
Annals of Operations Research 0 (1999) ?{? 1

A Constrained Learning Framework for Feedforward

Neural Networks

Stavros J. Perantonis a;�, Nikolaos Ampazis a and Vassilis Virvilis a

a Institute of Informatics and Telecommunications, National Center for Scienti�c Research

\Demokritos", 153 10 Agia Paraskevi, Greece

E-mail: sper@iit.demokritos.gr

Conventional supervised learning in neural networks is carried out by performing

unconstrained minimization of a suitably de�ned cost function. This approach has

certain drawbacks, which can be overcome by incorporating additional knowledge

in the training formalism. In this paper, two types of such additional knowledge

are examined: Network speci�c knowledge (associated with the neural network irre-

spectively of the problem whose solution is sought) or problem speci�c knowledge

(which helps to solve a speci�c learning task). A constrained optimization framework

is introduced for incorporating these types of knowledge into the learning formal-

ism. We present three examples of improvement in the learning behaviour of neural

networks using additional knowledge in the context of our constrained optimization

framework. The two network speci�c examples are designed to improve convergence

and learning speed in the broad class of feedforward networks, while the third prob-

lem speci�c example is related to the eÆcient factorization of 2-D polynomials using

suitably constructed sigma-pi networks.

Keywords: Neural networks, supervised learning, constrained optimization

1. Introduction

Methods from the �eld of Optimization have played an important role in

developing training algorithms for connectionist systems. Indeed, the realization

that simple gradient descent (back propagation - BP) can be applied with success

to the training of multilayered feedforward networks (MFNs) [1] was responsible

to a great extent for the resurgence of interest in this kind of networks during

the mid 1980s. Most of the methods used for supervised learning originate from

� corresponding author

2 S. J. Perantonis / Neural networks and constrained optimization

unconstrained optimization techniques. Obviously, this is related to the \black

box" nature of connectionist systems: Apart from the minimization of a cost

function, no other information or knowledge is usually taken into account.

Nevertheless, recent research has shown that it is often bene�cial to incor-

porate additional knowledge in the neural network architecture or learning rule

[2]-[6]. Often, the additional knowledge can be encoded in the form of mathemat-

ical relations that have to be satis�ed in addition to the demand for minimization

of the cost function. A number of learning algorithms have been proposed that

incorporate \target conditions", i.e. additional conditions to be satis�ed upon

termination of learning. Notable examples include matching of hidden unit out-

puts with prespeci�ed targets [7][8], satisfaction of box constraints for the synap-

tic weights that prevent hidden node saturation [9] or conditions that enable

weight decay for the improvement of generalization properties [10][11]. Natu-

rally, methods from the �eld of constrained optimization are essential for solving

these modi�ed neural network learning tasks. In the literature, the most common

method for handling extra constraints is the penalty function formulation [10].

Recently, the application of interior point methods has also been investigated [9].

Apart from conditions that must be satis�ed as best as possible upon ter-

mination of learning (target conditions), experience in training of feedforward

networks shows that it is also useful to incorporate additional \incremental con-

ditions", i.e. conditions involving quantities that must be optimized incremen-

tally at each epoch of the learning process. In this paper, we introduce a general

constrained optimization framework for incorporating additional knowledge in

the neural network learning rule. We thus formulate a general problem, whereby

minimization of the cost function representing the distance of the networks out-

puts from preset target values is sought, subject to other relations that represent

the additional knowledge. We show how to formulate the general problem of

incorporating additional knowledge as a multiobjective optimization task, whose

solution leads to a generic learning algorithm accounting for both target and

incremental conditions.

To elucidate the usefulness of the approach, we present three examples of

learning algorithms that incorporate additional knowledge about learning and

show that they can be derived using the general framework introduced earlier.

In the �rst two examples, additional information about the speci�c type of

the neural network, the nature and characteristics of its cost function landscape

is used to facilitate learning in broad classes of problems. In the �rst example,

S. J. Perantonis / Neural networks and constrained optimization 3

a successful algorithm originally proposed in [6] is derived using our framework

for constrained learning. Here the additional information is incorporated in one

extra condition that seeks to facilitate navigation in long narrow valleys of the

cost function landscape, thus accelerating learning. In the second example, the

objective is to accelerate learning and improve convergence through successful

negotiation of the cost function landscape in the vicinity of temporary minima.

