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Abstract

A dynamical system model is derived for feedforward neural networks with one layer of hidden nodes. The model is valid in the vicinity of
flat minima of the cost function that rise due to the formation of clusters of redundant hidden nodes with nearly identical outputs. The
derivation is carried out for networks with an arbitrary number of hidden and output nodes and is, therefore, a generalization of previous work
valid for networks with only two hidden nodes and one output node. The Jacobian matrix of the system is obtained, whose eigenvalues
characterize the evolution of learning. Flat minima correspond to critical points of the phase plane trajectories and the bifurcation of the
eigenvalues signifies their abandonment. Following the derivation of the dynamical model, we show that identification of the hidden nodes
clusters using unsupervised learning techniques enables the application of a constrained application (Dynamically Constrained Back
Propagation—DCBP) whose purpose is to facilitate prompt bifurcation of the eigenvalues of the Jacobian matrix and, thus, accelerate
learning. DCBP is applied to standard benchmark tasks either autonomously or as an aid to other standard learning algorithms in the vicinity
of flat minima. Its application leads to significant reduction in the number of required epochs for convergence. © 2001 Published by Elsevier
Science Ltd.
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1. Introduction

Multilayer feedforward neural networks have been the
preferred neural network architectures for the solution of
classification and function approximation problems due to
their interesting learning and generalization abilities. From
the numerous methods that have been proposed for training
multilayered feedforward networks, some, including classic
back-propagation, have relatively low complexity per
epoch, but are rather inefficient in dealing with extended
plateaus (or flat minima) of the cost functions. Other
methods are more efficient in dealing with complex topo-
logical features of the cost function landscape at the expense
of added computational complexity. Notable examples
include both off-line and on-line learning paradigms. For
example, second order methods related to efficient off-line
learning require the evaluation and inversion of the Hessian
matrix, which is clearly a computationally very demanding
task when the number of parameters is large. The same
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problem is also eminent in efficient on-line techniques
such as the natural gradient descent method (Amari, 1998)
which requires the inversion of the Fisher information
matrix, for which the computational cost is very large for
large-scale problems.

In earlier work (Ampazis, Perantonis & Taylor, 1999a),
we have approached the problem of flat minima using a
method that originates from the theory of dynamical
systems. Motivated by the connection between flat minima
and the build up of redundancy, we introduced suitable state
variables formed by appropriate linear combinations of the
synaptic weights, and we derived a linear dynamical system
model for a network with two hidden nodes and a single
output. Using that model, we were able to describe the
dynamics of such a network in the vicinity of flat plateaus,
and we showed that the learning behavior can be character-
ized by the largest eigenvalue of the Jacobian matrix corre-
sponding to the linearized system. It was shown that in the
vicinity of flat minima, learning evolves slowly because this
eigenvalue is very small and that the network is able to
abandon the minimum only when the eigenvalues of its
Jacobian matrix bifurcate.

The study of the nature of flat minima apart from its
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intrinsic value in advancing research into the dynamics of
learning, can have significant impact in the development
of new learning methods inspired by deeper understanding
of the fundamental mechanisms involved in the dynamical
behavior of layered networks. We envisage two types of
benefits coming from this approach.

1. Having identified a flat minimum, one can apply a
computationally intensive algorithm just for a few epochs
until the flat minimum is abandoned, thus reducing the
overall computational complexity of the learning
process.

2. The insight gained by the analysis of the nature of the flat
minima is valuable for proposing tailor-made efficient
algorithms for promptly abandoning temporary minima,
whose complexity is much lower than related general
purpose algorithms. Thus, even for the few epochs that
will be needed to abandon the flat minimum there will be
a gain in computational cost.

It is our belief that the last statement is true for both on-line
and off-line learning. In our earlier work, we concentrated
on the off-line mode of learning in order to propose one such
tailor-made algorithm. We derived an analytical expression
representing an approximation to the largest eigenvalue and
introducing an efficient constrained optimizational algo-
rithm that achieves simultaneous minimization of the cost
function and maximization of the largest eigenvalue of the
Jacobian matrix of the dynamical system model so that the
network avoids getting trapped at a flat minimum. As a
result, significant acceleration of learning in the vicinity
of flat minima was achieved, reducing the total training
time. The algorithm was also benchmarked against back-
propagation and other well-known variants thereof in clas-
sification problems, exhibiting a very good overall behavior.

The purpose of this paper is to extend the dynamical
analysis in order to account for a more general type of
feedforward networks. We still consider networks with
one hidden layer, but place no restriction whatsoever on
the number of input, hidden and output nodes. Our study
shows that the introduction of suitable state variables results
in significant decouplings in the essential quantities related
to learning, and, for off-line learning, leads to the formula-
tion of a linear dynamical system model for this more
general type of network. In particular, for each cluster of
redundant hidden nodes, a linearized system in the corre-
sponding dynamical variables is introduced, which is
described by a corresponding symmetric Jacobian matrix
with lower dimension than the total number of the weights
and thresholds of the network. Abandonment of flat minima
arising from the build up of redundancy is signified by the
bifurcation of the eigenvalues of the Jacobian matrix of each
cluster of redundant hidden units.

Moreover, we extend our effort to incorporate the dyna-
mical system formalism into a learning algorithm that
allows successful negotiation of the flat minima and,

therefore, accelerates learning. It turns out that such a task
requires the ability to identify clusters of redundant hidden
nodes, which can be achieved using unsupervised clustering
techniques. The identification of individual clusters allows
the calculation of the Jacobian eigenvalues of the dynamical
system model and the application of extended constrained
learning optimization techniques that enable prompt bifur-
cation of the eigenvalues. A training algorithm (Dynami-
cally Constrained Back Propagation—DCBP) ensues,
which can be applied either autonomously or as an aid, in
the vicinity of flat minima, to other well-known supervised
learning algorithms. In the experimental section it is shown
that DCBP exhibits improved learning abilities compared to
standard back-propagation and to other reputedly fast learn-
ing algorithms (resilient propagation, ALECO-2 and vari-
ations of the conjugate gradient methods) in standard
benchmark tasks.

