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Abstract—In this paper, we present two highly efficient second-
order algorithms for the training of multilayer feedforward neural
networks. The algorithms are based on iterations of the form em-
ployed in the Levenberg—Marquardt (LM) method for nonlinear
least squares problems with the inclusion of an additional adap-
tive momentum term arising from the formulation of the training
task as a constrained optimization problem. Their implementa-
tion requires minimal additional computations compared to a stan-
dard LM iteration which are compensated, however, from their
excellent convergence properties. Simulations to large scale clas-
sical neural-network benchmarks are presented which reveal the
power of the two methods to obtain solutions in difficult problems,
whereas other standard second-order techniques (including LM)
fail to converge.

Index Terms—Algorithms, multilayer feedforward neural net-
works, nonlinear least-squares, optimization, supervised learning.

I. INTRODUCTION

ETHODS originating from the field of optimization

theory have played an important role in developing
training algorithms for artificial neural networks. Indeed,
the realization that the training of multilayer feedforward
networks can be considered as an unconstrained optimization
problem has led to the introduction of a plethora of first— and
second-order algorithms in the neural-networks literature [1],
[2]. However, even to date, there is still a great number of
problems that cannot be solved efficiently by the majority of
the training algorithms that have been proposed over the years,
using standard simple feedforward network architectures. In
this paper, we concentrate on the development of optimization
methods that can lead to powerful algorithms for the training
of such networks. The existence of efficient learning methods
is very important, since it is well known that the represen-
tational ability of these networks is a function of their size
and architecture [3] and, therefore, limitations of the learning
algorithms may prevent that potential from being fully explored
[4]. Besides such an obvious disadvantage, limitations of the
training algorithms can also influence additional desired net-
work properties as, for example, the network’s generalization
ability, since for a given network and a set of data there may
be an optimal solution which gives the best generalization, but
cannot be reached by the learning algorithm. Hence the devel-
opment of training algorithms that are powerful enough to find
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such solutions may prove to be beneficial for these additional
desired properties as well, even though the original focus of
the development may be on the consideration of convergence
issues and not on the improvement of these properties per se.

One of the most powerful algorithms that have been proposed
for the training of feedforward networks is undoubtedly the
Levenberg-Marquardt (LM) method [5]-[8] which combines
the excellent local convergence properties of Gauss—Newton
method near a minimum with the consistent error decrease
provided by (a suitably scaled) gradient descent far away
from a solution. The LM algorithm has been compared with
backpropagation (BP) and conjugate gradient (CG) in [8]. A
variation of the algorithm is described in [9] where it is com-
bined with adaptive stepsize which is heuristicaly determined.
From these studies it becomes evident that the LM algorithm
can be extremely effective in medium to large scale problems
(up to several hundred weights) since it can train the same
network from 10 to 100 times faster than BP.

A disadvantage of the LM method, however, is its increased
memory requirements arising from the demand to calculate the
Jacobian matrix of the error function and the need to invert ma-
trices with dimensions equal to the number of the weights of the
neural network. However this disadvantage is usually compen-
sated for by the increased rate of convergence of the algorithm
which becomes quadratic as the iterations converge toward a
solution. Another disadvantage originates from the fact that,
since LM is a local optimization method, it is not guaranteed
to converge to the global minimum of the cost function, but is
globally convergent in the sense that it is guaranteed to con-
verge to a minimizer (local or global) of the cost function where
the necessary and sufficient conditions for optimality hold [10].
Therefore, in the case that the algorithm’s iterations converge
toward a local minimum, there is no way of escaping and a
suboptimal solution will be obtained. If such a solution is un-
acceptable the whole training process should be restarted with
the hope that in the next trial the trajectory of the iterations will
not approach a local minimizer. The increased memory require-
ments of the LM algorithm, however, render such a practice
clearly unacceptable. Therefore, it would be extremely benefi-
cial if the algorithm was able to handle local minimizers with
increased robustness, but nevertheless maintain its fast conver-
gence rate in the vicinity of the global miminum. In first-order
methods (such as gradient descent) this problem has been dealt
with the inclusion of a momentum term which in some cases
might help to overshoot a local minimizer. The momentum
term actually inserts second-order information in the training
process and provides iterations whose form is similar to the
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i method. The major difference with the CG method; how-
T, is that the coefficients regulating the weighting between
: gradient and the momentum term are heuristically selected,
ereas in the CG algorithm these coefficients are adaptively
‘ermined.

From the above discussion, it should be obvious that an
alogous methodology for including a momentum term in
ond-order methods would be highly beneficial for dealing
th the inability of second-order methods (and consequently
M) to escape from local minima. Our aim, of course, is
t to incorporate such a term in the weight update rule by
nply adding the momentum term multiplied with a coeffi-
:nt whose value is heuristicaly determined. On the contrary,

¢ purpose of this paper is to illustrate that this methodology

n be achieved by formulating the training task as a con-
-ained optimization problem whose solution effectively of-
rs the necessary framework for successfuly incorporating the
omentum term into the learning rule. We propose two very
ywerful training algorithms, for training multilayer feedfor-
ard neural networks, called Levenberg-Marquardt with adap-
ve momentum (LMAM) and optimized Levenberg-Marquardt
ith adaptive momentum (OLMAM) that satisfy the desired
rgets by simultaneously combining the merits of the LM and
G techniques in order to enhance the very good properties
FLM. ‘

In the experimental section, the proposed algorithms are
>mpared with other well-known second-order algorithms for
aining multilayer feedforward networks on training tasks
1at are well known for their difficulty. Conventional training
lgorithms fail in solving these tasks in the majority of cases,
ihereas the proposed algorithms are shown to solve these tasks
rith exceptionally high success rates.