In previous related work this problem was studied for networks of two hidden

nodes using a dynamical systems approach [12]. In this paper, the dynamical

systems approach is extended to networks with a hidden layer of an arbitrary

number of nodes. This extension provides us with information about the nature

of temporary minima, whose successful negotiation can be achieved using the

general constrained learning framework with multiple additional objectives.

In the �nal example, the objective is to solve a speci�c problem (polynomial

factorization) using an appropriate neural network formulation. In previous work,

we have used neural networks to solve this problem [13] taking into account extra

conditions among the polynomial coeÆcients. In this paper we show that a neural

network learning algorithm within the general constrained learning framework

studied in this paper can be used to solve the polynomial factorization problem

e�ectively.

For all examples, we present simulations to compare the performance of the

proposed constrained optimization learning method with other state of the art

algorithms for multilayered feedforward networks.

2. A generic constrained learning algorithm

Conventional unconstrained supervised learning in neural networks involves

minimization, with respect to the synaptic weights and biases, of a cost function

of the form

E[d
(p)

i
� y

(p)

i
(w)] (1)

Here w is a column vector containing all synaptic weights and biases of the

network, p is an index running over the P patterns of the training set, y
(p)

i
is

the network output corresponding to output node i and d
(p)

i
is the corresponding

target.

In this paper we suppose that there are additional relations to be satis�ed,

that represent the extra knowledge and involve the network's synaptic weights.

4 S. J. Perantonis / Neural networks and constrained optimization

Before introducing the form of the extra relations, we note that in order to mini-

mize the cost function of equation (1) we adopt an epoch-by-epoch optimization

framework with the following objectives:

� At each epoch of the learning process, the vector w is to be incremented by dw,

so that the search for an optimum new point in the space of w is restricted to

a hypersphere of known radius ÆP centered at the point de�ned by the current

w:

dwTdw = (ÆP)2 (2)

� At each epoch, the cost function must be decremented by a positive quantity

ÆQ, so that at the end of learning E is rendered as small as possible. To �rst

order, we can substitute the change in E by its �rst di�erential and demand

that:

dE = ÆQ (3)

We now wish to introduce additional objectives in order to incorporate the

extra knowledge into the learning formalism. We consider the following two

cases of importance that involve additional mathematical relations representing

knowledge about learning in neural networks:

Case 1: There are additional constraints � = 0 which must be satis�ed as best

as possible upon termination of the learning process. Here � is a column vector

whose components are known functions of the synaptic weights. We address this

problem by introducing a function � and demanding at each epoch of the learning

process the maximization of � subject to the condition that d� = ���. In this

way, we ensure that � tends to 0 at a temporarily exponential rate.

Based on these considerations, the following optimization problem can be

formulated for each epoch of the algorithm, whose solution will determine the

adaptation rule for w:

Maximize � (4)

dw2R

s. t. dwTdw= (ÆP)2 (5)

dE = ÆQ (6)

d�
m
=�

m
=��; m = 1; : : : ; S (7)

S. J. Perantonis / Neural networks and constrained optimization 5

where S is the number of components of �.

Case 2: This case involves additional conditions whereby there is no speci�c

�nal target for the vector �, but rather it is desired that all components of �

are rendered as large as possible at each individual epoch of the learning process.

This is a multiobjective maximization problem, which we address by de�ning

� = d�
m

and demanding that � assume the maximum possible value at each

epoch. Thus the constrained optimization problem is as before with equation (7)

substituted by

� = d�
m
; m = 1; : : : ; S (8)

The solution to the above constrained optimization problems can be

obtained by a method similar to the constrained gradient ascent technique intro-

duced by Bryson and Denham [14] and leads to a generic update rule for w.

We thus introduce suitable Lagrange multipliers L1 and L2 to take account of

equations (6) and (5) respectively and a vector of multipliers � to take account

of equation (7) or equation (8). The Lagrangian thus reads

�0=�+ L1(G
Tdw � ÆQ)+L2[dw

Tdw � (ÆP)2] +�T (F dw + �1) (9)

where the following quantities have been introduced:

� A vector G with elements G
i
= @E=@w

i

� A matrix F whose elements are de�ned by F
mi

= (1=�
m
)(@�

m
=@w

i
) (for case

1) or F
mi

= �@�
m
=@w

i
(for case 2).

