0.

In the N 1 1-dimensional weight space, the vectorW is
represented by a point. Each of the patternsXp is repre-
sented by a hyperplane which passes through the origin
and divides the weight space into 2 subspaces. Hyperplanes
corresponding to different patternsdp segmentRN11 into
several convex polytopes, whose common boundaries are
hyperplane segments. For a givenW each pattern hyper-
plane is classified as Bit Right (BR) if the quantityOp �
u�WTXp� is equal toTp, and Bit Wrong (BW) ifOp is not
equal toTp.

A useful observation is that the vectordp � �2Tp 2 1�Xp

always points towards the side of the pattern hyperplane that
corresponds to the correct classification of patternXp. Thus,
patterns classified as BR are characterized by a positive
value of the quantityZp �WTdp: To see this, suppose
first that WTXp . 0: In this caseTp must be equal to 1
becauseXp is classified as BR. Therefore 2Tp 2 1� 1 .
0 andZp is positive. On the other hand, ifWTXp , 0; Tp must
be equal to zero. Therefore 2Tp 2 1� 1 , 0 andZp is posi-
tive. Similarly, we see that patterns classified as BW byW
are characterized by a negative value ofZp. In the sequel, we
shall characterize patterns by the vectorsdp instead of the
original vectorsXp. In terms of these vectors, the original
perceptron problem of Eq. (1) becomes:

u�WTdp� � 1; p� 1;…;P �2�

2.2. Degeneracies

For reasons that will become apparent in subsequent
sections, we shall consider non-degenerate cases, in which
any N 1 1 equations of the formWTdp � 0 have only one
solution, namely the originW � 0: In other words, the
matrix with elementsdip has rankN 1 1. If degeneracies
are present in the original training set, they can be lifted,
e.g. by adding random numbers of small magnitude to the
training vector components (Strang, 1988). Note that even
under these conditions, the origin is still common to all
pattern hyperplanes. Again, to lift this last degeneracy,
various methods can be followed. A popular technique
(Bobrowski & Niemiro, 1984) is to solve the problem
always keepingw0 equal to a constant. In the space of the
remainingN variables, anyN 1 1 pattern hyperplanes have
no common points. This method has the disadvantage that
the two casesw0 . 0 and w0 , 0 need to be considered
separately in two independent learning passes. A second

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364352

technique that will be adopted here involves solving

u�WTdp 2 ep� � 1; p� 1; 2;…P �3�

instead of Eq. (2), whereep are positive random numbers.
Any solution of Eq. (3) is obviously also a solution of Eq.
(2). Following this amendment, our remarks about BR and
BW patterns have to be modified accordingly:

• If patterndp is classified as BR byW, thenWTdp 2 ep .
0:

• If patterndp is classified as BW byW, thenWTdp 2 ep ,
0:

2.3. Cost functions

There are two cost functions related to our problem:

• The perceptron cost function is defined by

E �
XP
p�1

�Tp 2 Op�WTXp � 2
X

p�BW

WTdp �4�

where the second sum runs over all patterns that are
classified as BW byW. According to the last remark in
Section 2.1, this cost function is positive. It is also piece-
wise linear inRN11 and has constant gradientDW in each
polytope given by

2DW �
XP
p�1

�Tp 2 Op�Xp � 2
X

p�BW

dp �5�

Performing gradient descent using this cost function
gives the offline (batch) version of Rosenblatt’s percep-
tron learning rule.

• The squared error cost function

ESE�
XP
p�1

�u�WTdp�2 1�2 �6�

counts the number of BW for a certainW and obviously
takes on a constant value for each polytope.

3. Training strategy

We initialize the training procedure with the weight
vectorW in the interior of a certain polytope. Our primary
aim is to reach the minimum of cost functionESE. Therefore,
we devise a strategy that will gradually moveW to poly-
topes of lowerESE. Our strategy involves updatingW along
successive search directions, each characterized by a vector
P. To determine these search directions, we shall use infor-
mation related to the gradientDW of the perceptron cost
function E. The plausibility of this dual strategy (using
gradient information of one cost function in order to keep
decreasing the other) will be established in the next
section, where its convergence properties will be studied
in detail.

For the first epoch, we choose the vectorP� DW and we
updateW according to:

Wnew�W 1 nP �7�
where n is the learning rate. This is reminiscent of the
perceptron learning rule, wheren remains constant through-
out learning. In our case, the rule of calculation ofn is
constructed by the requirement to cross over as many BW
patterns as possible, without crossing over any BR. In this
way, maximum decrease ofESE can be achieved.

Noting that the classification decision for a patterndp

changes at the point whereWT
newdp 2 ep � 0; i.e. np �

2�WTdp 2 ep�=�PTdp�; we consider the following cases:

1. Suppose that at least one pattern can be found along our
search direction which is classified as BR byW. LetnR be
the smallest (positive)np corresponding to such a BR
pattern.

(a) If BW patterns exist with smallernp thannR, let nW

be the largest among thenp of these BW patterns.
Maximum decrease inESE will be achieved ifn is
chosen so thatnW , n , nR: In practice, we always
chose n� �nW 1 nR�=2: This procedure of moving
over all BW patterns without crossing any BR pattern
will be called “Fast Moving”. This type of movement
is illustrated in Fig. 1.
(b) On the other hand, if no BW patterns exist with
smallernp thatnR, we cannot decreaseESEby following
the gradient direction. In this case, the first pattern
encountered in theDW direction is a BR pattern.
The best we can do is keepESE constant by moving
close to the BR pattern. This pattern is added to an
internal “list of active patterns” (i.e., patternsdp for

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364 353

Fig. 1. An arrangement of hyperplanes (lines) in two-dimensional space is
shown, corresponding to a classification problem. In each polytope the
number of BW is displayed. Starting from point I, our algorithm finds the
solution in one step following a “Fast Moving” weight update. If started
from point II, the algorithm finds the solution in two steps, performing a
“Moving Near” update up to point IIa followed by a “Fast Moving” update.

which the equationWTdp 2 ep � 0 holds) so that the
next move will be parallel to the hyperplane of the
specified pattern. This procedure of moving to zero
distance from a BR pattern will be called “Moving
Near”, and is also illustrated in Fig. 1.
At this point, note the usefulness of lifting degenera-
cies, as explained in Section 2.2. If more thatN 1 1
pattern hyperplanes were allowed to have common
points, our search directions could intersect two or
more pattern hyperplanes with the same value ofn,
rendering problematical the “Moving Near” weight
update.