This paper is organized as follows: In Section II, a descrip-
on of the LM algorithm is presented. In Sections III and IV,
ur proposed algorithms LMAM and OLMAM are introduced
zspectively. In Section V, convergence issues concerning the
roposed algorithms are discussed. Section VI presents an eval-
ation of the performance of our algorithms in comparison to
ither well-known training algorithms for feedforward networks.
‘inally, conclusions are drawn in Section VIL.

II. LM ALGORITHM

Let us consider a multilayer feedforward neural network
vhich consists of an input layer of neurons, an arbitrary number
sf hidden layers and an output layer, all containing neurons
vith sigmoid activation functions f(s) = 1/(1 4 exp(—s)).
“or this network, and a set of P training patterns, the mean
square error (MSE) cost function is defined as

=3 L (@ -4)’

where ygp ) and dgp ) denote the output activations and desired

responses of each output node ¢, given a pattern p, respectively,
and w is the column vector containing all the weights and thresh-
olds Of fhe nﬁlwg“l‘ 'Th.ra o nr‘hnnn] dPr\PnﬂPn"P nF fht‘-‘ MQF COQ
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explicitly the expression giving the output activations yf‘") (due
to the forward signal propagations) as

ZZ Zwﬂ‘

E(w P)

2
f (p)

wi;” ] JJ (2)
i
where wf'j are the weight connections between each node ¢ in
layer L and node j in the immediately preceding layer (L — 1),
and y{p) is the signal from node j.
The main idea in second-order methods is the local approxi-
mation of the cost function by a quadratic form given by

E(w,) + VE(wt)waa
+ - dwTVEE(w:)dwt (3)

E(w; + dw;) =

where VE(w,) and V2E(w,) are the Gradient vector and the
matrix of second derivatives (or Hessian matrix) of the cost
function, respectively. The optimal step (or Newton step) dw;
is obtained by the first optimality condition [10] and is given by

dw; = —[V?E(w,)] ' VE(w;). (4)

Due to the special form (sum of squares) of (1) the Hessian
matrix can be written as

V2E(w,) = (J]J: + St) (5)
where J; is the Jacobian matrix of first derivatives of the resid-
uals (dEP E y;’ )) (details of how these derivatives can be eval-
uated with the standard BP chain rule can be found in [8]) and
S, denotes the second-order information in V2E(w;) [11]. If
one simply ignores the S; term in the above expression for the
Hessian, then (4) becomes the Gauss—Newton method. Near the
solution, the second term is indeed approximately equal to zero
[11] and, therefore, the Gauss—Newton method can achieve the
quadratic convergence of Newton's method using information
from first derivatives only. However, far away from the solu-
tion the term S; is not neglibigle and the approximation to the
Hessian matrix is poor, resulting to slow convergence rates and
problems to the solution of (4) due to the ill-conditioning of
the Jacobian matrix [12]. The ill-conditioning of the Jacobian
becomes even more prominent in the case of multilayer feed-
forward networks due to possible redundancy of the synaptic
weights and also due to the saturation of the sigmoid activation
functions [13].

The LM method [5]-[8] is based on the assumption that such
an approximation for the Hessian matrix is valid only inside a
trust region of small radius. Therefore, under such an assump-
tion, the optimal step can be selected by solving the following
constrained optimization problem:

E(w;) + VE(w;)T dw,

ld T(J Jt)a‘wt

Mlmmlze m(wt + dwt) =

._+




where m/( u;: ¥ig dw,) 'repfesents the local q'uac'ir'atic approxima-

tion of the cost function and A is the current trust region radius.
The solution of this problem is given by [5]

dw, = — [(JTT. + )] ™ VE(we) 7

where I is the identity matrix and p, is a scalar which (indi-
rectly) controls the size of the trust region. This means that the
overall approximation to the Hessian matrix is given by

V2E(w:) = (J] Tt + el - ®)

It can be shown that as p, varies between zero and co then
dw, varies continuously, in a curved trajectory, between the
Gauss—Newton step and a submultiple of the negative gradient
[11].

Due to the difficulty in obtaining a closed form expression for
the evaluation of the paramater fi; in terms of the desired trust
region radius A; [14], a common implementation of the LM
method in neural-network training is based on the selection of a
small yo which is adapted as follows during every epoch [8]: If
a successful step is taken (i.e., E(w; + dw;) < E(w;)) then p;
is decreased by a factor of ten biasing, therefore, the iteration
toward the Gauss—Newton direction. On the other hand if for
the current i, the step is unsuccessful (E(w; +dw;) > E(w;))
then pi; is increased by the same factor until a successful step
can be found (since the increase of y; drives dw; to the negative
gradient).

1. LMAM ALGORITHM

Before we proceed with the formulation of the algorithm, we
wish to note that in order to minimize the cost function of (1) we
will adopt an “epoch-by-epoch™ optimization framework with
the following basic objectives.

« At each epoch, the cost function must be decremented by
a quantity §Q;, so that at the end of learning E is rendered
as small as possible. To first order, we can substitute the
change in E by its first differential and demand that

dE(w;,) = 5Q; < 0. ©)

+ At each epoch of the learning process, the vector w; is to
be incremented by dw; so that

dw! V2 E(w,)dw; = (6P)* (10)

where §P is a small constant. Therefore the search for
an optimum new point in the space of w is restricted to
a small hyperellipse centered at the point defined by the
current w;. It is well known that the extremely complex
shape of the cost function landscape, which usually
consists of many flat areas and elongated narrow valleys,
renders gradient descent techniques very ineffective.
Various methods (including the incorporation of mo-
mentum) have been proposed that deal with the problem
of alleviating long jumps when the value of the gradient
is high, while simultaneously avoiding the deceleration
of movement when the gradient is very small. In [15]
we proposed an effective optimization method where
the movement of the weight vector is restricted within a
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small hypersphere. However a disadvantage of such an
approach is that the hypersphere has the same shape in
all directions which results in ignoring the underlying

" geometry of the space defined by the synaptic weights.
In contrast, the movement within the limits of a hyperel-
lipse, which has the same shape with the local quadratic
approximation of the cost function, reflects the scaling
.of the problem and allows for the correct weighting
among all possible directions. This has the effect that
directions for which the model may differ most from the
true function are restricted more than those directions for
which the curvature is small [16].