The paper is organized as follows: in Section 2 we intro-
duce the dynamical variables for arbitrary networks with a
single hidden layer and we discuss the relation of the corre-
sponding dynamical system model arising in the off-line
learning mode to other on-line techniques dealing with the
flat minima problem. In Section 3 we introduce the
constrained optimization method designed to facilitate
learning using constraints imposed on the eigenvalues of
the Jacobian matrix. In Section 4 we present an outline of
the steps required by the proposed DCBP algorithm. Section
5 contains our simulation results and describes the experi-
ments conducted to test the performance of the algorithm
and compare it with that of other supervised learning algo-
rithms, Finally, in Section 6 conclusions are drawn and
future work is outlined.

2. The dynamical analysis
2.1. Motivation

Consider a neural network with a single hidden layer
which has N external input signals with the addition of a
bias input. The bias signal is identical for all neurons in the
network. The hidden layer consists of M neurons and the
output layer contains K neurons with sigmoid activation
functions f{s = 1/(1 + exp(—s)). For a given training pattern
p, the square error cost function is

E, = lf(d-— )’ M
P 2 < i Vi

where y; denote the output activations and d; are the desired
responses of each output node i. The gradient components of
the cost function of Eq. (1) corresponding to the hidden-to-
output connections are given by:

JE,
P —(d — vyl — vy, 2
g (di = yyi(l = ¥y, (2)

where w;; are the weight connections between each hidden
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node j and output node i, and y; are the outputs of each
hidden unit (with j = 0 corresponding to the bias signal).

The gradient components corresponding to the input-to-
hidden connections are:

OE, _
M

Z (d; — y)yi(1 — )’i)Wijyj(l - yj)xk (3)

where wj, represents the weight connection between hidden
node j and input node k, and x; is the signal from input
node k.

In order to maintain a consistent terminology, for the rest
of the paper we will always make a reference to output
nodes using the subscript i, to hidden nodes using the
subscript j, and finally to input nodes using the subscript k.

Written in vector notation, for each hidden node j, Eq. (3)
becomes

oE

— = 2 =y = w1 =y @)
J i

where

w; = (wio wiy)" )

For the network described above, consider a number of M,
hidden nodes that form a particular cluster C which contains
hidden units with similar activations. Motivated by our
earlier work (Ampazis et al., 1999a) which indicates that
for any given data set flat minima occur because of the
building of redundancy, we expect that appropriate dynami-
cal variables can be selected using the weights connected to
hidden nodes j belonging to C. In particular, we can consider
the following dynamical variables:

e The differences of each hidden weight vector w; from the
average of all w;(j € C).

e The differences of each weight component w;; of a single
output unit from the average of all weights w;(j € C).

Hence, we define

2w
c__ JEC
= 6
® M, (6)

and

€ =W — o, jeEC @)

Similarly for each output node i, we define

2.1
V=" ®)

c

and
Kij = Wi = Vi, JEC )

Taking into account Egs. (2) and (7), the above equation

implies that

JE,
=(d; —y)yi(1 = y)

1
TG e,)~x]} (10)

¢ Jec

X { Fl(e + €)x] —

Similarly, taking into account Egs. (4) and (9), Eq. (7)
implies that

oE X .
&—: = Z (d; = yyi(l — )’i)X{f/[(wc + €)x](w; + vy)
j i

1
— o 21"+ €)Xy + vf)} an

¢ JecC

2.2. The dynamical system model

The introduction of the quantities €; and w ; allows for the
description of the network by a set of reduced variables
which takes into account the underlying redundancy exhib-
ited by the original variables, namely all the weights and
thresholds of the multilayer network. There are multiple
benefits arising from such a description. These benefits are
closely related to the way by which we wish to proceed with
our analysis of the learning process. The first line of
approach is to consider the batch mode of training which
is evidently more suitable than on-line learning for the deri-
vation of a deterministic dynamical system model. Given a
small learning rate 7, the difference update equations of the
variables €; and w; of the batch gradient descent algorithm
can be approximated by differential equations in time.
Therefore, for batch learning, Egs. (10) and (11) yield

g =D @ =y =y
p

. 1 X

¢ Jec
(12)

and

&=> @ =y -y x? [f/[(«»f +€)

pi

iy 1 ! C C
‘X(p)](,U«zj +i) — A Zf (0 + €)x?|(p;y + Vi)]
¢ jec

13)

respectively.

In the above equations, the summation is carried out over
all input patterns, d;p ) represents the desired response for
output node i at the presentation of pattern p, yf”) is the
activation of output node i at the presentation of that pattern,
and xgp) represents the p-th input pattern vector.
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We can immediately observe that the above equations
represent a set of dynamical system equations of the form

€ = F(e;, wy), tyj = G(€;, piy) (14

It is clear that if we set all €,=0 and w;; =0, then F(e,,
mi) =0 and G(e€j, w;;) = 0. Therefore, the judicious choice
of state variables has resulted in the mapping of the flat
minimum to this origin, which is a critical point of the
system. Moreover, F(e;, w;;) and G(e;, w;;) are twice-
differentiable and we can, therefore, proceed with the
linearization of the system.