2. If no BR pattern can be found along our search direction,
then:

(a) If BW patterns can be found, we only have to cross
over all BW patterns to solve the problem (last Fast
Moving update). Thusn must be chosen larger than all
np.
(b) If neither BR nor BW patterns can be found, then
P� 0 and the algorithm terminates.

The first epoch of the algorithm has now been completed.
Weight updating in subsequent epochs is performed as
follows:

1. If in the previous epoch the weight vector was updated
using the “Moving Near” process, the weight vector still
resides in the same polytope as before. Obviously,ESE is
the same as in the previous epoch. In this case, we update
the weight vector using a new search direction, in the
hope that it will lead us to a BW pattern hyperplane, so
that the “Fast Moving” procedure can be used in the
present epoch.

2. To select the search directionP, we use the perceptron
cost functionE. We wish to updateW so that the new
vector Wnew remains in the current polytope and
E�Wnew� , E�W�: In fact, if we wish E to decrease
locally at the fastest possible rate, we can choose the
search direction of steepest descent that has common
points with the current polytope (steepest feasible search
direction). If there are currentlyK active patterns, this
search direction is the feasible search direction�PTdp $
0� which forms the smallest possible anglef with the
gradientDW of E. A method for finding this direction
will be studied in detail in Section 5. At this point, it
suffices to say that in general this search direction will
be parallel to some of the pattern hyperplanes, so that
after finding it, we have to update the list of active
patterns. Once the appropriate search direction, char-
acterized by vectorP has been found,W is updated
using Eq. (7) withn determined as in cases 1 or 2
above.

3. On the other hand, if the previous epoch weight
update was performed using the “Fast Moving”
procedure, the weight vector now resides in a new
polytope of lowerESE than in the previous epoch. We
must now use the newE, corresponding to the new

polytope to find the steepest feasible search direction.
Once again,W is updated according to Eq. (7) with
n determined as in cases 1 or 2 above.

Termination and convergence properties of the algorithm
are discussed in detail in the next section.

We note that our algorithm provides a natural way of
performing steepest descent in the perceptron weight
space. In this sense it is related to the algorithm proposed
by Bobrowski and Niemiro (Bobrowski & Niemiro, 1984;
Bobrowski, 1991), whose algorithm is designed to chose
steepest polytope edges, rather than steepest feasible
directions. We shall refer to this method as the BN-
method.

4. Proof of convergence

The purpose of this section is to prove the following
statements:

1. The proposed algorithm always terminates in a finite
number of steps (epochs).

2. Upon termination, the proposed algorithm correctly
classifies all the patterns in linearly separable problems.

An immediate corollary of the above statements is the
following: If, upon termination, which always occurs in a
finite number of steps, there are still misclassified patterns,
the pattern classification problem presented to the
network is not linearly separable. Thus, the proposed
algorithm can detect linear inseparability in a finite
number of steps.

4.1. Finiteness

The following lemma introduces an ordering of sub-
sequent points reached by the algorithm inside a polytope,
in terms of the angles formed by the subsequent search
directionsDW. This ordering is then used to prove the
main Theorem.

Lemma 1. Let A and B be points in a certain polytope,
which are reached by the algorithm in two subsequent
epochs. IffA andfB are the angles formed by the steepest
feasible directionsPA andPB at A and B, respectively, then
fA , fB:

Proof. Let us assume, for the sake of the argument, that
fB , fA (equality of the angles is not an option, because
they would correspond to the same feasible direction at A).
Consider the vectorP where P� PA 1 PB and let fC

be the angle formed byP andDW. SincefB , fA, we
have cosfB . cosfA. The following consecutive relations

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364354

hold:

cosfC � PTDW
uPu uDWu

� PT
ADW 1 PT

BDW
uPA 1 PBu uDWu

� uPA u cosfA 1 uPBu cosfB

uPA 1 PBu

.
�uPA u 1 uPBu� cosfA

uPA 1 PBu
. cosfA �8�

with the last relation following from the triangular inequality
uPA u 1 uPBu . uPA 1 PBu:Thus,fC , fA :Since the polytope
is convex andPA, PB are feasible directions at consecutive
points A and B,P is also feasible at A. From Eq. (8) it follows
thatP is feasible at A and steeper thanPA. This contradicts the
original hypothesis, according to whichPA is the steepest
feasible direction at A. The contradiction originated from
the false assumption thatfB , fA, which means that the
statementfB . fA is true. A

Theorem 1. The algorithm will always terminate in a
finite number of epochs.

Proof. The number of successive polytopes negotiated by
the algorithm is at most equal to the initial number of wrong
bits, which is obviously bounded by the total number of
patternsP. Therefore, to prove this theorem, it suffices to
show that a finite number of epochs is spent by the algorithm
in a certain polytope. The anglef formed by the steepest
feasible direction at a certain point of a polytope andDW, is

determined by the number of active patterns at this point.
Since there are at mostP pattern hyperplanes forming the
boundary of the polytope, there is a finite number of active
constraint combinations and, consequently, a finite number
of possible values off . Moreover, according to Lemma 1,
the sequence of successivef is strictly increasing, so that
each of the possible values off can be attained by the
algorithm at most once. Thus the number of epochs spent
in a polytope is bounded by the finite number of possible
values off . A

4.2. Linearly separable problems

To prove that the algorithm will always find a solution to
linearly separable problems, we must ensure that it can
always escape from polytopes corresponding to incorrect
classification of some patterns. In particular, it is important
to show that it cannot terminate at points corresponding to
minima ofE in polytopes with non-zeroESE. This is ensured
by the important Lemma 3, which states that for linearly
separable problems the minimum of the cost functionE in a
certain polytopeR occurs at points belonging to at least one
BW pattern hyperplane. In turn, the idea of the proof in
Lemma 3 is to show that for every point in the interior of
R, there exists a point with lowerE, which lies on the
boundary ofR and belongs to a BW pattern, so Lemma 3
is preceded by Lemma 2, which shows how to construct
such a point.