The idea of restricting the weight adaptation vector
within a hyperellipse has a long history in optimization
theory since its was first proposed by Levenberg for
the solution of the following constrained optimization
problem [5]:

Minimize m(w, + dw;) = E(w;) + VE(w;) T dw,
1

subjectto  dwi Ddw; < A, (11)
where m(w; 4 dw,) is the local quadratic approximation
of the cost fnction, A; is the current trust region radius,
and D a suitably selected positive definite diagonal ma-
trix.

The inclusion of the matrix I into the above formalism
contributes to the simplification of the solution of the
problem since diagonal trust region problems are easier
to solve [16]. However, an important consideration has
always been the proper selection of the matrix D, so
that the shape of the hyperellipse takes into account the
geometry of the model. It should be obvious that the
selection D = |V2E(w)| satisfies the requirement for
the consideration of the more important directions. The
only disadvantage of such a choice is of course the cost
of spectral factorization of the matrix V?E(w) so that
the problem can be transformed to a diagonal trust region
problem.

Our aim here is not to obtain an exact solution to the
constrained optimization problem stated above, but to in-
vestigate the application of the weight movement restric-
tion condition within the particular hyperellipse and then
to incorporate it into a more general optimization for-
malism. Indeed, within the framework of the formalism,
we will make use of the fact that the LM method produces
positive definite approximations to the Hessian and, there-
fore, we can drop the absolute value dependency for esti-
mating the hyperellipses. Hence, at this point we should
just point out that if 6 P is small enough, then we can as-
sume that the changes induced to the cost function £ (w ),
due to the changes of the weights can be approximated by
the first-order differential d.E(wy).

Having determined our basic objectives, we now focus our at-
tention to the problem of selecting appropriate functional condi-
tions that represent the aims that we set at the end of Section IL.
The main idea in the formulation of the proposed algorithm is




it a one-dimensional minimization in the direction dw;_;, fol-
ved by a second minimization in the direction dw; does not
arantee that the function has been minimized on the subspace
anned by both of these directions. A solution to this problem
to choose minimization directions which are noninterfering
d linearly independent. This can be achieved by the selection
conjugate directions which form the basis of the CG method
7]. Two vectors dw; and dw;_ are noninterfering or mutu-
y conjugate with respect to V2 E(w;) when

dw,” V> E(w,;)dw;_, = 0. (12)

Therefore, our objective is to reach a minimum of the cost
nction of (1) with respect to the synaptic weights, while si-
altaneously trying to maintain the conjugacy between succes-
/e weight changes by maximizing the quantity

@, =dw," V> E(w,)dw,_; (13)

ithout compromising the need for a decrease in the cost func-
. Hence, in every epoch we wish to achieve the maximum
»ssible change in the quantity ®, and also to respect the basic
mditions (9) and (10).

The strategy, which we adopt for the solution of this con-
iined optimization problem, follows the methodology for in-
rporating additional knowledge in the form of constraints in
wural-network training proposed in [15] and [18]. This opti-
ization problem can be solved analytically by introducing two
agrange multipliers A; and A» to take account of (9) and (10),
spectively. We introduce the function ¢, which is defined as
llows:

c=; 4 )\1(5@: — dE(w;)
A, [(6P)2 - dwfVQE(wt)dw:] . (14

n evaluating the differentials involved in the right-hand side,
1d substituting @, we readily obtain

s = dw, T V2 E(w,)dw;_1 + M (6Qs — VE(w;)  dw,)
5%, [(6P) — dwT V2E(w )dwt] . (15)

) maximize ¢, at each iteration, we demand that

d¢¢ = d*wl - (V2E(w;)dw;_1 — MV E(w;)
— 20 V2 E(w;)dw,)
=0 - (16)
1d

A2 ¢, = —2X; [0 V2E(w,)d*w,] < 0. (17)

ence, from (16) we obtain

dw, = [VZE(w NV E(w,) i dw; fa " (18)
he above equation constitutes the weight update rule for the
sural network. Note that (18) is similar to (4), with the im-
ortant differences that in (18) there is an additional adaptive
1omentum term, and that the Newton step is multiplied with an
daptive factor which controls its size. Due to the special form
f the cost function (1), the Hessian matrix can be also approxi-

mated by (8), therefore, yielding a weight update rule equivalent
to the LM algorithm with an additional term of adaptive mo-
mentum (LMAM), as it is obvious from the following relation:

A1

1
9/\ VE(TH;) + —-—-—dwt_l.

2M
SN OT)

By making such an approximation for the Hessian matrix, the
quantity y; can be selected in a similar way to the one described
at the end of Section II, whereas we should also note that this
approximation ensures the positive definiteness for the Hessian
[11]. In particular, for the implementation of the LMAM algo-
rithm, we slightly modify the methodology proposed in [8] and
we change y; as follows.