Using Taylor’s theorem for the approximation of f near
the point w’-x”, and keeping only first order terms, the
linear system of differential equations that describes the
dynamics of the network in terms of the state variables €;
and w; can be obtained as follows:

First, consider the factors in brackets appearing on the
right-hand-side of Eqgs. (12) and (13):

1
B = fl(w + €)x”] = —= > fl(@" +e)x"] (15
¢ Jec

and

CP = f'l(w° + €)xP1(u; +v)

1 / C C
—ap 2L+ €)Xy + ) (16)

¢ Jec

EV1dently, if we setall €; and u;; equal to zero, we get B({,’) =
0 and C = 0, so that B P and C contain no zero-th order
(constant) term. It follows that to expand the right-hand-
sides of Eqgs. (12) and (13) up to first order, we need only
consider the expansion of y;”) and its derivative up to first
order, as well as the zero-th order of ygp). Therefore, we can
set:

3 f (00 x”) + [0 x7)(ex") (17)

and

Fl@x®) = flexM)1 - 2f (o x”)i;x”)
+f'(@x") (18)

Moreover, since

=] 30t mariet +epx?1+ Y wd | a9)

JecC JEC

the zero-th order term of yl(-p) will be given by:

= Moripot )+ 3w | (20)
JEC
It follows from Egs. (6) and (7) that
de=0 1)
jEC

Similarly, it follows from Eqs. (8) and (9) that
D =0 (22)

jEC

We are now ready to proceed with the evaluation of .
Evidently, to first order, we have:

B = f(x?) + f'(0x?)e,x") = o Zf (" x")
‘ Jec
- — 8 o x?) (23)
M 2

The first and third terms on the right-hand-side of Eq. (23)
cancel each other and the fourth term is equal to zero on
account of Eq. (21). It follows that, up to first order:

BY = f(0"x")(e;x") (24)

from which we can readily obtain the following equation for
M
= > @ =y =y 7) (@ xP)(exP) (25)

Similarly, in order to evaluate €;, we get, up to first order:

CP = (o xPWe + £ x?)u;

ijc

+1 = 2f (@ xP)]f (@ xP)vi(e;x?)

YA Zf/(wc'x(p))vf YA Zfl(wc‘X)MiJ

¢ Jec ¢ Jec

- S 1= 2fe X e X e )

¢ Jec

(26)

On the right-hand-side of Eq. (26), the first and fourth terms
cancel each other, while the fifth and sixth terms vanish on
account of Egs. (22) and (21). It follows that:

CL) = f(@ XYy + Vi[1 = 2 (0 x"))(ex”)]  (27)

ijc

from which the following equation for €; is readily obtained:

¢ = Z(dfp) _y?o))) ocm( _ 0@))f( c (m)
i

X + vill = 2f (0 x?)]1(e;x?)} (28)

Egs. (28) and (25) are the fundamental differential equations
describing the dynamics of the back-propagation system in
terms of the state variables €; and w ;. From these equations
we observe that time derivatives of state variables corre-
sponding to a certain hidden node j depend only state vari-
ables corresponding to the same hidden node. Therefore,
introducing the vector u; = (€, /u,,»j)T, i=1, ..., Kwe obtain
M, equations of the form:

= Ju, 29)
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where the Jacobian matrix J. is given by

Jo =D e x?)
p

ZASP)U _ 2f(wC-X(p))]X(p)X(p)TVC A(P)X(P)
X i
(A(I’)X(P))T 0
(30)
with

AP = (@? = y)PRMPA =), i=1,..,K) (1)

Eq. (30) constitutes a generalization of the expression that
we had obtained in our earlier work (Ampazis et al., 1999a)
for the Jacobian matrix of a network with two hidden nodes
and a single output unit. Note that the dimension of all
vectors w; is Q=N + K + 1 and, therefore, all Jacobian
matrices are of dimension QX Q (independently of the
cluster or specific hidden node to which the corresponding
dynamical variables are associated). Moreover, all Jacobian
matrices associated with a certain cluster are equal, so that
in effect we have one representative Jacobian matrix for
each cluster. All Jacobian matrices are real and symmetric
and, therefore, all their eigenvalues are real. In addition, all
the corresponding eigenvectors are linearly independent and
if there are no eigenvalue multiplicities they will form an
orthogonal set. Since the eigenvalues are real, this means
that flat minima correspond to stationary points and not to
spiral or center points of the phase plane. As a consequence,
small perturbations in the eigenvalues will not affect the
stability or instability of the system.

Due to the exponential nature of the solutions, the
followed trajectory will depend on the magnitude of the
largest eigenvalue for each Jacobian matrix. Initially, all
eigenvalues are small in magnitude and the network spends
arelatively long time in the vicinity of the critical point. As
time passes, since all the eigenvalues do not differ too much,
small perturbations due to the continuous update of the
weights at each epoch cause them eventually to bifurcate,
so that the system is able to follow a trajectory which allows
it to move far away from the critical point. Asymptotically,
the trajectories followed by the dynamical systems
described by Eq. (29) are parallel to the eigenvectors corre-
sponding to the maximum Jacobian eigenvalues. Thus, after
the bifurcation of the eigenvalues has occurred, weight
updates approximately follow the rule:

du; = sign(u] £ )€ (32)
where & is the eigenvector of J, corresponding to the maxi-
mum eigenvalue A..

2.3. Relation to other methods

A second line of approach that can take into account the
benefits arising from the description of the network by the
set of reduced variables is to consider the on-line mode of

training. With such an approach it is possible to describe the
learning task using concepts from the field of information
geometry (Amari, 1985; Amari & Nagaoka, 2000). Accord-
ing to such a description the parameter space of network
variables has a Riemannian structure (Amari, 1998; Yang &
Amari, 1998) which can be applied for the definition of the
direction of steepest decrease of the cost function given by
Eq. (1). For stochastic multilayer perceptrons, the Rieman-
nian metric tensor G(W) is given by the Fisher information
matrix (Amari, 1998) with elements

W)= E oE, JE, 33)
ST aw; aw,

In the above expression, W is the column vector containing
all the weights and thresholds of the network, E[.] denotes
the expectation with respect to the input—output mapping
for the entire training set and Ep is the log likelihood given
by

E,=3 {— 2—10 =<y >)' - log(v%fr)} (34

which is the logarithm of the set of all conditional probabil-
ity distributions (with variance o) of desired outputs d;
conditioned on input Xx.

