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I. Introduction

Methods from the �eld of Optimization have played an important role in developing

training algorithms for connectionist systems. Indeed, the realization that simple gradient

descent (back propagation - BP) can be applied with success to the training of multilayered

feedforward networks (MFNs) [1] was responsible to a great extent for the resurgence of interest

in this kind of networks during the mid 1980s. Most of the methods used for supervised learning

originate from unconstrained optimization techniques. Obviously, this is related to the \black

box" nature of connectionist systems: Apart from the minimization of a cost function, no other

information or knowledge is usually taken into account.

Nevertheless, recent research has shown that it is often bene�cial to incorporate addi-

tional knowledge in neural network learning rules. Often, the additional knowledge can be

encoded in the form of mathematical relations that have to be satis�ed simultaneously with

the demand for minimization of the cost function. Naturally, methods from the �eld of con-

strained optimization are essential for solving these modi�ed neural network learning tasks.

In this paper, we present some recent results from our work on neural network training

using constrained optimization techniques. Four examples are presented, in which the addi-

tional knowledge incorporated in the learning rule may be either network speci�c or problem



speci�c. In the �rst three examples, additional information about the speci�c type of the neu-

ral network, the nature and characteristics of its cost function landscape is used to facilitate

learning in broad classes of problems. In the �nal example, additional information is used

to solve a speci�c problem (polynomial factorization) and stems from the very nature of the

problem itself.

II. Improving learning speed and convergence in MFNs

Conventional unconstrained supervised learning in MFNs involves minimization of a cost

function of the form

E =
X
p

jjTp �Op(W )jj (1)

with respect to the synaptic weight vector W . Here p is an index running over the patterns

of the training set, Op is the network output and Tp is the corresponding target for pattern p.

Learning in feedforward networks is usually hindered by speci�c characteristics of the

cost function landscape. The two most common problems arise because

� of the occurrence of long, deep valleys or troughs that force gradient descent to follow

zig-zag paths.

� of the possible existence of temporary minima in the cost function landscape.

In order to avoid zig-zag paths in long deep valleys, it is desirable to align current and

previous epoch weight update vectors as much as possible, without compromising the need

for a decrease in the cost function. Thus, satisfaction of an additional condition is required,

amounting to maximization of the quantity (W �W c)(W c�W l) with respect to the synaptic

weight vectorW at each epoch of the algorithm. HereW c andW l are the values of the weight

vectors at the present and immediately preceding epoch respectively. The additional condition

can be incorporated in a learning algorithm that uses constrained gradient descent to solve the

optimization problem [2]. This algorithm is much faster than BP and some of its well known



variants even in large scale problems. Some examples are shown in Table I.

III. Constrained learning algorithm inspired from a dynamical system model

In earlier work [3], the problem of temporary minima was approached in the framework

of constrained learning from a rather heuristic point of view. In more recent work, we have

approached the problem from a new angle, using a method that originates from the theory

of dynamical systems [4]. It is well known that temporary minima result from the develop-

ment of internal symmetries and from the subsequent building of redundancy in the hidden

layer. In this case, one or more of the hidden nodes perform approximately the same function

and the network is trapped in a temporary minimum. Introducing suitable state variables

formed by appropriate linear combinations of the synaptic weights, we can derive a dynami-

cal system model which describes the dynamics of the feedforward network in the vicinity of

these temporary minima. The corresponding non-linear system can be linearized in the vicin-

ity of temporary minima and the learning behaviour of the feedforward network can then be

characterized by the largest eigenvalue of the Jacobian matrix corresponding to the linearized

system. It turns out that in the vicinity of the temporary minima, learning is slow because

the largest eigenvalue of the Jacobian matrix is very small, and therefore the system evolves

very slowly. Moreover, it is possible to get an analytical expression which approximates the

largest eigenvalue. Consequently, it is possible to incorporate into the learning algorithm an

extra condition requiring maximization of the largest eigenvalue, along with the condition for

lowering the cost function at each epoch. The result is signi�cant acceleration of learning in

the vicinity of the temporary minima. An example is shown in Table I.

IV. Constrained optimization method in perceptron learning

The most popular algorithms for training the single layered perceptron, namely Rosen-

blatt's perceptron rule [5] and the Widrow-Ho� algorithm [6], are very e�ective in solving



many linear discriminant analysis problems. However, for diÆcult problems with inhomoge-

neous input spaces, prohibitively long training times are reported [7]. The main diÆculty

stems from the fact that in diÆcult problems patterns that were correctly classi�ed in previous

epochs may become misclassi�ed again later during learning. We have recently developed a

novel algorithm, based on constrained optimization techniques, that overcomes diÆculties with

inhomogeneous input spaces.