If a successful step is taken then p, is decreased by a factor
of ten biasing, therefore, the iteration toward the Gauss—Newton
direction. However, a step is considered successful only when

dw; = [(JF Te + )]

E(w +dw) < E(w;) + o1 VE(w) dw,  (20)

with oy = 0.1. We should note that the above inequality is
known as the first Wolfe condition [10] which actually states that
the cost function should be sufficiently decreased. In Section V,
we will show that this simple modification in the selection of 1
ensures that the resulting algorithm is globally convergent from
any starting point, that is it will converge to a stationary point
of the cost function where the optimality conditions hold [10].
On the other hand, if for the current i the step is unsuccessful
(i.e., the above inequality does not hold) then p, is increased by
the same factor until a successful step can be found.

Equation (18) is useful provided that A; and A, can be evalu-
ated in terms of known quantities. This can be achieved as fol-
lows,

From (9) and (18), we obtain

1
6Q; = (IGF - Mlge) (21

with Ige and I given by

Ice = VE(w:)T[V2E(w,)] 'V E(w,) (22)
and
Icr = VE(w) dw,_;. (23)

Equation (21) can be readily solved for )\, giving

—2X26Q: + IgF

A =
' Ice

(24)

It remains to evaluate Ap. To this end, we substitute (18) into
(10) to obtain

A3(6P)? = Irp + Mge — 2\ I (25)
where Irp is given by .
Tpar= T 2B )i (26)
Finally, wé substitute (24) into (25) and solve for A» to obtain

IFFIGG_IGF i
5

(27)

\ 1
i o [fac(ﬁp)z (5Qz
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where the positive square root value has been chosen for A; in
order to satisfy (17) (we wish to maximize ®,) for a positive-
definite Hessian matrix. .

Note also the bound [§Q:| < 6P\/Igg set on the value of
§Q, by (27) (since it is easy to see that the numerator of the frac-
tion can never become negative, due to the Cauchy—Schwartz
inequality). We always use the value

6Q¢ = —£6Pv Iga

where £ is a constant between zero and one.

Thus, the final weight update rule has only two free parame-
ters, namely 6 P and £. The value chosen for the free parameter
¢ determines the contribution of the constraints to the weight
update rule. A large value of £ means that the weight update
rule is biased toward the LM step, while a small value of £ has
the opposite effect. In our simulations, which are presented in
Section VI, the values recorded for 6P and & are those giving
the best performance. However, similar performances were
recorded with 0.85 < ¢ < 0.95 and 0.01 < 6P < 0.6. The
range of optimal values for £ indicates that it is a good practice
not to deviate much from the LM step, which actually predicts
the maximum possible decrease in the error function, whereas
the range of optimal § P values shows that the size of the trust
region should be conservatively selected.

(28)

IV. OLMAM ALGORITHM

We have seen that the LMAM algorithm has two free param-
eters 8P and ¢ that should be externally determined for the eval-
uation of the adaptation of the weights according to (19). The
second novel algorithm that we present in this paper with the
name OLMAM is a modification of the LMAM algorithm in
order to achieve independency from externally provided param-
eter values.

In Section 111, we emphasized that our main objective is to
reach a minimum of the cost fucntion with respect to the weight
vector w while simultaneously trying to maintain the conjugacy
between successive minimization directions, through the max-
imization of the quantity ®; given by relation (13). Since this
conjugacy can be achieved only when ®; = 0, this means that
we have already made the assumption that ®; is bounded above
by zero, that is

@, <0. (29)
In order to test the validity of this assumption, we can substitute
(13), (18), (23), and (26) in the above relation, so that we can
directly obtain
A v T 1 oo s
— —VE(w;) dwy_1 + —dw; ;V E(w,)dw;—,; <0
2y 22
—~ Mg+ 1pp <0. (30)

Lagrange multiplier A; is given by (24) in which the expression
for the second Lagrange multiplier A, is involved. Therefore, by
substituting (28) into (27) we can obtain

r ' A 1/2

A2 = 5 | Too BP0 2%

G

_1
T2
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where
A= Ipplge — I&F- (32)

Based on the relations (28), (31), and (32), (24) can, therefore,
be written as

Igr + [ﬁf@] v £

Icc

AL = (33)
Substituting the above expression into relation (30) and taking
into account (32) we can obtain the result

A 1/2
for [ 2| €24

Due to the fact that A and £ are positive, the above inequality can
hold only when Igp > 0. The quantity /g is the inner product
between the current gradient vector V E(w;) and the vector of
weight changes at the immediately preceding epoch dw_1. If,
at every epoch, the size of the weight changes was determined
by an exact line minimization technique then this inner product
would be equal to zero. In our case where the size of the step
is limited within a hyperellipse, due to (10), the sign of IgF is
determined by the value of the parameter §P. If this value is
large then the movement along the direction dw;—; overshoots
the minimum resulting in the sign of Igr being negative. On
the other hand if the size of 6P is conservatively selected (as it
is the case with LMAM), then Igr is always positive and hence
(34) holds. .

Having justified the attempt for maximization of the quantity
®, in every epoch of the LMAM algorithm, we will next show
the way by which the values of the parameters 6 P and { can be
adaptively determined, so that the conjugacy between the vec-
tors of weight changes in successive epochs is ensured. Hence,
we should take into account the different combinations that arise
from (34). _

First, since we wish ®; = 0 to hold, it is obvious that (34)

implies that
A 1/2
tor [ 2] =4

Solving the above equation with respect to £ (substituting simul-
taneously (32) for A) we can directly obtain the following ex-
pression which determines the optimal value of £ at every epoch:

-
B IccIrr’

We note, of course, that due to the Cauchy—Schwartz inequality
it is obvious that £ < 1.