The steepest descent direction in the Riemannian para-
meter space is the direction of the natural gradient of the
cost function given by

Vi _ 1
VE, =G 'VE, (35)

This suggests the natural gradient descent algorithm of the
form

W1 =W, = nVE, (36)

where 1), represents the learning rate which may depend on
t. It has been proved (Amari, 1998) that the on-line learning
method based on the natural gradient is asymptotically as
efficient as the optimal batch algorithm, while it has been
suggested (Yang & Amari, 1998) that the natural gradient
algorithm may avoid or alleviate the flat plateau phenomena
corresponding to temporary minima. Similar ideas are also
explored in a recently published paper (Fukumizu & Amari,
2000) which examines the behavior of hierarchical struc-
tures of multilayer perceptrons. However, there are some
important problems related to the implementation of the
natural gradient descent algorithm. Firstly, the explicit
form of the Fisher information matrix requires knowledge
of the input distribution which is usually unknown.
Secondly, even if that distribution is known the algorithm
faces the problem of evaluating and inverting the Fisher
information matrix, both of which are computationally
expensive operations. In order to overcome these problems,
an adaptive method for obtaining an estimate of the natural
gradient has recently been proposed (Amari, Park &
Fukumizu, 1999) that does not require any information on
the input distribution and inversion of the explicit form of
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the Fisher information matrix. However, a potential
problem of the method is that the updates of the estimates
of the matrix might not converge to the true Fisher informa-
tion matrix because the algorithm is extremely sensitive to
the proper selection of two learning rate parameters which
are currently selected heuristically (Amari et al., 1999).

Based on the information geometry approach for the
stochastic multilayer perceptron, it is possible to take into
account the description of the network by the set of reduced
variables derived earlier in order to deal with the implemen-
tation problems of the natural gradient algorithm. Its first
problem can be partially overcome by noting that the cost
function of Eq. (34) can be regarded as the negative of the
square of an error when d; is a desired target value given X,
except for a scale and a constant term (Amari et al., 1999).
Hence, the maximization of the likelihood can be regarded
as equivalent to the minimization of the cost function of Eq.
(1). Taking this fact into account, its second problem can be
substantially reduced if we consider the stochastic multi-
layer perceptron consisting of M, redundant hidden nodes.
This multilayer perceptron can be described with the
reduced set of variables and therefore the elements of its
Fisher information matrix are given by

C2) E[§E’&E’] (37)
8i(0) = E[ —% —F
' o8] 98,

where 0/ = (ejT, MU)T. The above expression represents a
significant reduction in the total number of variables
involved in the explicit calculation of the Fisher information
matrix which is independent (to first order) from the set of
variables themselves (all its elements can be evaluated by
Egs. (25) and (28), dropping, of course, the pattern summa-
tion). Hence, as regards these parameters, the space is flat
(although not necessarily Cartesian). It would be interesting
to investigate the implications of this fact on a suitably
modified cost-effective implementation of a natural gradient
descent algorithm in the vicinity of flat minima in order to
accelerate learning. To this end, preliminary studies have
already been made by the authors and their results will be
presented elsewhere.

3. Constrained optimization method

In this section, we concentrate on the utilization of the
information provided by the dynamical system model for
off-line learning in order to explore potential ways of help-
ing the network to escape from flat minima. Following the
analysis of the previous section, it is evident that if the
maximum eigenvalues A.,c=1,...,§ of the Jacobian
matrices J, of Eq. (30) corresponding to each of the S
clusters of hidden nodes are relatively large, then the
network is able to escape from the flat minimum. Hence,
instead of waiting for the growth of the eigenvalues, the
objective of our new approach is to raise these eigenvalues
more rapidly using an appropriate constrained optimization

method. Since it is difficult in the general case to express the
maximum eigenvalues in closed form in terms of the
weights, we choose to raise the values of appropriate
lower bounds ®, = A, for these eigenvalues, which are
obtained as follows. It is well known from linear algebra
that since J. is a real and symmetric matrix, then

2').z = \2"zVz € R? (38)

Denoting by 1¢ the vector with Q elements which are all
equal to 1, for the constrained optimization method we use

1
0

which means that the product in the left-hand-side of Eq.
(38) is simply the sum of the elements of the matrix. Thus,
we are able to obtain an analytic expression for a lower
bound of the maximum eigenvalue by directly evaluating
the sum of the elements of J. as given by Eq. (30). Note that
according to Egs. (30) and (39), each ®_. depends on
the corresponding values of the parameters ®°® and
ve=(f,i=1,...,K)" for all identified clusters ¢ = 1, ...,
S. Hence, the optimization should be attempted with respect
to these parameters only, whose total number is
S'(N+ K+ 1). Since S =M, this is always smaller than
the total number of free network parameters (biases and
weights) which is equal to M-(N + K) + M + K, and this
reduces significantly the computational complexity.

For this rest of this section, it is convenient, for reasons of
compactness in terminology to

.= —(15J1q) 39)

e group all weight vectors connected to a certain hidden
node j into a single column vector W; = (ij,w,-j)T,
i=1,.,K

e construct for each cluster ¢ a vector containing all the
appropriate weight averages: Q_ (o7, v‘")"; and

e group all Q. corresponding to all clusters into a vector
Q=@ c=1,..9"

To achieve rapid growing of the maximum eigenvalues, we
propose an iterative algorithm for adapting 2, whose objec-
tives are outlined as follows.

1. At each epoch of the learning process, the vector  will
be incremented by d€2, so that the search for an optimum
new point in the space of €) is restricted to a hypersphere
of known radius 8P centered at the point defined by the
current . If 8P is small enough, the changes to the cost
function E and to ®, induced by changes in the weights
can be approximated by the first differentials dE and d®...

2. At each epoch it is desirable to raise each ®, as much as
possible. Note that this corresponds to a multiobjective
optimization problem, to which various alternative
schemes can be applied. We have chosen to raise each
@, at a constant rate , i.e. d®.= k. In this expression,
the maximum possible value of k should be used. We
mention, in passing, that other schemes were also tried,
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but with limited success. For example, exponential rates
of change of the form d®,. = kP, were found to lead to
premature growth of the weights in their efforts to raise
P,

3. Maximization of k must be attempted subject to the
constraint that the state of the network should remain
in the vicinity of the stationary point, so that our dyna-
mical system analysis remains valid. We can ensure this
by insisting that there is no change in the value of the cost
function E so that the relation dE = 0 should hold at each
epoch of the proposed algorithm.