To maximize � under the required constraints, we demand that:

d�0=d�(1 +�T1)+(L1G
T +�T

F + 2L2dw
T)d2w = 0 (10)

d2�0 = 2L2d
2
w
Td2w < 0 (11)

Hence, the factors multiplying d2w and d� in equation (9) should vanish, and

therefore we obtain:

dw = �
L1

2L2

G�
1

2L2

F
T� (12)

�T1 = �1 (13)

Equation (12) constitutes the weight update rule for the neural network, provided

that the Lagrange multipliers appearing in it have been evaluated in terms of

6 S. J. Perantonis / Neural networks and constrained optimization

known quantities. The result of this evaluation is summarized forthwith, whereas

the full evaluation is carried out in the Appendix. To complete the evaluation, it

is necessary to introduce the following quantities:

I
GG

= G
T

G (14)

IGF = FG (15)

IFF = FF
T (16)

R =
1

I
GG

(I
GG
IFF � IGF � IGF) (17)

Z=1 +
(R�1)

a
(IGF

T

R
�1
IGF)� (1TR�1

IGF)
2

(R�1)
a
I
GG

(18)

where (:)
a
denotes the sum of all elements of a matrix and 1 is a column vec-

tor whose elements are all equal to 1. In terms of these known quantities, the

Lagrange multipliers are evaluated using the relations:

L2 = �
1

2

"
I
GG

(R�1)
a
[I
GG

(ÆP)2 � Z(ÆQ)2]

#1=2
(19)

�=�
R
�11

(R�1)
a

�
2L2ÆQ

I
GG

"
1TR�1

IGF

(R�1)
a

R
�11�R�1

IGF

#
(20)

L1 = �
2L2ÆQ+�T

IGF

I
GG

(21)

In the Appendix, it is shown that ÆQ must be chosen adaptively according

to the relation ÆQ = ��ÆP
p
I
GG

. Here � is a real parameter with 0 < � <

1. Consequently, the proposed generic weight update algorithm has two free

parameters, namely ÆP and �.

3. Learning in MFNs: Negotiating long valleys

Consider a feedforward network with two layers of weights which has N

external input signals with the addition of a bias input. The bias signal is identical

for all neurons in the network. The hidden layer consists of M neurons and

S. J. Perantonis / Neural networks and constrained optimization 7

the output layer contains K neurons with sigmoid activation functions f(s) =

1=(1 + exp(�s)). For a set of P training patterns indexed by p, the o�-line BP

algorithm is obtained by performing gradient descent with respect to the mean

square error (MSE) cost function

E =
1

2

PX
p=1

KX
i=1

(d
(p)

i
� y

(p)

i
)2 (22)

where y
(p)

i
denote the output activations and d

(p)

i
are the desired responses.

Learning in feedforward networks is usually hindered by speci�c character-

istics of the landscape de�ned by the MSE cost function. The two most common

problems arise because

� of the occurrence of long, deep valleys or troughs that force gradient descent

to follow zig-zag paths.

� of the possible existence of temporary minima in the cost function landscape.

In cost function landscapes with long deep valleys, back propagation (gra-

dient descent) is highly ineÆcient because it settles into zig-zag paths and is

hopelessly slow [15]. Supplementing gradient descent with a momentum term

proportional to the weight update vector of the previous epoch represents a com-

promise between the need to decrease the cost function and the need to proceed

along relatively smooth paths in the weight space. By introducing the momentum

term which is proportional to the previous epoch weight update, paths whereby

current and previous weight update vectors are partially aligned are favored,

smoother trajectories are followed and learning is accelerated. An illustration of

this improved behaviour is given in [16] (p. 123). However, the selection of appro-

priate values for the learning rate and the momentum term coeÆcient is diÆcult

and a method of adaptively determining these coeÆcients based on landscape

characteristics is highly desirable. To this end, an iterative algorithm was intro-

duced in [6] whose purpose is to maximize, at each epoch, the alignment between

the current and previous weight update vectors without compromising the need

for decrease of the cost function. This helps achieve the maximum possible align-

ment of successive weight update vectors, thus further suppressing zig-zagging

and accelerating learning. To this end, we require satisfaction of an additional

condition, amounting to maximization of the quantity � = (w�w
t
)T (w

t
�w

t�1)

with respect to the synaptic weight vector w at each epoch of the algorithm. Here