Lemma 2. Consider a set of patterns{ dp} t hat are
linearly separable, so that system of inequalities (3) has at
least one solutionWs. Moreover, consider a weight vector
W belonging to the interior of a polytopeR characterized
by a positive number of wrong bits. Then, there exists a
pattern dB belonging to the boundary ofR classified as
BW byW and a vectorWB that satisfies

WT
BdB � eB andWB �Ws 1 tB�W 2 Ws� with 0 , tB , 1

�9�

Proof. Let us consider the straight line (t) passing through
W andWs, which is parametrized by

Wt �Ws 1 t�W 2 Ws�: �10�
Fig. 2 illustrates the geometry involved in the simple two-

dimensional case. It is essentially required to show that the
line segment with end points atW andWs cannot be inter-
sected by BR hyperplanes. It is only intersected by BW
pattern hyperplanes and the patterndB mentioned in the
Lemma is the BW pattern which is intersected first, as we
move fromW to Ws.

Indeed, given a patterndp classified as BW byW, its point
of intersection with line (t) is characterized by a weight

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364 355

Fig. 2. Geometry involved in the proof of Lemma 2. The line segment with
end-points at the current weight vectorW and the solution weight vectorWs

intersects the current polytope at a BW hyperplane.

vectorWp satisfying:

WT
pdp � ep �WT

s dp 1 tp�W 2 Ws�Tdp �11�
i.e.

tp�Ws 2 W�Tdp �WT
s dp 2 ep �12�

SinceWs is a solution of Eq. (3), all patternsdp are classified
as BR byWs, and thereforeWT

s dp 2 ep . 0: Since dp is
classified as BW byW, thenWTdp 2 ep , 0; so that

�Ws 2 W�Tdp . WT
s dp 2 ep . 0 �13�

Therefore we can expresstp as

tp �
WT

s dp 2 ep

�Ws 2 W�Tdp
; �14�

and obviously it follows from relation (13) that 0, tp , 1.
On the other hand, ifdp is classified as BR byW, then

WTdp 2 ep . 0 and it follows from Eq. (14) that

tp
, 0; if �Ws 2 W�Tdp , 0

. 1; if �Ws 2 W�Tdp . 0

8<: �15�

Let us now consider the patterndB with the largesttp
satisfying 0, tp , 1. According to our analysis, this
pattern is classified as BW byW and its intersectionWB

with the straight line (t) can be written in the form required
by relations (9). There remains to prove thatWB lies on the
boundary ofR. SinceWT

BdB � eB; it suffices to prove that
all other patterns exceptdB are classified byWB in the same
way they are classified byW. Given a patterndq ± dB; we
have

WT
Bdq �WT

s dq 1 tB�W 2 Ws�Tdq �16�
If patterndq is classified as BW, then 0, tq , tB and�W 2
Ws�Tdq , 0; so that:

WT
Bdq , WT

s dq 1 tq�W 2 Ws�Tdq �17�
Substitutingtq from Eq. (14) we find thatWT

Bdq , eq; so
that dq is classified as BW byWB.

Similarly, if dq is classified as BR byW, we must exam-
ine two cases, according to relations (15). Thus, if�Ws 2
W�Tdq , 0; thentq , 0 , tB: If, on the other hand,�Ws 2
W�Tdq . 0; then 0, tB , 1 , tq: In both cases, we can use
Eq. (16) to write:

WT
Bdq . WT

s dq 1 tq�W 2 Ws�Tdq: �18�
Substituting from Eq. (14) we find thatWT

Bdq . eq: Thus, in
both casesdq is classified as BR byWB and the proof is
completed. A

Lemma 3. Consider a set of linearly separable patterns
and a polytopeR corresponding to ESE ± 0: Then, the mini-
mum of E inR occurs at points belonging to at least one BW
pattern hyperplane.

Proof. Given a vectorW belonging to the interior ofR,
we construct the corresponding vectorWB given by Lemma
2. From Eq. (9), taking the inner product with any of the
vectorsdp, we obtain:

2WT
Bdp � �tB 2 1��WT

s dp�1 tB�2WTdp� �19�
SinceWs is a solution of the linearly separable problem, all
patterns are classified as BR byWs and thereforeWT

s dp .
0: Also, tB 2 1 , 0 according to Lemma 2, so that:

2WT
Bdp , tB�2WTdp� �20�

Summing over patterns classified as BW byW and using
Eq. (4) we conclude that:

E�WB� � tBE�W� , E�W� �21�
because 0, tB , 1: From the last equation and from
Lemma 2, it follows that for every weight vectorW in the
interior of R there exists a vector with a lower value ofE
that belongs to the boundary ofR and satisfiesWT

Bdp � ep

for at least one patterndp classified as BW by vectors inR.
Obviously, the minimum ofE in R is to be found among all
vectorsWB, and the proof is completed.A

Theorem. Upon termination, the proposed algorithm
correctly classifies all the patterns in linearly separable
problems.

Proof. Let us consider a polytope corresponding to a posi-
tive number of BW patterns. At points of the polytope not
corresponding to the minimum ofE, there are always avail-
able feasible directions and the algorithm cannot terminate,
even if it cannot follow a “Fast Moving” trajectory. On the
other hand, let us consider a point corresponding to the
minimum of E. The algorithm cannot terminate at this
point either. Indeed, according to Lemma 3, at least one
of the pattern hyperplanes that surround this point corre-
sponds to a BW pattern and the algorithm will follow a
“Fast Moving” trajectory passing through the point and
continue in another polytope. It follows that the algorithm
can only terminate in the polytope where all patterns are
correctly classified. A

5. Finding the search direction

5.1. General remarks

As illustrated in the previous section, our algorithm
decomposes the original classification problem into a series
of successive subproblems, whereby the steepest feasible
search direction must be found. In this section we show
that the problem of finding the steepest feasible search direc-
tion can be formulated as a quadratic programming
problem. An interesting question is whether we can
compute these successive feasible directions (a task requir-
ing the successive application of a quadratic programming
algorithm) with complexity that outperforms related

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364356

methods that can be used for training the perceptron. An
immediate adversary is the BN-method, whereby steepest
polytope edges, rather than steepest feasible directions, are
used and therefore no quadratic programming task needs to
be solved. In this section, we propose a method for solving
the quadratic programming task. In Section 6 it is demon-
strated that using the algorithm proposed in Section 3 in
conjunction with this method, it is possible to solve classi-
fication problems much faster than other well known
perceptron training algorithms (including the perceptron
rule and the BN-algorithm).