Based on these considerations, the following optimization
problem can be formulated for each epoch of the algorithm,
whose solution will determine the adaptation rule for €:

Maximize k with respect to d€2, subject to the following
constraints:

d0Td0 = (5P)* (40)
k=dd,, c=1,...,8 (41)
dE=0 (42)

This constrained optimization problem can be solved analy-
tically by introducing two Lagrange multipliers L; and L, to
take account of Egs. (42) and (40), respectively, and a vector
of multipliers A to take account of Eq. (41). We thus intro-
duce the quantity

S
K=k + LidE + L[dQTdQ — (3P)*] + > A (AP, — k) (43)
=1
On evaluating the differentials involved in the right-hand-
side, we readily obtain:

k' =k + L (GTdQ) + L,[dQTdQ — (3P)*] + AT(FdN — «1g)
(44)

where G is a vector and F is a matrix whose elements are
given by

JE 9D,

= F.=
C= 50, T 00,

7

(45)

To maximize k under the required constraints, we demand

that:

di’ = dk(1 — AT1g) + (L,GT + ATF + 2L,d0d*Q =0
(46)

d’k' =20,d*°Q7d’°Q < 0 47

Hence, the factors multiplying d*Q and dk in Eq. (46)
should vanish, and, therefore, we obtain:

L, 1,
i =--1G6- —FA 48
2L, 2L, (48)

Al1g =1 (49)

By left multiplication of both sides of Eq. (48) by G and by
taking into account Eq. (42) we obtain a relation between L;
and A. Solving for L, yields

1

L =——Agp (50)
IGG

where

I = G'G, Iy = FG (51)

Substituting Eq. (50) into Eq. (48) we arrive at the following
equation which constitutes the weight update rule for the
neural network

1 ATIge -
dQ—ZLZ( T G - F'A (52)

provided that L, and A can be evaluated in terms of known
quantities. To carry out these evaluations we proceed as
follows. By left multiplication of both sides of Eq. (52) by
F and taking into account Eq. (41), we obtain

klg = — 12{—22 (53)
where the matrix R is defined by:

R= é (IeTrr — Ik X Igr) (54)
with

Iyp = F'F (55)
Solving Eq. (53) for A yields

A = —2L,kR 1 (56)
Upon substitution of this equation into Eq. (49) we find that
2ok = — ﬁ (57)

where (.), denotes the sum of all elements of a matrix.
Egs. (56) and (57) lead to the evaluation of A as follows:

R
R,

(58)

It remains to calculate L,. To this end, we substitute Eq. (52)
into Eq. (40).
After some algebra, we arrive at the following result:

4L3166(PY = Igo(A TggA) — (AT1gp) (59)

Using the definition of R given by Eq. (54) we can rewrite
the last equation in a more compact form:

413(3P)*= ATRA (60)

To solve for L,, we must make sure that the expression
on the right-hand-side is positive. Fortunately, the matrix
r is positive definite by definition. To see this, let us define
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Q =FTA. Using Egs. (51), (54) and (55) we can write
1
G'G
whereupon the positive definiteness of R follows from

Schwartz’s inequality. Combining Eqs. (58) and (59) we
now readily evaluate L, as follows:

ATRA = [(G"G)Q'Q) - |Q"G] (61)

1 1
Ly=~%5 0 (62)

where the negative square root value has been chosen for L,
in order to satisfy relation (47). Hence, the evaluation of all
Lagrange multipliers in terms of known quantities is now
complete.

Using the update rule as given by Eq. (52), for each
hidden node j € C the corresponding weights are changed
according to

AW, = dQ, (63)

and thus we are able to raise the maximum Jacobian eigen-
values rapidly, so that the system is able to escape from the
stationary point. Since the escape direction for each w; is
asymptotically parallel to the eigenvector §°, we can further
speed up learning by insisting that after A. has been raised
sufficiently, the constrained optimization algorithm is ter-
minated and the weights are updated for just epoch using

AW, = 8Psign(u,~T§")§" (64)

4. DCBP algorithm outline

In order to formulate a training strategy which takes into
account both the dynamical system analysis and the
constrained optimization method, we should ensure that
we are able to identify the clusters that are formed during
the training process. For the cluster identification problem, it
should be clear that normally it is difficult to obtain a clear
sense of how many clusters are formed during training, but
one can only suspect their formation when the error
improvement is very small (e.g. for the last 50 epochs).
Hence, for this task, an unsupervised clustering algorithm
should be employed. Unsupervised clustering algorithms
are generally slow, but, fortunately, the number of data
points to be clustered are few, namely the number of hidden
nodes of the network. In this case, the problem of identify-
ing clusters can be split in two phases. The first phase
involves the estimation of the number of clusters and the
cluster centers, while the second phase concerns the assign-
ment of each hidden node to the cluster to which it is closer.
For the first phase, since we do not have a clear idea of how
many clusters are present, we can employ the method of
subtractive clustering which is an extension of the mountain
clustering method (Chiu, 1994; Yager & Filev, 1994).
Subtractive clustering is a fast, one-pass algorithm for

estimating the number of clusters and the cluster centers
in a set of data. For the second phase, we use the fuzzy c-
means algorithm which is an extension to the classical c-
means algorithm (Bezdek, 1981) in order to handle partial
memberships of the data points to several candidate clusters.
The fuzzy c-means algorithm requires only one input para-
meter, namely the number of identified clusters, and, there-
fore, accepts as input the output of the subtractive clustering
method.

Having identified the number of clusters of redundant
hidden nodes and assigning each hidden unit to the cluster
in which it belongs, we are able to use Eqgs. (52) and (63) at
the flat minimum in order to help the network to escape.
Following the abandonment of the flat minimum signified
by the bifurcation of the eigenvalues of each representative
Jacobian matrix for each cluster, the training process can be
continued using either standard batch back-propagation or a
more effective learning algorithm.