w
t
and w

t�1 are the values of the weight vectors at the present and immediately

8 S. J. Perantonis / Neural networks and constrained optimization

preceding epoch respectively and are treated as known constant vectors. Since

within our constrained learning framework w�w
t
and w

t
�w

t�1 have constant

moduli equal to ÆP (by equation 5), maximization of � amounts to minimization

of the angle between successive weight update vectors. Once the quantity to be

maximized at each epoch has been speci�ed, the learning rule can be derived

readily from the generic constrained learning algorithm presented in the previous

section. We have only one additional condition to satisfy (maximization of d�

at each epoch), so that Case 2 of the previous section is applicable. It is readily

seen that in this case � has only one component equal to -1 (by equation (13))

and the weight update rule is quite simple:

dw = �
L1

2L2

G�
1

2L2

u (23)

where

u = w
t
�w

t�1; L1 = (I
uG

� 2L2ÆQ)=IGG; L2 =
1

2

"
I
GG

I
uu
� I2

uG

I
GG

(ÆP)2 � (ÆQ)2

#1=2
(24)

with

I
uG

= u
T

G; I
uu

= u
T

u (25)

This is identical to the learning rule derived in [6]. Hence, weight updates

are formed as linear combinations of the cost function derivatives G with respect

to the weights and of the weight updates u at the immediately preceding epoch.

This is similar to back propagation with a momentum term, with the essential

di�erence that the coeÆcients of G and u are suitably adapted at each epoch of

the learning process.

The resulting learning algorithm is herewith compared with BP and a host

of other well known algorithms that have been used by other authors to train

feedforward networks. Simulations quoted here and in the next section were con-

ducted using Billnet, a locally developed neural network simulator (available at

http://www.iit.demokritos.gr/~vasvir). We report performance results for

two well known benchmarks. In particular, results for the 11-11-1 multiplexer

problem with 2048 patterns [17] are shown in Table 1, whereas results for the

S. J. Perantonis / Neural networks and constrained optimization 9

Proposed BPM BPM RPROP CG CG QP DBD

(sect. 3) o� on (PR) (FR)

ÆP : 0:8 NC � : 0:6 �+ : 1:2 NC NC

� : 0:5 � : 0:7 �� : 0:5

�M : 1:0

�m : 10�6

�0 : 0:1

Epochs (Mean) 145 F 287 284 148 F F F

Epochs (StD) 38 F 95 79 35 F F F

Successes (%) 100 0 94 90 70 0 0 0

Table 1

Results in terms of number of epochs (mean value and standard deviation) and success rates

for the 11-11-1 multiplexer task using the constrained learning algorithm of section 3 and other

well known algorithms. F and NC denote failure of convergence in all trials.

64-8-64 encoder problem with 64 patterns [18] are given in Table 2. We assess the

performance of a much wider range of algorithms than those tested in [6], namely

the on-line and o�-line versions of BP with momentum (BPM), resilient propaga-

tion (RPROP) [19], conjugate gradient methods of Fletcher-Reeves (CG/FR) and

Polak-Ribi�ere (CG/PR) with restarts [20], the quickprop algorithm of Fahlman

(QP) [18] and the Delta Bar Delta algorithm of Jacobs (DBD) [17]. For each

benchmark problem we performed 50 learning trials starting from di�erent ran-

domly chosen weights in the range -0.5 to 0.5. The maximum number of epochs

per trial was set to 1000 and learning was considered successful when Fahlman's

\40-20-40" criterion was met [18]. Learning parameters were chosen to ensure the

best possible performance for each algorithm. Symbols used for the parameters

in Tables 1 and 2 are the same used by the corresponding authors. The aver-

age and standard deviation of the number of epochs in the 50 trials is quoted,

along with the success rate, i.e. the percentage of trials for which learning was

successful according to Fahlman's criterion. Note that the proposed algorithm is

the only method fully successful in all trials for both benchmarks. Moreover, it

exhibits the lowest average number of epochs in the successful trials, comparable

only to the average number of epochs achieved by CG/PR. In all methods, most

computational burden lies in the forward pass (for all patterns) and in the back-

ward pass through the MFN (both of O(PNw) where Nw
is the total number

of weights and biases). For the multiplexer and encoder benchmarks considered

here, CG utilized an average of 35 forward passes through the network per epoch

10 S. J. Perantonis / Neural networks and constrained optimization

Proposed BPM BPM RPROP CG CG QP DBD

(sect. 3) o� on (PR) (FR)

ÆP : 1:5 NC � : 0:5 NC � : 4:0 NC

� : 0:5 � : 0:7 � : 1:75

! :�10�4

� : 0:0

Epochs (Mean) 161 F 285 F 170 F 410 F

Epochs (StD) 15 F 40 F 30 F 150 F

Successes (%) 100 0 100 0 100 0 98 0

Table 2

Results in terms of number of epochs (mean value and standard deviation) and success rates

for the 64-6-64 encoder benchmark learning task using the constrained learning algorithm of

section 3 and other well known algorithms.

during the line minimization phase. This is to be added to the cost of one forward

and one backward pass needed in the gradient evaluation phase. On the other

hand, all other algorithms examined here, including the proposed algorithm, just

involve one forward and one backward pass per epoch.