5.2. Mathematical formulation of the problem

Let us assume thatW [R
N11 resides at the intersection

of K # N 1 1 hyperplanes with normal vectorsdp. Without
loss of generality, we may reorder the patterns, so that theK
active patterns are numbered from 1 toK: p [Nk �
{1…K} ; K # N 1 1: We wish to find a directionP which
is feasible in the current polytope�PTdp $ 0� and forms the
smallest possible anglef with the gradientDW of E. Note
that in 3 dimensions, this problem has a simple mechanical
equivalent, namely the problem of finding the path followed
by a particle falling under the influence of gravity starting
from the intersection ofK # 3 planes.

To find the steepest feasible direction, it is easy to see that
we must solve the following quadratic programming
problem:

Minimize F � 1
2 uDW 2 Pu2

subject toPTdp $ 0; p� 1…K
�22�

Indeed, given any feasible direction, minimum Euclidean
distance between a vector along this direction andDW is
achieved ifP is the projection ofDW. Therefore, solution of
program (22) should be sought among projections ofDW. It
follows that PTDW � uPu2. Using this relation, and taking
into account that cosf � DWTP=uDWu uPu we obtainF �
1=2uDWu2sin2f; so that minimization ofF also means mini-
mization off .

Program (22) is a special form of the generic quadratic
programming problem, for which various solutions have
been proposed in the past (Pang, 1983; Rao, 1984; Bazaraa,
Sherali & Shetty, 1993; and references cited therein). Note
that in program (22) the number of constraints is always less
or equal to the dimensionalityN 1 1 of the input plus bias
space and the objective functionF is a hyperspherical quad-
ratic form (there are no terms involving products of the form
Pi Pj with i ± j). For this type of problem, the new approach
proposed in this paper is a feasible directions method based
on preliminary (a priori) knowledge about the solution of
the problem. Suppose, for the sake of the argument, that we
have been able to determine the active constraints�PTdi �
0; i [M # Nk� for the solution of program (22). LetL #
K be the number of active constraints. Among all vectors
belonging to the spaceS defined byPTdi � 0; i [M; the

vector whose distance fromDW is minimum is the projec-
tion of DW uponS. Reordering the patterns, so that theL
active constraints are numbered from 1 toL, the projection
can be readily obtained using the well known Gramm–
Smidt procedure (see, e.g. Strang, 1988):

P� DW 2
XL
i�1

DWTui

uui u
2 ui with ui � di 2

Xi 2 1

j�1

dT
i uj

uuj u
2 uj �23�

The final solution can be found by an exhaustive search
among the projections ofDW on the spacesS obtained for
all possible subsets ofNk: From these projections, non-
feasible ones are eliminated. From the rest, the projection
that yields the minimum value ofF is the final solution.
However, this procedure takes exponential time withK
and is unacceptable. Still, the fact thatP is a projection is
useful information, and will play an important role in form-
ing an efficient algorithm for solving program (22).

5.3. Transformation to orthogonal constraints

To facilitate solution of program (22), we firstly trans-
form it to an equivalent problem with mutually orthogonal
constraint hyperplanes. The reason for this transformation is
that given an initial non-feasible search direction, we can
easily form a feasible search direction by simply eliminating
non-feasible components.

The K vectors dp define a subspace inRK where the
solution should be searched for. Let us decompose the
vectorsDW and P into components respectively parallel
and perpendicular toRK

:

DW � DW' 1 DWk andP� DW' 1 Q �24�
The influence of the constraints is limited to theQ part of

the final solutionP. Using the relationsDWT
'DWk � 0 and

DWT
'Q � 0; we can rewrite the first line of Eq. (22) as

F � 1=2uDWk 2 Qu2. Note that Q and DWk are vectors
with N 1 1 components but are lying in theRK subspace.
It is therefore possible to write them as linear combinations
of K linear independent vectors of this subspace.

In theR
K subspace, the intersection of anyK 2 1 pattern

hyperplanes is a straight line. In all, there areK such straight
lines. It is convenient to use theK direction vectorsvp of
these lines as the (generally orthogonal) basis for theR

K

subspace. Each of thevp vectors is the projection ofdp on the
intersection of all other normal vectors and is formed
following the Gramm–Smidt technique, so that
�vT

i dj�=�vT
i vi� � dij : Now we can writeQ andDWk as:

Q �
XK
i�1

qi
vi

uvi u
2 ; qj � PTdj $ 0 �25�

DWk �
XK
i�1

ai
vi

uvi u
2 ;aj � DWTdj �26�

In the same spirit, any�N 1 1�-dimensional vectorX
belonging to theR

K subspace can be transformed to

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364 357

yield a K-dimensional vectorx and vice versa, using the
relations:

X � V x) x � D X �27�
where V is a �N 1 1� × K matrix with the vectorvi =uvi u

2

in the ith column andD is a K × �N 1 1� matrix with
the vectordi in the ith row.

We can now proceed to rewriteF and the constraints
using the new vectors:

F � 1
2 �a 2 q�TR�a 2 q�; q $ 0 �28�

whereR is symmetric and equal toVTV.
It follows that the original problem has been transformed

from minimizing a hyperspherical quadratic form (22)
subject to non orthogonal constraints to minimizing a hyper-
elliptical quadratic form subject to orthogonal constraints.

5.4. Double search technique

In order to solve program (22), we shall employ an itera-
tive algorithm based on minimization ofF along successive
search directions. Given an initial position vectorq in the
feasible region and a feasible search directionDq, we can
find the position whereF attains its minimum value in the
feasible region along this search direction. The uncon-
strained minimum resides atq 0 � q 1 hgDq; wherehg is
found by linear minimization across the search direction:

hg � 2
7FqTDq

uDQu 2 ; whereDQ � V Dq �29�

and the gradient7Fq of F is given by:

7Fq � 2R �a 2 q� � V T�P 2 DW� �30�
Note that7Fq can be calculated in terms of vectors in the
original �N 1 1�-dimensional space.