With the above motivations in mind, the proposed
Dynamically Constrained Back Propagation (DCBP) algo-
rithm therefore utilizes:

e an unsupervised clustering algorithm for the identifica-
tion of clusters of redundant hidden nodes;

e a composite weight update rule given by Egs. (52) and
(63) at the points where the network is trapped at a flat
minimum; and

e standard off-line back-propagation when the stationary
point has been abandoned.

In the rest of the section, we utilize the implementation
details of the steps required by the algorithm.

1. Initialization: Initialize all free parameters of the
network (weights and thresholds) to a small range of
values [—q, ¢], (usually g =0.1).

2. Initial constrained weight update: Due to the initializa-
tion with small weights, in the beginning of training all
hidden nodes form a single cluster. Hence, calculate the
Jacobian matrix as given by Eq. (30) as well as its maxi-
mum and minimum eigenvalues using a suitable numer-
ical method. Update all free parameters according to Egs.
(52) and (63).

3. Initial alignment: As soon as the absolute difference
between the maximum and minimum eigenvalues of
the Jacobian matrix becomes 7T, times larger than its
initial value (where T; is an arbitrarily chosen thresh-
old)—signifying the bifurcation of the eigenvalues—
calculate the eigenvector & corresponding to the maxi-
mum eigenvalue. Align all weight updates dW; (j € C),
with £° according to Eq. (64) for just one epoch. Steps
2 and 3 are sufficient for the breaking of the initial
symmetry.

4. Back-propagation: In the epoch immediately succeed-
ing the alignment, continue training using standard back-
propagation (preferably with momentum) while the error
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Table 1

Experimental results for the 3-bit parity problem. Comparison of DCBP with five standard learning algorithms for feedforward networks

Algorithms DCBP BPM ALECO-2 RPROP CG/PR CG/FR
Parameters 3P=02 n=0.7 3P =06 n =12

£=05 a=09 £=0.85 n =05

n=0.7 Anx=1.0

a=09 Apin=107°

T(] =2.0 A() =0.1
# epochs 79 310 69 71 26 49
Successes (%) 95.0 97.0 97.0 60.0 88.0 77.0

reduction for a number of epochs is above a certain
threshold.

5. Cluster identification: Enable the subtractive clustering
procedure to identify the number of clusters, followed by
the fuzzy c-means algorithm to assign each hidden node
to the cluster to which it belongs.

6. Constrained weight update: Calculate the Jacobian
matrices of each cluster as given by Eq. (30) as well as
their maximum and minimum eigenvalues using a suit-
able numerical method. Update all free parameters
according to Egs. (52) and (63).

7. Alignment: As in step 3, calculate the absolute differ-
ences between the maximum and minimum eigenvalues
of the Jacobian matrices. As soon as the minimum of
these differences satisfies the T, threshold condition,
calculate the eigenvectors §° corresponding to the maxi-
mum eigenvalues and align all dW; (j € C), with &°
according to Eq. (64) for one epoch.

8. Termination: Cycle through steps 4—7 until the error
goal has been reached or until no further error reduction
is possible.

5. Simulation results

In our simulations, we studied the dynamics of feed-
forward networks that were trained to solve two different
parity problems and a real world classification problem from
the PROBENI1 database (Prechelt, 1994). In particular we
studied the 3-bit and 4-bit parity problems and the cancer

Table 2
Experimental results as in Table 1 for the 4-bit parity problem

classification problem of the PROBENI set (the standard
PROBENI1 benchmarking rules were applied). We have
also tried to highlight the benefits that can arise either solely
from our method (which is useful in the vicinity of flat
minima) or combined with other well-known and effective
learning algorithms. To this end, we report performance
results for DCBP and the following learning algorithms:
back-propagation with momentum (BPM), resilient propa-
gation (RPROP) (Riedmiller & Braun, 1993), ALECO-2
(Perantonis & Karras, 1995), and conjugate gradient
methods of Fletcher—Reeves (CG/FR), and Polak—Ribiére
(CG/PR) with restarts (Johansson, Dowla & Goodman,
1992).

For each of the 3-bit and 4-bit parity problems we
performed 100 trials with various initializations of the
weights in the range —0.1 to 0.1. The maximum number
of epochs per trial was set to 1000 and learning was con-
sidered successful when Fahlman’s (Fahlman, 1988) ‘40—
20-40’ criterion was met. For the 3-bit parity problem we
used a 3—3—1 network whereas for the 4-bit parity problem
we used a 4—4—1 network. Learning parameters chosen to
ensure the best possible performance of each algorithm and
training results are shown in Table 1 for the 3-bit problem
and in Table 2 for the 4-bit problem. Note that CG/PR and
CG/FR do not have any adjustable parameters since an exact
line minimization is performed along the direction found at
each iteration. From these tables, it is evident that DCBP is
able to solve the problems with a high success rate in a
relatively small number of epochs, due to its ability to
avoid getting trapped in flat minima which are very promin-
ent in parity problems.

Algorithms DCBP BPM ALECO-2 RPROP CG/PR CG/FR
Parameters 3P=02 n=0.7 3P=023 n =12

£=05 a=05 £=0.85 n =05

n=0.7 Apx=1.0

a=09 Apin=107°

Ty=3.0 Ay=0.1
# epochs 236 660 329 462 150 327
Successes (%) 90.0 7.0 94.0 20.0 30.0 30.0
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Fig. 1. Plots of mean square error, maximum and minimum Jacobian eigen-
value versus number of epochs for the 3-bit parity problem solved using
backpropagation.