Due to the simultaneous demand for the automatic determina-
tion of parameter § P, we should take extra care at every epoch
for the monitoring of the sign of I, since in this case it cannot
be guaranteed that § P is always small. Therefore, in case that
the sign is positive then the weight update rule is given again
by (19), due to the demand for maximization of ®;. On the con-
trary, if due to the adaptivity of 6 P the sign of Igr is negative,

(34)

(35)

(36)




> it should be obvious that in this case we demand the mim-
iization of the quantity ®,. The effect that this demand has

the learning rule is actually minimal since the only expres-
n that changes in the optimization formalism is the sign on
> right-hand side of (27), which gives Lagrange multiplier A,
1ich in this case should be negative. Therefore, in this way,
> not only ensure that the quantity ®; is maximized (or mini-
ized) appropriately, but also that the minimum (or maximum)
at we seek is equal to zero.

So far we have discussed the way by which it is possible to
sure the conjugacy between successive minimization direc-
ms through the automatic evaluation of the value of £ from
6) and the monitoring of the sign of I, but we have not yet
:fined the way by which we can automatically select the size
'§P. We know that the value of this parameter defines the size
" the hyperellipse within the limits of which the search for an
stimum new point is allowed. Since the LM step given by (7) is
e solution of the trust region problem, i.e., the region in which
e trust the approximation (J7 J,) for the Hessian matrix, we
in safely assume that the limits of the hyperellipse should not
«ceed those predicted by the LM method.

Therefore, substituting (7) into (10) and taking, of course, into
:count the overall approximation to the Hessian matrix given
y (8) we can obtain

6P = \/VE(w,)T[V2E(w,)] " VE(w:) = VIes. (7)

he above expression provides an estimate that can be useful
»r the automatic adaptation of the parameter 6 based on the
ptimal LM step for the constrained optimization problem (6).
[owever, we should note that the calculation of the parameter
. appearing in the expression for the Hessian matrix is based
n the composite weight update rule of (19) and not on the pure
M step of (7). Due to the fact that the value of the parameter
.+ affects indirectly (in combination with the parameter 6 ) the
ize of the trust region, in the implementation of the OLMAM
lgorithm we use for the parameter 6P a fraction of the op-
mal value given by (37)). In our simulations which are pre-
ented in Section VI the values recorded for the parameter 6P
re those giving the best performance. However similar perfor-
nances were recorded with \/Igg /64 < 6P < \/1gg/8.

V. CONVERGENCE ISSUES

In this section, we examine the convergence properties of the
sroposed algorithms. We show that the LMAM algorithm al-
vays converges to a stationary point of the cost function. For the
JLMAM algorithm in its present form, we have not been able
o show convergence conclusively, but we present our views on
his issue. We shall base our analysis on convergence theory of
Jgorithms from the field of numerical analysis. From this field,
ve must first refer to Wolfe's conditions and Zoutendijk’s the-
yrem, which are necessary for our discussion.

Wolfe’s conditions are imposed on the weight update dw and
are stated as follows [10]:

E(we + ovdw;) < E(w,;) + 010,V E(w:)" dw,
VE(w; + avdw,)T duy > 02V E(w,) dw

(38)

where v, is the slepieﬁgth. and 0 < g+ < 0y <l
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The first of the above conditions guarantees that the cost func-
tion reduces sufficiently, while the second prevents the steps dw
from being too small. It can be shown that if dw is a descent
direction and £ is everywhere differentiable and bounded from
below along w + duw, it is indeed possible to find values for the
length of the vector dw that satisfy the conditions (38) and (39)
[19].

The following theorem is useful for examining the conver-
gence properties of the proposed algorithms and is due to Zou-
tendijk. A proof of this theorem can be found in [19].

Theorem 1: Suppose that E is bounded from below in R™
and continuously differentiable in a neigborhood N of the level
set L: = {E(w) < E(wp)}. Also suppose that the gradient is
Lipschitz continuous, i.e., there exists a constant € > 0 such that

IVE(w) — VE(w)|| < ellw — | (40)
for all w,w € N.If the iterations follow descent directions and
the length of the step satisfies Wolfe’s conditions (38) and (39),
then

> " cos® 8| VE(w,)||* < 00 (41)

t>1

where 6, is the angle between the actual update vector dw; and
the steepest descent direction:

—'VE(‘!H-;)Td‘I'.Ug

05 0e = 157 Buwn) o]

(42)
and £ is the iteration index.

An immediate corollary of Zoutendijk’s theorem is the fol-
lowing:

Corollary 1: If all hypotheses made in Zoutendijk’s theorem
hold and all algorithm iterations are such that

cosby > 6>0 Vi (43)
then
lim [V E(w0)] = 0 @)

i.e., the algorithm converges to a stationary point of the cost
function.

It follows from the above considerations that in order to guar-
antee convergence of the proposed algorithms to a stationary
point of the cost function, we should ensure the following:

1) All directions followed by the algorithm are descent di-
rections with respect to the cost function.

2) Wolfe’s conditions are satisfied throughout training.

3) There exists a constant 6 > 0 such that the angle 6;
between the directions followed by the algorithm and
the corresponding steepest descent (gradient) directions
obeys cosf; > 6.

For both LMAM and OLMAM algorithms it is easy to show
that the directions followed in the space defined by the param-
eters of the cost function are descent directions. Indeed, from
relation (9), to first order, it follows that



This relation guarantees that the cost function decreases along
the direction defined by dw when a sufficiently small step is
used.