4. Dynamics of learning near temporary minima

As mentioned in the previous section, the problem of slow learning in feed-

forward networks is also associated with the problem of temporary minima in

the cost function landscape. In recent work [12], we have studied the prob-

lem of temporary minima in feedforward networks with just two hidden nodes

using a method that originates from the theory of dynamical systems. One of

the major results obtained are the analytical predictions for the characteristic

dynamical transitions from at plateaus (or temporary minima) of �nite error to

the desired levels of lower or even zero error. Our results have taken the form of

closed dynamical laws for a �nite set of characteristic observables describing the

dynamical process of learning and the various transitions involved for MFNs. The

analysis carried out in [12] can be generalized to networks with an arbitrary num-

ber of nodes in the hidden layer, as explained in the rest of this section. Moreover,

results of the analysis can be incorporated into the general constrained learning

S. J. Perantonis / Neural networks and constrained optimization 11

framework of section 2 in order to improve the learning behaviour in feedforward

networks.

Consider an MFN with one layer of hidden nodes. Given a small learning

rate, the di�erence weight update equations of the o�-line BP algorithm can be

approximated by di�erential equations in time. The weight update rule for the

hidden-to-output connections gives:

_w
ij
=
X
p

(d
(p)

i
� y

(p)

i
)y

(p)

i
(1� y

(p)

i
)y

(p)

j
(26)

where w
ij
are the weight connections between each hidden node j and output

node i, and y
(p)

j
are the outputs of each hidden unit (with j = 0 corresponding

to the bias signal).

For each hidden node j, the o�-line BP rule for the input-to-hidden connec-

tions reads as follows:

_w
j
=
X
p

X
i

(d
(p)

i
� y

(p)

i
)y

(p)

i
(1� y

(p)

i
)w

ij
y
(p)

j
(1� y

(p)

j
)x(p) (27)

where

w
j
= (w

j0 : : : wjN)
T (28)

with w
jk

representing the weight connection between hidden node j and input

node k, and x(p) denoting the input pattern vector.

It is well known that temporary minima result from the development of

internal symmetries and from the subsequent building of redundancy in the hid-

den layer. In this case, one or more of the hidden nodes perform approximately

the same function and therefore they form clusters of redundant nodes. Due to

the formation of these clusters, the network is trapped in a temporary minimum

and it usually takes a very long time before the redundancy is broken and it �nds

its way down the cost function landscape.

For a two-layer network, consider a number M
c
of hidden units that form

a particular cluster C in the vicinity of a temporary minimum. Because of the

building of redundancy, all hidden units in C perform approximately the same

function and this is reected in a near equality of synaptic weights leading to

or emanating from them (equality is strict exactly at the temporary minimum

and approximate in its immediate vicinity). Based on this observation, we can

introduce suitable state variables formed by appropriate linear combinations of

the synaptic weights, and derive a dynamical system model which describes the

12 S. J. Perantonis / Neural networks and constrained optimization

dynamics of the feedforward network in the vicinity of these temporary minima.

We expect that appropriate state variables that map the temporary minimum

to the origin of the phase plane are formed using the weights connected to hid-

den nodes j belonging to C. In particular, we can consider the following state

variables:

� the di�erences of each weight vector w
j
from the average of all w

j
(j 2 C)

� the di�erences of each weight w
ij
from the average of all weights w

ij
(j 2 C).