The position vector characterized byhg may of course lie
outside the feasible region. In this case, we have to take into
account the constraintsqi $ 0; i [Nk: The position of
lowestF along our search direction, that lies on the bound-
ary of the feasible region, is given byq 0 � q 1 hcDq; where
h c is the minimum among all positivehi � 2qi =Dqi :

hc � min{hi � 2
qi

Dqi
: hi . 0 andi [Nk} �31�

In all cases, the new pointq 1 hDq that yields the lowest
value ofF is characterized byh � min{hc;hg} :

Of course, if our initial positionq satisfiesqi � 0 for
some i [Nk; a given search directionDq A may not be
feasible. However, the orthogonality of the constraints
allows us to find a new feasible search direction by starting
from DqA and removing (setting to zero) non-feasible
components. Formally, the appropriate search direction is
given by a vectorDq, with components:

Dqi �
0; if qi � 0 andDqA

i , 0

DqA
i ; otherwise

(
�32�

The proposed algorithm uses two search directions
exploiting advantages from both. The first is thegradient
search direction

DqA � 27Fq �33�
which always leads to lower values of the cost function.
However, it is well known that always following this direc-
tion may lead to zig-zag paths and slow down convergence.
The second direction, which we shall callprojection search
direction, points to the projectionDWGS of DW on the zero
space of the currently active constraints:

Dq A � D�DWGS 2 P� �34�
If the active constraints of the solution of program (22) had
already been found, this would locate the solution in just one
step. However, if only this direction is followed, the algo-
rithm may terminate before the minimum has been found.

To find the solution in a small number of steps, both
gradient and projection information must be combined in
the same iterative algorithm. In each iteration the proposed
Double Search Algorithm tests both gradient and projection
search directions, and selects the one leading to the lower
final value ofF. Iterations of the Double Search algorithm
will be called “internal epochs”, to distinguish them from
the epochs of the main algorithm discussed in Section 5. The
algorithm avoids zig-zag paths, and our experience shows
that it locates the exact solution in a few iterations as
demonstrated in the experimental section.

There follows a full description of the algorithm:
Initialization: SetQ � 0 (Equivalentlyq � 0). Initialize

the list of currently active constraints to contain alli [Nk:

Internal epoch update:At each epoch of the algorithm
follow the following steps:

1. Perform the following operations using the gradient
search directionDqA given by Eq. (33):

(a) Calculate the feasible directionDq using Eq. (32).
(b) Calculatehg using Eq. (32) andh c using Eq. (31).
Find h � min�hc;hg�.
(c) Calculate the cost function changeDF between
pointsq 1 hDq andq.

2. Repeat steps a–c above for the projection search direc-
tion given by Eq. (34).

3. Compare the two resultingDF for the gradient and
projection search directions. Find the more negativeDF
of the two and note the corresponding value ofh .

4. Using the search directionDq that led to the most nega-
tive DF and the corresponding value ofh , updateq as
q 0 � q 1 hDq:

5. Update the list of currently active constraints.

Termination:The algorithm terminates when no further
move is possible, i.e. whenDqi � 0 for all i.

In Fig. 3 we show the steps followed by the algorithm in a
simple two-dimensional problem, illustrating how zig-zag
paths are avoided and rapid convergence is achieved.

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364358

In short, our algorithm achieves a decrease in error at
each iteration and avoids zig-zagging by employing the
projection search direction when needed. We have not
been able to provide a formal proof of convergence in a
finite number of steps. However, in our simulations, the
exact minimum, that satisfies the Kuhn–Tucker conditions,
has always been found in a finite number of steps in more
that 9000 quadratic programming problems whose solution
was required in the various benchmarks. Thus, the existence
of a rigorous proof is not ruled out and is left for future
work.

6. Simulations

6.1. Classification benchmarks

The following classification problems are studied:

1. Linearly separable problem with random distribution of
points: Points are randomly distributed in aN-dimen-
sional cube and a randomly chosen hyperplane forms
the decision region between two classes. Three problems
with different values ofP andN are considered.

2. Elliptical discrimination problem: In this problem, it is
required to discriminate between points lying inside and
outside a hyperellipse embedded inM-dimensional
space, whose points are characterized by the equationPM

i�1 �xi 2 ci�2=a2
i � 1: Obviously, the problem can be

made linearly separable, if second order terms inxi are
used. Thus input vectors of dimensionalityN � 2M are
formed by xi and yi � x2

i �i � 1;2;…;M�: This task is
closely related to Casasent type networks (Block, 1988;
Telfer & Casasent, 1993). The special case of a hyper-
sphere has been studied by Volper and Hamson who have
shown that the perceptron rule requiresO(P3 N8) weight
adaptations (Volper & Hampson, 1990). Again, three
such problems with different values ofP and N are
considered.

3. Sonar target recognition problem: This is the well-

known problem of distinguishing between the reflected
sonar signals from two kinds of submarine objects: rocks
and metal cylinders. We use the original data set studied
by Gorman and Sejnowski (1988a, b), that consists of
208 input vectors, each with 60 components. In this
problem, Gorman and Sejnowski reported only 85%
success for the single layered perceptron, rising to
100% only after introducing 12 hidden units into their
network architecture.

4. Ionospheric data: This is a task regarding the classifi-
cation of radar returns from the ionosphere (Sigillito,
Wing, Hutton & Baker, 1989). It consists of 350 input
vectors, each with 34 components.