Given that the directions of motion are descent directions, a
second important step is to ensure that Wolfe’s conditions are
valid. These are ensured for both LMAM and OLMAM algo-
rithms by the way i is updated. Indeed, the first condition (38)
follows directly from relation (20). The second condition (39)
also holds for the following reason: As it is evident from the
update rule for j;, the direction on which the first condition
(38) is satisfied can only be within striking distance to a pre-
vious candidate direction, which has been already rejected for
violating the sufficient decrease condition, that is, because the
length of the step dw was too large. Hence, the selection of
the actual direction among candidate directions is made starting
from larger steps and moving slowly toward smaller steps. This
prevents steps from becoming arbitrarily small and hence the
second condition (39) is not violated. The situation is similar
to the backtracking line minimization method, where steps, but
not directions, are selected in a similar way and where Wolfe’s
conditions also hold (see [10] for an analysis of this point). -

It remains to study the angle 6, between the steepest descent
direction and the actual direction of motion for the proposed
algorithms,

Consider second-order algorithms that follow the Newton
direction corresponding to (4) and assume that the condition
number k(V2E(w;)) of the matrices of second derivatives
is uniformly bounded, i.e., for all iterations (t) there exists a
constant A > 0 such that

E(V2E(w:)) = |V2E(w)[|[|[VZE(w) 7' | <A (46)
with
IV2E(w)|| = Amax 47)
and
IV2E(w:) ™| = 1/ Amin (48)

where Amax and Apin are the maximum and minimum eigen-
value of the matrix V2E(w;), respectively. For the LM algo-
rithm in particular, it is reasonable to suppose that relation (46)
is valid because of the presence of the variable y; which is intro-
duced in order to alleviate the ill-conditioning of the Jacobian
matrix of first derivatives [11]. The presence of this variable in
both our proposed algorithms LMAM and OLMAM allows us
to make the same assumption concerning the boundedness of
the condition number.

We also consider the following property of V2E (w;) which
follows from a well known spectral property of positive definite
matrices.

Lemma 1: Consider the positive definite matrix V?E(w,)
with maximum and minimum eigenvalues 0 < Amin < Amax-
Then Vz € RN

Z 2 9 | 2
—H—H— < :Tv‘fg{m:)_lz < li”—

'\min

(49)

max
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As an interesting exercise, let us first study cos 8, for the LM
algorithm. From the matrix inequality
|1AB]| < ||Alll|BI| (50)
and from (42) it follows that

V E(w:)TV2E(we) " VE(w)|| V2 E (w.) ||

cosfy > IV E (w)[2[[V2E (we) [[[| V2 E(we) 1|
VE(w,)  V2E(w,) ' VE(w,) ||V E(w,)|| 1
> [VE@)[? -
> % (51)
since
VE(w)" V2 Ew) ' VE@)VE@Il o | sy
IVE(we)||? -
because of (49).

Moreover, Dennis and Moré [20] have shown that if the iter-
ations follow or approach the Newton direction, the step length
can be set equal to the total Newton step given by (4), since this
step satisfies the Wolfe conditions. Hence, from (51) and Zou-
tendijk’s theorem it readily follows that

lim ||VE(w)|| =0 (53)

t—oo
and, therefore, the sequence of gradients converges to zero, i.c.,
the LM algorithm converges to a stationary point of the cost
function.

Returning to our proposed algorithms, we first examine the
special case whereby & — 1. We shall show for both proposed
methods that in the limit € — 1, the iterations approach the LM
step and hence convergence is guaranteed.

From (31) it is obvious that if £ — 1 then A tends to infinity
and therefore the second term on the right-hand side of (19)
tends to zero. Hence the weight update rule is given by

A
2

We must, therefore, examine the behavior of the fraction
A1/2X; as & tends to one. From (33) and (31) we obtain

lim (2
El—rf]i 2)\2

(7T + wed)] " VE@). (5%

.dwt = —

M

= lim foplf >
| , 112 NREE
VIcs e Toe |wéen|
or
= . (55)
Iec

This result shows that for the LMAM algorithm, as £ — 1, the
iterations tend to a submultiple of the LM step. Moreover, based
on (37)) we conclude that the iterations of the OLMAM algo-
rithm coincide with those of the LM algorithm. Therefore, the
convergence of these algorithms is guaranteed in the case §{ —
1. Unfortunately, this observation is not sufficient to guarantee
convergence in the general case, particularly for the OLMAM
algorithm where ¢ is updated adaptively. To advance our anal-
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;is, we return to the study of the angle #; between the steepest
:scent direction and the current weight update vector given by
9).

To obtain a bound for cos f; we proceed in a way similar to
> one we followed for the LM algorithm. Taking into account
2), (28) and (45), it follows from (42) that

£6P\/VE (wy)T V2E(w,) 'V E(wy)
[ VE (w,)||[|dw:|| ’

cosfly = (56)

ote that, due to (10), the magnitude of the weight update vector
v, cannot exceed the magnitude of the major axis of the hy-
rellipse. Hence, the following equation holds:

ldwe|| < 1/v/ Amin = VI V2E(we) 71|,
rom (57) and (46) it follows that

IV E(w)lldw || < VIVZE)[[V2E(w) =] < VA,

(58)
'y combining this inequality with (50) and (52), we obtain from
36)

(57)

cos f;
£6P\/VE wy)TV2E(wy) 1 VE(w;) IWIV2E(w:)]|

IV E(w)||V/IIV2E(w:) ||| dw: |
\/VE(wt) V2E(w,)~'VE(w,)|V2E(w,)|| 6P
IV E(w,)||* VA

(59)

>

£5P

It is interesting to observe that the right-hand side of the above

nequality is bounded from above by one, since from (10), (46),
50), and (57) it follows that

6P < ||dw,||\/[V2E(w,)]| < VA (60)
ind therefore
6P < g (61)

since £ < 1.

Hence, for the LMAM algorithm, whereby the quantities
¢ and 6P are constant, it readily follows from (59) and Zou-
tendijk’s condition that

Jlim |V E(wy)]| = 0. (62)

Therefore the sequence of gradients converges to zero, ie., the
LMAM algorithm converges to a stationary point of the cost
function.