In addition, we show the dynamical behavior of each
network used when trained both with standard back-
propagation (including momentum) and with DCBP. Fig.
1 shows a representative behavior of the dynamics of a 3—
3—1 network trained with back-propagation for the 3-bit
parity problem. Fig. 1(a) shows the plot of the mean square
error (MSE) versus epoch, while Fig. 1(b) and (c) show the
plot of the maximum and minimum eigenvalues of the
Jacobian matrix, respectively, versus epoch. From Fig.
1(a), the flat minimum corresponding to the initial
symmetric state of the network can be characteristically
recognized as the part of the MSE curve that is approxi-
mately flat. In addition, from Fig. 1(b) and (c) it is clear
that as long as the network remains in the vicinity of the flat
minimum the two eigenvalues are very small. In particular,
the small magnitude of the maximum eigenvalue shown in
Fig. 3(b) reveals that the network is unable to move away
rapidly from the critical point. Bifurcation of the eigen-
values is clearly seen in Fig. 1(b) and (c) and corresponds
to the part of Fig. 1(a) where the network abandons the flat
part of the MSE curve.
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Fig. 2. Plots as in Fig. 1 for the 3-bit parity problem solved using the
proposed algorithm.
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Fig. 3. Plots as in Fig. 1 for the 4-bit parity problem solved using back-
propagation.

Fig. 2 shows a representative behavior of the dynamics of
the 3-3-1 network trained with the constrained optimiza-
tion method for the 3-bit parity problem. From the MSE
curve, we can see that the learning behavior of the system
is altered considerably, since the flat part of the curve is
significantly reduced. Fig. 2(b) and (c) clearly show the
bifurcation of the eigenvalues achieved with the proposed
algorithm within the first few epochs, which with the addi-
tion of the alignment with the maximum eigenvector,
achieves the fast evolution of the dynamics of the system
towards a solution of the problem.

Fig. 3 shows a representative behavior of the dynamics of
a 4—4-1 network trained with back-propagation for the 4-
bit parity problem. It is interesting to note the extensive
initial plateau shown in Fig. 3(a). From Fig. 3(b) and (c),
it is evident that the network is able to escape from the
minimum only when the eigenvalues of the Jacobian matrix
bifurcate. In this particular trial luckily the network did not
encounter any further flat minima so that the first redun-
dancy breaking was sufficient for the convergence to the
final solution. This was not the case, however, for a different
trial shown in Fig. 4 (i.e. with different initial weights)
which corresponds to a representative behavior of the
dynamics of the 4-4-1 network trained with the con-
strained optimization method for the 4-bit parity problem.
From this figure, we can see that by employing the
constrained optimization method, within the first few
epochs, we have been able to greatly reduce the number
of epochs spent in the initial flat minimum by causing an
early bifurcation of the eigenvalues. Following this rapid
escape, the network encountered a further flat minimum
corresponding to a situation where two hidden nodes formed
a particular cluster and, hence, became redundant. Again,
the application of the constrained optimization method for a
few epochs helped the network to abandon this further mini-
mum and find its way down towards the final solution.
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Fig. 4. Plots as in Fig. 1 for the 4-bit parity problem solved using the
proposed algorithm.

The cancer problem concerns the diagnosis of breast
cancer. The task is to classify a tumor as benign or malig-
nant based on cell descriptions gathered by a microscope.
The problem has nine real valued inputs, two binary outputs
and consists of 699 examples partitioned in 350 training
examples, 175 validation examples and 174 test examples.
We used the cancer3 problem dataset of the PROBEN1
database which corresponds to a certain assignment of the
samples to each of the three partitions. For this problem, we
trained a 9—5-2 network with the training examples, and we
performed 10 trials with various initializations of the
weights in the range —0.1 to 0.1. The maximum number
of epochs per trial was set to 5000 and learning was again
considered successful when Fahlman’s criterion was met.
Learning parameters chosen to ensure the best possible
performance of each algorithm and training results are
shown in Table 3. From this table, we can make the follow-
ing interesting observations.

Weight

Initialization

Update

Constrained Weight

Yes
Alignment
Yes
) No Found
4 .| Backpropagation Clusters?
c \ Cluster
onvergence: Identification

Yes

Reduction?

ufficient Erro

No

Fig. 4. (continued)
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Table 3
Experimental results as in Table 1 for the cancer problem

Algorithms DCBP BPM ALECO-2 RPROP CG/PR CG/FR
Parameters 3P =02 1 =0.15 3P=023 n =12

£=05 a=0.15 £=0.85 n =05

n=0.15 Apax = 1.0

a=0.15 Apin=1076

T() =2.0 A() =0.1
# epochs 3272 Failed 979 346 Failed Failed
Successes (%) 100.0 0.0 100.0 20.0 0.0 0.0

1. DCBP and ALECO-2 are the only algorithms that exhibit
100% success rate with ALECO-2 requiring a sufficiently
smaller mean number of epochs. This is an expected
result since both DCBP and ALECO-2 have the potential
to escape from flat minima (ALECO-2 achieves this
using an adaptive momentum term), but DCBP is slower
because when there are no clusters of hidden nodes
DCBP switches to BPM which is well known to be
slow in valleys and ridges of the cost-function landscape.

2. BPM, CG/PR and CG/FR failed to solve the problem in
all the trials, and only RPROP exhibited a small mean
number of epochs, but with an unacceptably small
success rate. It was suspected that the poor performance
of the algorithms was due to the fact that the weights
were initialized to small values which is an essential
part of DCBP training. Therefore, in order to be fair to
these algorithm we performed an additional number of 20
trials. In 10 of these trials the weight initialization was set
in the range —0.5 to 0.5, whereas for the other 10 trials
the weights were initialized in the range —1.0 to 1.0. The
training results of the first 10 trials are shown in Table 4
and the training results of the second 10 trials are shown
in Table 5. Learning parameters were the same as those
shown in Table 3. From these tables, it is evident that
even though all the algorithms were able to solve the
problem in some of the trials within a reasonable amount
of epochs, the low success rates reveal the potential
problem exhibited by most of these algorithms, to get
trapped in flat minima.