Hence we de�ne

!
c =

P
j2C

w
j

M
c

(29)

�
j
= w

j
�!c; j 2 C (30)

It follows that

_�
j
= _w

j
� _!c = _w

j
�
P

j2C
_w
j

M
c

(31)

Similarly for each output node i, we de�ne

�c
i
=

P
j2C wij

M
c

(32)

�
ij
= w

ij
� �c

i
; j 2 C (33)

Hence

_�
ij
= _w

ij
� _�c

i
= _w

ij
�
P

j2C _w
ij

M
c

(34)

Using equations (26) and (27) and keeping only �rst order terms in the state

variables �
ij
and �

j
, we can obtain from equations (34) and (31) the following

linear di�erential equations that describe the dynamics of the system:

_�
ij
=
X
p

(d
(p)

i
� y

0(p)

i
)y

0(p)

i
(1� y

0(p)

i
)f 0(!c � x(p))(�

j
� x(p)) (35)

_�j=
X
pi

(d
(p)

i
� y

0(p)

i
)y

0(p)

i
(1� y

0(p)

i
)f 0(!c � x(p))

�x(p)f�
ij
+�

i
[1�2f(!c � x(p))](�

j
� x(p))g (36)

where f 0 = f(1� f) and

y
0(p)

i
= f [M

c
�c
i
f(!c � x(p)) +

X
J =2C

w
iJ
y
(p)

J
] (37)

S. J. Perantonis / Neural networks and constrained optimization 13

From equations (36) and (35) we observe that time derivatives of state

variables corresponding to a certain hidden node j depend only on state vari-

ables corresponding to the same hidden node. Therefore, introducing the vector

u
j
= (�T

j
; �

ij
)T , i = 1; : : : ;K we obtain M

c
equations of the form:

_u
j
= J

c
u
j

(38)

The Jacobian matrix J
c
is given by

J
c
=
P

p
f 0(!c � x(p))� P

i
A
(p)

i
[1� 2f(!c �x(p))]x(p)

x
(p)T �c A

(p)
x
(p)

(A(p)
x
(p))T 0

!
(39)

where

A
(p)=

�
(d

(p)

i
�y0(p)

i
)y

0(p)

i
(1�y0(p)

i
); i = 1;: : :;K

�
(40)

Note that the dimension of all vectors u
j
is D = N + K + 1 and therefore all

Jacobian matrices are of dimension DxD (independently of the cluster or spe-

ci�c hidden node to which the corresponding dynamical variables are associated).

Moreover, all Jacobian matrices associated with a certain cluster are equal, so

that in e�ect we have one representative Jacobian matrix for each cluster. Due to

the exponential nature of the solutions, the followed trajectory obviously depends

on the magnitude of the largest eigenvalue for each Jacobian matrix. Initially,

in the vicinity of the temporary minimum all eigenvalues are small in magnitude

and the network spends a relatively long time in the vicinity of the critical point.

As time passes, the magnitude of the largest eigenvalues grows, so that eventu-

ally a bifurcation of the eigenvalues occurs and the system follows a trajectory

which allows it to move far away from the critical point. In citeTaylor speci�c

examples of this behaviour in networks with just two hidden nodes are given.

Asymptotically, the trajectories followed by the dynamical systems described by

equation (38) are then parallel to the eigenvectors corresponding to the maximum

Jacobian eigenvalues. Thus, after the bifurcation of the eigenvalues has occurred,

weight updates approximately follow the rule:

du
j
� sign(uT

j
�
c) �c (41)

where �c is the eigenvector of J
c
corresponding to the maximum eigenvalue �

c
.

Following this analysis, it is evident that if the maximum eigenvalues �
c
; c =

1; : : : S of the Jacobian matrices J
c
corresponding to each of the S clusters of

hidden nodes are relatively large, then the network is able to escape from the

14 S. J. Perantonis / Neural networks and constrained optimization

temporary minimum. Hence, instead of waiting for the growth of the eigenvalues,

the objective of our approach is to raise these eigenvalues more rapidly in order

to facilitate learning. It is therefore bene�ciary to incorporate in the learning rule

additional knowledge related to the desire for rapid growth of these eigenvalues.

Since it is diÆcult in the general case to express the maximum eigenvalues in

closed form in terms of the weights, we choose to raise the values of appropriate

lower bounds �
c
� �

c
for these eigenvalues, which are obtained as follows: It

is well known from linear algebra that since J
c
is a real and symmetric matrix,

then

z
T
J
c
z � �

c
z
T
z 8z 2 RQ (42)

We have used the simplest choice for z namely z = 1 = (1 1 : : : 1)T which means

that the product in the left hand side of equation (42) is simply the sum of the

elements of the matrix.