Unfortunately, it is not possible to guarantee global conver-
gence for the OLMAM algorithm by a similar argument, since
¢ and § P are updated adaptively. Of course, we could select § P
as follows:

RS 6,
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with p < 1, which would immediately lead to

cosf; > p (64)

ensuring convergence to a stationary point by Zoutendijk’s the-
orem. Although this would involve estimation of the condition
number of the Jacobian matrix, which is a computationally ex-
pensive task, we have implemented such a scheme, but the ex-
perimental results did not justify such a choice. Other schemes
that relate 6P and £ were also not successful. As we have al-
ready pointed out and shall show in the experimental section,
the best choice for 6 P from the practical point of view is equal
to a submultiple of \/Ig¢, but it remains an open question to
show convergence using this choice.

VI. EXPERIMENTAL RESULTS

The two algorithms proposed in this paper were tested on

the training of standard multilayer networks with sigmoid

activation functions on a higher order parity problem (8-bit
parity) and on two well known classification benchmarks,
namely the Sonar [21] and 2-Spirals [22] problems. The data
sets corresponding to these benchmarks are publicly available
from the CMU Repository of Neural Network Benchmarks
at http://www.boltz.cs.cmu.edu. Details on the network ar-
chitectures for each of these benchmarks are mentioned on
the corresponding paragraphs of this section dealing with the
discussion of the algorithms’s performances for each of these
problems. The performance of the proposed algorithms was
compared to that of the following well known second-order
algorithms: LM [8], BFGS [1], Inverse-BFGS [23] and CG/PR
(Polak-Ribiére version with restarts) [24]. All simulations
were carried out on a Pentium III 450 MHz with 64 MB
RAM PC, using the BILLNET neural network simulator
which has been developed in our laboratory and is publi-
cally available at http://www.iit.demokritos.gr/~vasvir/billnet.
MATLAB versions of each algorithm’s source code have
also been implemented and can found in the form of a com-
plete MATLAB Toolbox which we have made available at
http://www.iit.demokritos.gr/~abazis/toolbox. In all cases
100 training trials were performed (with uniformly random
initialization of the weights in [ — 0.1, 0.1]). The maximum
number of epochs was set to 5000 and training was considered
successful whenever Fahlman’s “40-20-40” criterion was
satisfied [25] (i.e., values in the lowest 40% of the output range
were treated as logical zero, values in the highest 40% were
treated as logical one, and values in the middle 20% were
treated as indeterminate and therefore considered as incorrect).
It is well known that parity problems are difficult tasks for
feedforward networks especially as the order of the problem
increases. Table I shows the results of training an 8-8-1 (eight
inputs, one hidden layer with eight nodes, and one output node)
network on the 8-bit parity problem. It is interesting to note
that all conventional training algorithms (LM, BFGS, Inverse
BFGS, CG/PR) failed to converge in all trials. On the other hand,
the LMAM algorithm was able to solve the problem at least in
14% of the trials exhibiting a quite reasonable mean number
of cpochs consrdenng the size of the problem. The OLMAM
very hzgh success rate (94%) along with
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* TABLE III
RESULTS IN TERMS OF NUMBER OF EPOCHS (MEAN VALUE AND STANDARD
DEVIATION IN PARENTHESIS), COMPUTATIONAL TIME IN SECONDS (MEAN
WVALUE AND STANDARD DEVIATION IN PARENTHESIS) AND SUCCESS
RATES FOR THE 2-SPIRALS PROBLEM. NC DENOTES FAILURE OF
CONVERGENCE IN ALL TRIALS

LMAM OLMAM LM BFGS  Inverse  CG/ LMAM OLMAM LM BFGS Inverse cGf
BFGS PR BFGS FIL
&P =0.03 P =Tac (16 dP=0.1 &P = /Toc f64
£=0895 £=0.95
Epochs (Std. Dev.) 169 (114.96) 117 (90.15) = 4 = s Epochs (Std. Devl) 179 (19.43) 330 (54.35) 239 (5448) - 2514 (457.76)
CPU Time (Std. Dev.) 1925 (10.1)  13.96 (8.5) - " - CPU Time (Std. Dev.) 48.51 (5.08) 88.07 (6.03)  65.89 (24.42) 361.32 (53.23)
Succeases (7) 14 94 NC NC NC NC Successes (%) 29 90 11 NC NC 4
TABLE 1I (both in the standard and inverse version) and CG/PR methods

RESULTS IN TERMS OF NUMBER OF EPOCHS (MEAN VALUE AND STANDARD
DEVIATION IN PARENTHESIS), COMPUTATIONAL TIME IN SECONDS (MEAN
VALUE AND STANDARD DEVIATION IN PARENTHESIS) AND SUCCESS
RATES FOR THE SONAR DATA PROBLEM. NC DENOTES FAILURE OF
CONVERGENCE IN ALL TRIALS

LMAM OLMAM LM DBFGS Tnverse CGf
BFGS rit
#=06 P=yToc/8
£=0.95
Epochs (Std. Dev.) 21 (6.52) 49 (5.75) 10 (.53} - -
CPU Time (Std. Dev) 1.34(0.42)  3.25 (0.55) 0.7 (0.1)
Successes (7)) 69 97 7 NC NC NC

a smaller mean value of epochs than LMAM which, obviously,
constitute the best training results. In addition, from the reported
CPU times and mean number of epochs it is evident that the
computational cost per epoch of the OLMAM algorithm is very
similar to that of the LMAM algorithm. This is, of course, an
expected result since the cost of the adaptive evaluation of the
parameters £ and §P is practically negligible compared with
all other computations needed to implement the weight update
rules of these algorithms.