5. Invariant character recognition using3rd order
correlations: From a number of character images digi-
tized on a 25× 25 pixel screen, 32 features approxi-
mately invariant in scaling and rotation are extracted
using third order correlations according to the method
of Perantonis and Lisboa (1992). Two benchmark tasks

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364 359

Table 1
Average CPU time (in secs) and number of epochs (given in parentheses) required by the proposed method, the BN-algorithm, the perceptron rule and the CG
algorithm for various classification problems. All problem data sets but the last two (ionospheric data and OCR2) are linearly separable

Proposed BN Perceptron CG

Uniform
P� 100; N � 2 0.006 (4.6) 0.015 (6.5) 0.435 (581) 0.326 (12.6)
P� 1000; N � 4 0.243 (16.4) 0.527 (32.0) 1.379 (157) 4.466 (18.5)
P� 20 000; N � 10 33.0 (76.9) 108.6 (205) 3600 (14 439) 184.1 (208)

Ellipse
P� 100; N � 4 0.023 (13.4) 0.031 (19.5) 0.059 (63.1) 0.227 (9.0)
P� 10 000; N � 20 74.3 (214.0) 259.4 (567) 2661.4 (14 749) 328.2 (104.5)
P� 20 000; N � 40 647.6 (488.7) 4554 (2162) 3600 (6082) 582.9 (77.8)
Sonar 117.8 (223.8) 405.9 (190.5) 1174.9 (146 047) 3600 (123 549)
OCR1 4.75 (16.0) 5.65 (17.9) 42.38 (94.4) 3600 (2855)
Ionosphere 22.1 (155.5) 31.8 (142.8) 3600 (430 735) 3600 (101 658)
OCR2 308.3 (294.4) 1337.7 (533.9) 3600 (4554) 3600 (589.3)

Fig. 3. Solution of a quadratic programming problem with mutually ortho-
gonal constraint hyperplanes using the double search method. This method
finds the minimum at point S in two steps (solid curve), while gradient
descent displays an oscillatory behaviour (dotted curve).

are included in the simulations. The first task (OCR1)
involves a small set consisting of 160 character images
to be classified in 32 character categories, for which a
network with 32 inputs and 32 outputs is used. The data
set for this task is linearly separable. The second task
(OCR2) involves 240 character images corresponding
to 12 letters of the alphabet. Each of the characters is
transformed using 3 different scaling and 5 different
rotation factors, so that a data set of 240× 15� 3240
patterns is formed. A network with 32 inputs and 12
outputs is used to discriminate between character classes.
The corresponding problem is not entirely linearly separ-
able. In similar experiments described in (Perantonis &
Lisboa, 1992) it was reported that single layered percep-
trons had difficulties in solving this kind of problem, and
consequently a hidden layer of nodes was employed to
improve classification accuracy. Here we examine the
problem again under the light of our analysis of the
perceptron presented in this paper.

6.2. Learning speed

In order to assess the learning speed of the algorithm
proposed in this paper, we compare it with two other algo-
rithms used to train the single layered perceptron with hard
limiter activation function. These are the BN-method of
following polytope edges for lowering the perceptron cost
function at each epoch and Rosenblatt’s perceptron rule. If
the requirement for a hard limiter activation function is
relaxed, improved methods based on gradient information
can also be used. One of the most successful of these
methods is conjugate gradient (CG) (Johansson, Dowla &
Goodman, 1992). For the sake of completeness, we have
also used the Polak–Ribie´re variant of this method to
solve our benchmarks.

Results regarding speed of convergence are presented in
Tables 1 and 2. In Table 1, the performance of each algo-
rithm is shown in terms of the total CPU time, with the

corresponding number of epochs shown in parentheses.
The percentage of correctly classified patterns achieved
upon termination of the algorithm is shown in Table 2.

All results are averages over ten trials starting from differ-
ent initial weights selected from a random uniform distribu-
tion between20.5 and 0.5. The algorithm proposed in this
paper and the BN-algorithm are executed until normal
termination, whereby no further weight update is possible.
The termination criterion for the perceptron rule and the CG
method is one hour of execution. All simulations were
performed using a locally developed neural network simu-
lator (billnet) on a Pentium computer at 133 MHz.

Compared to the perceptron rule, our method exhibits a
definitive advantage in terms of learning speed (see Table
1). The advantage is already apparent in the small-scale
benchmarks, but becomes more pronounced in medium
and large-scale problems. Fig. 4 shows a typical learning
session for our algorithm for the sonar data problem. In Fig.
4a, the number of wrong bits is plotted against the number of
epochs. The corresponding curve for the perceptron rule is
also plotted for comparison. In Fig. 4b, the number of active
patternsK is plotted against the number of epochs for our
algorithm. Note that at the beginning of learning the number
of wrong bits drop at a relatively slow rate (in comparison
with the perceptron rule). As learning progresses, building
up of the active patterns list helps locate more efficient
search directions, and convergence is achieved in a few
epochs, while the perceptron rule is still far from the solu-
tion and its learning curve is almost flat.

Moreover, note that our algorithm has correctly classified
all patterns in the linearly separable problems, while the
perceptron rule has not been able to separate the patterns
in the larger scale synthetic benchmarks (uniform linearly
separable and elliptically separable problem) in the allo-
cated time. For the sonar data problem, our algorithm has
completely separated the two classes. Thus, the sonar data
problem is linearly separable, a fact that, to the best of our
knowledge, has not been pointed out in the literature.1 Note
that the perceptron rule required more than 100 000 epochs
to separate the patterns for the sonar data problem.

There is also a definitive learning speed advantage over
the BN-algorithm, as is also evident in Table 1. This advan-
tage originates from two sources:

• Firstly, from the ability of our algorithm to find better
search directions, since it is not limited by weight updates
performed along polytope edges, but rather finds the true
feasible steepest descent direction. In most problems, this
allows our algorithm to reach termination in a smaller
number of epochs than the BN-technique, as is evident in
Table 1.