Therefore we can apply the generic weight update rule (Case 2 of section 2)

using

�
c
= 1TJ

c
1 (43)

During learning, di�erent clusters of hidden nodes may be formed and the number

and structure of the �
c
must be changed accordingly. Therefore, for the imple-

mentation of the algorithm, it is essential to have a method of detecting cluster

formation during learning. This detection is performed periodically (at regular

intervals of typically 50 epochs) using a standard subtractive clustering algorithm

[21] which identi�es the number of formed clusters and, therefore, the number of

�
c
. Hidden nodes are then assigned to a cluster using the fuzzy C-means algo-

rithm [22], whereupon the analytical expressions for all Jacobian matrices and

the corresponding �
c
are constructed.

The proposed method is herewith compared with BP and a host of other

well known algorithms that have been used by other authors to train feedfor-

ward networks. We report performance results for two benchmarks. The �rst

benchmark is the well known 4 bit parity problem, which is characterized by the

presence of temporary minima in its cost function. A network with a 4-4-1 archi-

tecture is employed to solve the problem. Fifty learning trials were performed

starting from di�erent randomly chosen weights in the range -0.5 to 0.5 and the

maximum allowed number of epochs per trial was set to 1000. As before, learn-

ing was considered successful when Fahlman's \40-20-40" criterion was met. In

S. J. Perantonis / Neural networks and constrained optimization 15

Proposed BPM BPM RPROP CG CG QP DBD

(sect. 4) OFF ON (PR) (FR)

ÆP : 0:2 � : 0:7 � : 0:7 �+ : 1:2 � : 1:0 � : 5:0

� : 0:5 � : 0:5 � : 0:9 �� : 0:5 � : 1:75 � : 0:25

�M : 1:0 ! :�10�4 � : 0:12

�m : 10�6 � : 0:0 � : 0:7

�0 : 0:1 � : 0:8

Epochs (Mean) 236 660 826 462 150 327 489 532

Epochs (StD) 60 125 212 103 57 98 181 93

Successes (%) 90 7 30 22 30 30 44 55

Table 3

Results in terms of number of epochs (mean value and standard deviation) and success rates

for the parity-4 benchmark using the constrained learning algorithm of section 4 and other well

known algorithms.

Table 3, the proposed method is compared with a host of other well known train-

ing algorithms. For the 4 bit parity problem, note that the successful negotiation

of temporary minima by the proposed algorithm leads to a much higher success

rate than all other methods. Moreover, learning is achieved in a relatively low

average number of epochs (in this respect the proposed method is surpassed only

by CG/PR, which, however, exhibits a very low success rate equal to just 30%).

The second benchmark is the \cancer3" classi�cation problem of the

PROBEN1 set [23]. It concerns the diagnosis of breast cancer, the task being to

classify a tumor as benign or malignant based on cell descriptions gathered by a

microscope. The problem has 9 real valued inputs, 2 binary outputs and consists

of 699 examples, of which 350 are included in the training set. A network with 9

inputs, 5 hidden units and 2 outputs is employed here to solve this problem. For

this benchmark, 10 learning trials were performed starting from di�erent ran-

domly chosen weights in the range -0.5 to 0.5. The maximum allowed number

of epochs per trial was set to 5000. Comparative results of di�erent algorithms

concerning number of epochs and success rates for the \cancer3" benchmark are

shown in Table 4. Note that the proposed algorithm is the only method fully

successful in all trials with respect to Fahlman's criterion. Of all the other algo-

rithms examined, only RPROP was able to solve the problem in just 20% of the

trials performed.

16 S. J. Perantonis / Neural networks and constrained optimization

Proposed BPM BPM RPROP CG CG QP DBD

(sect. 4) OFF ON (PR) (FR)

ÆP : 0:2 NC NC �+ : 1:2 NC NC

� : 0:5 �� : 0:5

�M : 1:0

�m : 10�6

�0 : 0:1

Epochs (Mean) 3272 F F 346 F F F F

Epochs (StD) 605 F F 157 F F F F

Successes (%) 100 0 0 20 0 0 0 0

Table 4

Results in terms of number of epochs (mean value and standard deviation) and success rates

for the cancer benchmark using the constrained learning algorithm of section 4 and other well

known algorithms.

5. Problem speci�c example: Polynomial factorization

Polynomial factorization is an important problem with applications in var-

ious areas of mathematics, mathematical physics and signal processing. It is a

diÆcult problem for polynomials of more than one variable, where the fundamen-

tal theorem of Algebra is not applicable.