Our algorithm takes advantage of the knowledge that patterns in the training set are

represented in weight space by hyperplanes, whose position is known (it is determined by the

pattern vector components). Using this knowledge, we attempt to minimize the perceptron

cost function taking care not to a�ect the classi�cation of already correctly classi�ed patterns.

By explicitly insisting that the weight vector does not cross hyperplanes corresponding to

already correctly classi�ed patterns, we add linear constraints to the formalism. Interestingly,

the problem of achieving locally the greatest possible decrease of the cost function subject to

the linear constraints, turns out to be a generalization, in a number of dimensions equal to the

dimensionality of the perceptron input space, of a familiar problem from physics: the problem

of �nding the path followed by a particle falling under the inuence of gravity and constrained

by one or more planes. Mathematically, the generalized problem can be stated as a quadratic

programming task, to which a fast and e�ective solution is proposed.

The resulting algorithm can �nd the solution to large scale linearly separable problems

much faster that the perceptron and Widrow-Ho� algorithms. An example is shown in Table I.

Table I



Problem Constrained Learning Conventional

Method Epochs CPU time (s) Method Epochs CPU time (s)

XOR section II 48 0.0031 BP 182 0.119

8-3-8 Encoder section II 38 0.1143 BP 145 0.429

XOR section III 45 0.0027 BP 182 0.119

OCR section IV 17 15.64 Perceptron 162 105.01



V. Problem speci�c example: Polynomial factorization

Polynomial factorization is an important problem with applications in various areas of

mathematics, mathematical physics and signal processing. It is a diÆcult problem for polyno-

mials of more than one variable, where the fundamental theorem of Algebra is not applicable.

Consider, for example, a polynomial of two variables z1 and z2:

f(z1; z2) =
NX

i=0

NX

j=0

aijz
i

1
z
j

2
; with a00 = 1 (2)

for which we seek an exact or approximate factorization of the form:

f(z1; z2) �
Y

i=1;2

hi(z1; z2); h1 =
X

l;m

wlmz
l

1
zm
2
; h2 =

X

l;m

ulmz
l

1
zm
2

(3)

We can try to �nd the coeÆcients wlm and ulm by considering P training patterns selected

from the region jz1j < 1; jz2j < 1. The primary purpose of the learning rule is thus to minimize

with respect to the wij a cost function of the form

E =
X
p

jj
Y
i=1;2

hi(z1p; z2p)� f(z1p; z2p)jj (4)

This cost function corresponds to a sigma-pi neural network. Unconstrained minimization of

the cost function has been tried, but often leads to unsatisfactory results, because it can be

easily trapped in at minima. However, there is extra knowledge available for this problem,

in the form of constraints between the coeÆcients of the desired factor polynomials and the

coeÆcients of the original polynomial:

apq �
X

l;m

wlmup�l;q�m = 0 (5)

Such constraints can be incorporated into the formalism and constrained gradient descent [8]



[3] can be used to solve the resulting constrained optimization problem. It turns out that the

modi�ed constrained learning algorithm can determine the factor polynomials in factorable

cases and gives good approximate solutions in cases where the original polynomial is non-

factorable [9].

Table II shows the coeÆcients of a factorable polynomial and the corresponding exact

factor polynomials, as well as the solutions obtained by BP and the constrained learning

algorithm. Obviously, only the constrained learning algorithm results compare favorably with

the exact result.

Table II

Exact Constrained learning BP

Product Polynomial

coeÆcient matrix a

2
6666664

1 1.5 0.5

4 5 2.25

3 6.5 1

3
7777775

2
6666664

1.0000 1.5000 0.4997

4.0000 5.0038 2.2528

3.0020 6.5022 1.0092

3
7777775

2
6666664

1.0000 1.2007 0.3604

0.8566 2.2905 1.0663

0.1834 0.7607 0.7888

3
7777775

1st Factor Polynomial

coeÆcient matrix w

2
664

1 0.5

1 2

3
775

2
664

1.0000 0.4995

1.0010 1.9997

3
775

2
664

1.0000 0.5996

0.4282 0.8874

3
775

2nd Factor Polynomial

coeÆcient matrix u

2
664

1 1

3 0.5

3
775

2
664

1.0000 1.0005

2.9990 0.5047

3
775

2
664

1.0000 0.6010

0.4284 0.8889

3
775

VI. Conclusion

There are many types of a priori knowledge that can be incorporated into neural networks

learning, in the form of additional constraints that must be satis�ed by the learning rule. These



constraints are usually pointed out either by the selection of the learning rule itself, or from

the speci�c problem at hand which the neural network tries to learn. The major bene�t of

this learning approach is to help relax the \black box" nature of arti�cial neural networks and

combine the merits of both connectionist and knowledge based approaches for designing and

implementing eÆcient information systems.
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