• Secondly, the fact that the BN-method follows only

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364360

Table 2
Average classification performance (percentage of correctly classified bits)
achieved by the proposed algorithm, the BN-method, the perceptron rule
and the CG algorithm for various classification problems

Proposed BN Perceptron CG

Uniform
P� 100; N � 2 100 100 100 100
P� 1000;N � 4 100 100 100 100
P� 20 000; N � 10 100 100 99.91 100

Ellipse
P� 100; N � 4 100 100 100 100
P� 10 000; N � 20 100 100 99.90 100
P� 20 000; N � 40 100 100 99.72 100
Sonar 100 100 100 94.13
OCR1 100 100 100 97.51
Ionosphere 96.35 94.87 92.22 97.07
OCR2 99.72 99.64 97.47 94.36

1 While the manuscript of this paper was under review, it came to the
authors’ attention that Torres Moreno and Gordon (1998) had come to the
same conclusion using a different classification method.

edges after the firstN 1 1 epochs means that the number
of active patterns soon saturates at the valueN 1 1: In
our case, the numberK of active patterns remains lower
thanN 1 1: A related issue is the behaviour, in terms of
complexity, of the double search algorithm employed to
solve the problem of determining the direction of steepest
descent at each epoch. In our benchmarks, we observed
that the average number of internal epochs required by
the double search algorithm was much lower than the
current number of active patternsK. This means that
the average time spent on determining iteratively the
steepest descent direction is less than the time needed
to calculate the basis vectorsvi, which is of the order
NK3. Therefore, the total time spent by the double search
algorithm is less than 2NK3. Thus our method has a
definitive advantage over the BN-technique, which
needs time of orderN4 to determine the edges.

Fig. 5 displays the maximum and average number of
internal epochs, required by the double search algorithm,
plotted against the number of active patterns for the direc-
tion of steepest descent found by the algorithm. Cumulative
data from all benchmarks are shown, so that values ofK up
to 50 dimensions are included. Note the definitely sublinear
trend of the plots. The average number of epochs is always
much smaller thanK (even the maximum number of epochs
is lower in most cases). An interesting conclusion drawn
from Fig. 5 is that the ratio of the average CPU time required

by the quadratic search algorithm to the average time spent
to calculate the basis vectorsvi is generally small (and
decreases with increasingK). Therefore, no significant
improvement to the learning speed would be possible if a
more efficient algorithm were used to solve Eq. (28) instead
of the double search method.

Finally, our method has a learning speed advantage over
the CG method. Lower average training times were
recorded using our method for all problems, with the excep-
tion of theP� 20 000; N � 40 ellipse benchmark whereby
a slightly larger training time was required by our method.
Note, moreover, that the CG algorithm was unable to
separate the patterns corresponding to the two real world
linearly separable datasets (sonar data and OCR1 problem)
in the allocated time limit of one hour of CPU time.

6.3. Detection of linear inseparability

The OCR2 and ionospheric data classification problems
are not linearly separable, as confirmed by the fact that our
algorithm reaches termination with a non-zero number of
wrong bits. Of course, our method and the BN-method exit
upon termination having detected inseparability, while for
the perceptron rule and the CG algorithm there is no natural
termination criterion. In both linearly inseparable problems,
a better solution than that obtained using the perceptron rule
is reached in much less CPU time. Indeed, upon termination,
our algorithm has correctly classified 99.72% of the patterns

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364 361

Fig. 4. (a) Number of wrong bits versus number of epochs for our method (solid curve) and the perceptron rule (dotted curve) in the sonar data classification
problem. (b) Number of active patterns versus number of epochs for our algorithm.

in the OCR2 problem, which compares favorably with
97.47% obtained by the perceptron rule. We note that this
level of performance is the same as that obtained by a
network with one hidden layer and 20 hidden nodes using
the back-propagation rule. Similarly, in the ionospheric data
problem our algorithm has correctly classified 96.35% of
the data, which is to be compared with 92.22% obtained
by the perceptron rule. From Table 2 it is also evident that
the performance of our algorithm upon termination is also
better than the performance of the BN-algorithm, possibly
as a result of the better search directions followed by our
algorithm during learning. The solution found by the CG-
algorithm is considerably worse than the solution found by

our method in the ionospheric data problem, and slightly
better in the OCR2-problem. In short, in linearly inseparable
problems our method has the combined advantages of a
natural termination criterion for promptly detecting insepar-
ability having at the same time reached good solutions (in
terms of wrong bits) upon termination.

6.4. Generalization ability

We have also conducted experiments concerning the
generalization ability of our method and the other two learn-
ing algorithms (perceptron rule and BN-method) that utilize
the same perceptron architecture (step activation function).
To assess generalization ability, each dataset was par-
titioned into a training set consisting of 80% of the
available input vectors and a test set consisting of the
remaining 20% of the data. Ten different partitions were
chosen at random and for each partition 10 different
restarts of the algorithms were performed with different
initial weights selected from a random uniform distribution
between20.5 and 0.5. The same termination criteria as
before were used. Generalization ability results are given
in Table 3 as average percentages of correctly classified
bits in the test sets of the resulting 100 training sessions
per benchmark and algorithm. In four of the benchmarks
our method exhibits better generalization ability than the
other methods, while in the remaining six its generalization
ability is second best. Hence, we observe that generalization
ability is not compromised by the improved speed offered
by our method.

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364362

Table 3
Average generalization ability (percentage of correctly classified bits in the
test set) achieved by the proposed algorithm, the BN-method and the
perceptron rule

Proposed BN Perceptron

Uniform
P� 100; N � 2 97.13 96.93 96.27
P� 1000; N � 4 99.90 99.94 99.89
P� 20 000; N � 10 99.96 99.95 99.85

Ellipse
P� 100; N � 4 96.93 96.53 97.60
P� 10 000; N � 20 99.82 99.85 99.80
P� 20 000; N � 40 99.77 87.47 99.57
Sonar 75.00 74.03 76.61
OCR1 98.40 97.99 99.44
Ionosphere 86.77 86.87 85.75
OCR2 99.20 99.11 98.94

Fig. 5. Plot of the number of internal epochs required for convergence of the double search algorithm as a function of the number of active patterns. Both the
maximum (dotted curve) and average number of epochs (solid curve) are shown.

7. Conclusions

In this paper, we have introduced an efficient learning
algorithm for the single layered perceptron. The algo-
rithm proceeds by lowering the perceptron cost function
following the direction of steepest descent, taking at the
same time care not to increase the number of wrongly
classified patterns. In this way the perceptron training
task is decomposed in a succession of small scale quad-
ratic programming problems whose solution determines
the appropriately constrained direction of steepest
descent.

The main contributions of the paper are:

• The proof that this strategy terminates in a finite number
of epochs, regardless of the nature of the problem (line-
arly separable or not) and thus provides a natural criterion
for linear separability.