The Sonar benchmark is a very well-known classification
problem. The task is to classify reflected sonar signals in two
categories (metal cylinders (mines) and rocks). The related data
set comprises 208 input vectors, each with 60 components. Re-
cently, it has been pointed out that this problem is linearly sep-
arable [26], [27]. Despite this fact, Gorman and Sejnowski re-
port a success rate of only 85% for a single-layered perceptron,
rising to 100% only when 12 hidden nodes are introduced in the
feedforward neural-network architecture [21], [28]. It has been
argued in [27] that the solution of this problem without hidden
nodes is a difficult task because of the highly nonuniform distri-
bution of data points in the input space. Therefore conventional
algorithms may take very long training times to converge and
this explains Gorman and Sejnowski’s results. Hence, a chal-
lenging task is to apply the proposed algorithms to the sonar
problem using a network without hidden nodes. Table II shows
the results obtained for such a network, that is a network with
60 inputs, one output unit, and no hidden nodes. The BFGS

failed to converge in all trials, while the LM algorithm solved
the problem in only 7% of the trials. On the other hand, the
LMAM algorithm exhibits a relatively high success rate (69%)
along with a small mean value of epochs, while the total CPU
time does not exceed significantly that of the LM algorithm. The
OLMAM algorithm exhibits an increase in the mean number
of epochs needed to achieve convergence, but this drawback is
counterbalanced by a remarkable increase in the success rate
(the algorithm converged successfully in 97% of the trials).
The 2-Spirals benchmark is a two-dimensional classification
problem. The task is to classify 194 data points lying along
two spiral curves into two categories, one for each curve. This
problem was originally proposed by A. Wieland as a very diffi-
cult benchmark for feedforward networks. Wieland reports that
a modified version of the BP algorithm required 150000 to
200000 epochs to solve the problem, while conventional BP
failed in all trials. Lang and Witbrock [22] used a 2-5-5-5-1
feedforward network architecture (three hidden layers with five
nodes in each layer) with shortcut connections between nodes
in nonadjacent layers. With this architecture, BP required on av-

. erage 20 000 epochs, a version of BP with a modified cost func-

tion required around 12000 epochs, while the Quickprop algo-
rithm required about 8000 epochs. The same authors reported
that they were also able to solve the problem with a 2-5-3-1
architecture using Quickprop in 60000 epochs. Fahlman and
Lebiere [29] have used their Cascade-Correlation algorithm to
solve the problem. This is a constructive method for obtaining
the network architecture in the course of training. This type of
network also involves shortcut connections between each new
node and all previous layers (hidden and input). With this non-
conventional architecture Fahlman and Lebiere were able to
solve the problem with networks comprising 12 to 19 hidden
nodes in 1700 epochs on average.

In this-paper, we use a conventional feedforward network
with only one hidden layer containing 30 nodes, without
any shortcut connections between nonadjacent layers, that is
we used a standard 2-30-1 feedforward network (two inputs,
30 hidden nodes, one output unit). Results are presented in
Table III. The BFGS and Inverse BFGS algorithms failed to
solve the problem in all trials, while the CG/PR algorithm con-
verged successfully only in 5% of the trials exhibiting relatively
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wrge average values of epochs and computing time (the latter
ecause of the iterative line minimization required for each
poch). The LM algorithm solved the problem in 11% of the
-lals with a relatively satisfactory number of epochs given the
‘fficulty of the problem. The proposed LMAM algorithm ex-
bits a remarkable success rate of 89% as well as the smallest
serage value of epochs, which, to the best of our knowledge,

the smallest mean number of epochs ever reported in the
sedforward networks literature for this problem. Moreover,
1e computing time required by LMAM is comparable to that
:quired by the LM algorithm, confirming the relatively small
dditional computational overhead per epoch required by the
roposed LMAM method. The OLMAM algorithm exhibits a
uccess rate of 90% which, as far as we know, is again the
ighest success rate ever reported for a conventional feedfor-
sard network attempting to solve the 2-spirals problem. Re-
arding the average number of epochs, we observe an increase
ompared to the LMAM algorithm (330 epochs compared to
79). However, it is still very important that the fully adaptive
JLMAM algorithm achieved these results without the need
or careful selection of training parameters and this justifies its
otential to be established as a very attractive choice among
econd-order training algorithms.

VII. CONCLUSION

Two powerful second-order algorithms have been proposed
‘or the training of feedforward neural networks. The algorithms
1ave been derived from the formulation of the training task as a
sonstrained optimization problem attempting to introduce con-
ugate directions of motion within a framework similar to that
of the LM algorithm. Both algorithms involve iterations sim-
Jar to the LM rule with an additional adaptive momentum term.
LMAM involves two free parameters which must be tuned by
the user, while OLMAM is adaptive, requiring minimal input
from the end user. The convergence properties of both algo-
rithms have been studied and the conclusion was reached that
LMAM is globally convergent (in the sense that it will always
converge to a stationary point of the cost function). For the con-
vergence of OLMAM no definitive conclusion was reached, but
partial results were obtained and may lead to further productive
ideas. The proposed algorithms were tested on training tasks
that are well known for their difficulty. Many state-of-the-art
second-order training algorithms failed in solving these tasks
in the majority of cases, whereas the proposed algorithms were
able to solve these tasks with very high success rates. In par-
ticular, the success rates of LMAM and OLMAM were both
shown to be the highest ever reported in the literature of feed-
forward networks. These results point to the conclusion that the
proposed methods stand as very promising new tools for the ef-
ficient training of neural networks whenever the employment of
second-order methods is required.
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