Regarding computational complexity issues, we have to
note the following: in all benchmarks tried, about 15% of
the total number of epochs was spent in the vicinity of flat
minima with the algorithm operating in the constrained opti-
mization mode, while in the other 85% of the total number
of epochs the BPM update rule was used. Moreover,

Table 4
Experimental results for the cancer problem. Performance of standard
algorithms with initial weights between —0.5 and 0.5

because of the reduction in the number of active variables,
the computational overhead for performing a constrained
optimization update, relative to performing a standard
BPM update, is not particularly heavy. In all benchmarks,
the CPU time needed to perform an update in the
constrained optimization mode was measured in the range
of 2-3 times the CPU time needed to perform an ordinary
BPM update. Finally, the clustering algorithm that is
employed in order to identify redundant hidden nodes is
very fast, with negligible computational cost relative to
the gradient evaluation needed to perform a standard BPM
update. As a result, we can state that in all our benchmarks,
the average computational cost per epoch for our algorithm
is in the range of 1.15-1.3 times the corresponding compu-
tational cost of BPM. This is an acceptable computational
cost compared, for example, to the average cost of the CG
method introduced because of the iterative line minimiza-
tion process (which in the same benchmarks was in the
range of 5-8 times the computational cost of BPM).

It is worth noting that as long as a learning algorithm is
not trapped in a flat minimum due to hidden node redun-
dancy, its rate of convergence is related to its ability to
overcome problems related to the shape of the cost function
landscape. For example, DCBP would be able to provide
better performance results if at the point where no further
clusters of hidden neurons could be detected, one would
continue training with a more robust algorithm than BPM.
Conversely, other algorithms could benefit by first employ-
ing DCBP to eliminate redundancy and then continue
further training using their particular characteristics.

In order to verify these assumptions we performed an
additional 10 trials with the same initial weights and algo-
rithm parameters used to obtain the results of Table 3. For
these trials, we let DCBP run until it reported that it was
unable to find any further clusters of hidden neurons. For the
cancer3 problem, this was usually achieved within the first

Table 5
Experimental results for the cancer problem. Performance of standard
algorithms with initial weights between —1.0 and 1.0

Algorithms BPM ALECO-2 RPROP CG/PR CG/FR Algorithms BPM ALECO-2 RPROP CG/PR CG/FR
# epochs 2598 712 404 317 409 # epochs 2692 487 503 300 1488
Successes (%) 10.0 70.0 10.0 30.0 20.0 Successes (%) 80.0 60.0 30.0 20.0 40.0
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Table 6

Experimental results for the cancer problem. DCBP followed by each of the standard algorithms

Algorithms DCBP + ALECO-2 DCBP + EPROP DCBP + CG/PR DCBP + CG/FR
Parameters 3P =0.3 n =12
=05 n =05
Amax =10
Apin=1076
A() =0.1
# epochs 628 914 452 689
Successes (%) 100.0 10.0 80.0 90.0

300 epochs. From that point on, we continued training using
all the other learning algorithms except BPM (which is the
usual algorithm following DCBP). The results are shown in
Table 6. From this table it is evident that the performance of
most of the algorithms was greatly enhanced, with the
exception of RPROP which had the tendency to end up in
local minima for most of the trials of this particular problem.
DCBP followed by ALECO-2 succeeded in all trials with
the smallest mean number of epochs, whereas CG/PR and
CG/FR exhibited remarkable improvement using this
arrangement while they had failed in all trials when they
were let to run alone from the same initial weights.

6. Conclusions

In this paper, a dynamical system model for feedforward
networks has been introduced. The model is useful for
analyzing the dynamics of learning in feedforward networks
in the vicinity of flat minima arising from redundancy of
nodes in the hidden layer. It was shown that, as a direct
consequence of the build up of redundancy, it is possible
to describe the dynamics of feedforward networks using
appropriate state variables whose total number is reduced
compared to the total number of free network parameters
(weights and biases). For off-line learning, progress in the
objective of abandoning the vicinity of flat minima is related
to the magnitude of the largest eigenvalues of each Jacobian
matrix associated with a cluster of redundant hidden nodes.
Following the onset of bifurcation of the eigenvalues, the
network escapes from the flat minimum with components of
its weight vector approximately aligned to components of
eigenvectors of the Jacobian matrix corresponding to their
maximum eigenvalues. This information has been taken into
account for proposing a learning algorithm (DCBP) which is
able to identify clusters of redundant hidden nodes as they
are formed. The algorithm is based on constrained optimi-
zation methods and its aim is to drive the state of the
network away from the critical points caused by redun-
dancy. This is achieved by maximization of the largest
eigenvalues of the Jacobian matrices so that the bifurcation
is accelerated and the network is able to escape from flat
minima.

There are several research issues pertaining to this novel

approach to the dynamics of back-propagation networks. In
our opinion, the identification of the Jacobian of the dyna-
mical system which has been accomplished in this paper
may provide a useful analytical tool for providing answers,
accompanied by proofs, to important theoretical issues. An
interesting problem which we are working on is to show
analytically that stationary points of the cost function
caused by redundancy in a general feedforward network
are indeed flat minima (saddle points) and not true local
minima. It is possible that this trend of research would
advance knowledge on the nature of stationary points in
feedforward networks beyond the current state-of-the-art,
whereby complete analytical results exist only for specific
small scale networks and tasks such as the XOR problem
(Hamey, 1998; Lisboa & Perantonis, 1991; Sprinkhuizen-
Kuyper & Boers, 1996a,b). From the algorithmic point of
view, there is scope for further improvement. Future plans
of our research involve techniques for the automatic adapta-
tion of the parameters 3P, § and T, at each iteration of the
algorithm which will result in a powerful, fully automated
method requiring minimal input from the end user of the
network. In addition, the quantities ®,. that are maximized in
DCBP constitute only lower bounds to the maximum eigen-
values of the Jacobian matrices, which may be rather loose
bounds in larger scale problems. It may be possible to
further improve learning capabilities by providing more
accurate estimates for the evolution of the eigenvalues.
We have already implemented such a technique in small
networks by employing theoretical tools from matrix pertur-
bation theory (Ampazis, Perantonis & Taylor, 1999b) with
very promising results. Finally, the implications of our
dynamical analysis to on-line learning methods such as
those based on information geometry is currently under
investigation and we hope that we will be able to report
soon on the corresponding results.
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