• The proof that our algorithm always leads to the desired
solution in linearly separable classification problems.

• The experimental demonstration (in linearly and non-
linearly separable classification problems) that by using
an efficient quadratic programming algorithm (double
search method) for finding the steepest descent directions
it is possible to train the single layered perceptron much
faster than other perceptron training schemes.

Related issues currently under investigation include:

• A more detailed study of the complexity of our
method. Our simulation results are compatible with
the hypothesis that the algorithm converges to the
solution of linearly separable problems in polynomial
time, and it would be very important if this could be
proved. Techniques for further lowering the complexity
of the double search technique are currently under inves-
tigation, as is a comparison with other quadratic
programming methods.

• The extension of our method to multilayered percep-
trons with hard limiter formal neuron activations. In
this type of networks it is difficult to implement
gradient descent based techniques, because of the
non-differentiability of the activation functions.
However, our method provides a natural way to
perform gradient descent in single layered networks,
and the scheme can be extended to two-layered
networks using a layer-by-layer optimization metho-
dology. In particular, it is possible to break down the
problem of training a multilayered perceptron to
perform classification tasks by introducing suitable single
layered perceptron cost functions for the output and
hidden layers and applying the methodology of this
paper to each of these cost functions. In this way, a family
of algorithms for training the multilayered perceptron can
be developed, which ensure that the number of wrong bits
never increases during learning and do not suffer from the
slow training speed of the back propagation algorithm.

Results from this line of research will be presented in a
forthcoming paper.

References

Barnard, E. (1991). Performance and generalization of the classification
figure of merit criterion function.IEEE Transactions on Neural
Networks, 2, 322–325.

Barnard, E., & Casasent, D. (1989). A comparison between criterion func-
tions for linear classifiers, with an application to neural nets.IEEE
Transactions on Systems, Man, and Cybernetics, 19, 1030–1041.

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993).Nonlinear program-
ming theory and algorithms. New York: Wiley.

Block, H. D. (1988). The perceptron: a model for brain functioning.
Reviews of Modern Physics, 34, 123–135 (reprinted in: J.A. Anderson
& E. Rosenfeld (Eds.) (1988)Neurocomputing: foundations of
research. Cambridge, MA: MIT Press).

Bobrowski, L. (1991). Design of piecewise linear classifiers from formal
neurons by a basis exchange technique.Pattern Recognition, 24, 863–
870.

Bobrowski, L., & Niemiro, W. (1984). A method of synthesis of linear
discriminant function in the case of nonseparability.Pattern Recogni-
tion, 17, 205–210.

Ergenziger, S., & Thompsen, E. (1995). An accelerated learning algorithm
for multilayer perceptrons: optimization layer by layer.IEEE Transac-
tions on Neural Networks, 6 (1), 31–42.

Gorman, R. P., & Sejnowski, T. J. (1988). Analysis of hidden units in a
layered network trained to classify sonar targets.Neural Networks, 1,
75–89.

Gorman, R. P., & Sejnowski, T. J. (1988). Learned classification of sonar
targets using a massively parallel network.IEEE Transactions on
Acoustics, Speech and Signal Processing, 36, 1135–1140.

Grossman, T., Meir, R., & Domany, E. (1989). Learning by choice of
internal representations.Advances in Neural Information Processing
Systems, 1, 73–80.

Hunt, S. D., & Deller, J. R. (1995). Selective training of feedforward arti-
ficial neural networks using matrix perturbation theory.Neural
Networks, 8, 931–944.

Johansson, E. M., Dowla, F. U., & Goodman, D. M. (1992). Backpropaga-
tion learning for multilayer feedforward networks using the conjugate
gradient method.International Journal of Neural Systems, 2 (4), 291–
301.

Pang, J. -S. (1983). Methods for quadratic programming: a survey.Compu-
ters and Chemical Engineering, 7, 583–594.

Perantonis, S. J., & Lisboa, P. J. G. (1992). Invariant pattern recognition
using higher-order networks and moment classifiers.IEEE Transactions
on Neural Networks, 3 (2), 241–251.

Rao, S. S. (1984).Optimization theory and applications. New Delhi: Wiley
Eastern.

Rosenblatt, F. (1962).Principles of neurodynamics. New York: Spartan.
Rumelhart, D. E., Hinton, J. E., & Williams, R. J. (1986). Learning internal

representations by error propagation. In D. E. Rumelhart & J. L. McLel-
land, Foundations: Parallel Distributed Processing: Explorations in
the Microstructures of Cognition(pp. 318–362). 1. Cambridge, MA:
MIT Press.

Sigillito, V. G., Wing, S. P., Hutton, L. V., & Baker, K. B. (1989). Classi-
fication of radar returns from the ionosphere using neural networks.
Johns Hopkins APL Technical Digest, 10, 262–266.

Strang, G. (1988).Linear algebra and its applications. New York:
Harcourt, Brace and Jovanovich.

Takahashi, H., Tomita, E., & Kawabata, T. (1993). Separability of internal
representations in multilayer perceptrons with application to learning.
Neural Networks, 6, 689–703.

Telfer, B. A., & Casasent, D. P. (1993). Minimum-cost associative

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364 363

processor for piecewise-hyperspherical classification.Neural Networks,
6, 1117–1130.

Torres Moreno, J. M., & Gordon, M. B. (1998). Characterization of the
sonar signals benchmark.Neural Processing Letters, 7, 1–4.

Volper, D. J., & Hampson, S. E. (1990). Quadratic function nodes: Use,
structure and training.Neural Networks, 3, 93–107.

Widrow, B., & Hoff, M. E. (1988). Adaptive switching circuits. In

J. A. Anderson & E. Rosenfeld,Neurocomputing: foundations of
research. Cambridge, MA: MIT Press (reprinted version of1960
IRE WESCON convention record, New York, 1960, vol. 4, pp. 96–
104).

Wittner, B.S., & Denker, J.S. (1997). Strategies for teaching layered
networks classification tasks. In:Neural information processing systems
(pp. 850–859), Denver.

S.J. Perantonis, V. Virvilis / Neural Networks 13 (2000) 351–364364