Consider, for example, a polynomial of two variables z1 and z2:

A(z1; z2) =

NAX
i=0

NAX
j=0

a
ij
zi1 z

j

2
(44)

with N
A
even, and a00 = 1. For the above polynomial, we seek to achieve an

exact or approximate factorization of the form

A(z1; z2) �
Y
i=1;2

A(i)(z1; z2) (45)

where

A(i)(z1; z2) =

MAX
j=0

MAX
k=0

v
(i)

jk
z
j

1
zk2 (46)

with M
A

= N
A
=2. We can try to �nd the coeÆcients v

(i)

jk
by considering P

training patterns selected from the region jz1j < 1; jz2j < 1. The primary

S. J. Perantonis / Neural networks and constrained optimization 17

purpose of the learning rule is thus to minimize with respect to the v
(i)

jk
a cost

function of the form

E =
X
p

(
Y
i=1;2

A(i)(z1p; z2p)�A(z1p; z2p))
2 (47)

Note that this cost function corresponds to a sigma-pi neural network with the

elements of v(1) and v(2) as its synaptic weights. Unconstrained minimization

of the cost function has been tried, but often leads to unsatisfactory results,

because it can be easily trapped in at minima. However, there is extra knowledge

available for this problem, in the form of constraints between the coeÆcients of

the desired factor polynomials and the coeÆcients of the original polynomial.

More explicitly, if we assume that A(z1; z2) is factorable, then these constraints

can be expressed as follows:

�v

j+(NA+1)i
= a

ij
�

iX
l=1

jX
m=1

v
(1)

lm
v
(2)

i�l;j�m
= 0 (48)

with 0 � i � N
A
; 0 � j � N

A
. Thus, the objective of the adaptation process

is to reach a minimum of the cost function of equation (47) with respect to the

variables v
(i)

jk
, which satis�es as best as possible the constraints �v = 0, where

�v = (�v

j+(NA+1)i
; 0 � i � N

A
; 0 � j � N

A
).

Here we incorporate the extra relations using our constrained optimization

framework. Since the constraints have to be satis�ed as best as possible upon

termination of the training process, it is appropriate to utilize Case 1 of section 2.

It turns out that the ensuing constrained learning algorithm can determine the

factor polynomials in factorable cases and gives good approximate solutions in

cases where the original polynomial is non-factorable.

Table 5 shows the coeÆcients of a factorable polynomial and the correspond-

ing exact factor polynomials, as well as the solutions obtained by gradient descent

with momentum and the constrained learning algorithm. Obviously, only the

constrained learning algorithm results compare favorably with the exact result.

6. Conclusion

There are many types of a priori knowledge that can be incorporated into

neural networks learning, in the form of additional relations that must be satis�ed

by the learning rule. These constraints are usually pointed out either by the

selection of the network or learning rule itself, or from the speci�c problem at

18 S. J. Perantonis / Neural networks and constrained optimization

Exact Constrained learning Gradient descent

Product

2
4 1 1:5 0:5

4 5 2:25

3 6:5 1

3
5
2
4 1:0000 1:5000 0:4997

4:0000 5:0038 2:2528

3:0020 6:5022 1:0092

3
5
2
4 1:0000 1:2007 0:3604

0:8566 2:2905 1:0663

0:1834 0:7607 0:7888

3
5

1st Factor
�

1 0.5

1 2

� �
1.0000 0.4995

1.0010 1.9997

� �
1.0000 0.5996

0.4282 0.8874

�

2nd Factor
�

1 1

3 0.5

� �
1.0000 1.0005

2.9990 0.5047

� �
1.0000 0.6010

0.4284 0.8889

�

Table 5

Factorization results for a 2-D polynomial. The coeÆcient matrix a for the product polynomial,

as well as the coeÆcient matrices v(1) and v(2) for the two factor polynomials are shown for the

exact factorization, for the result obtained by the constrained optimization method described

in section 5 and for the result obtained by the conventional method of BP.

hand which the neural network tries to learn. In this paper, we have derived

a generic learning rule in which many types of additional knowledge, codi�ed

as mathematical relations satis�ed by the synaptic weights, can be incorporated.

We have also given speci�c examples of its application to neural network learning.

The major bene�t of this learning approach is to help relax the \black box" nature

of arti�cial neural networks and combine the merits of both connectionist and

knowledge based approaches for designing and implementing eÆcient information

systems.

Appendix: Derivation of constrained learning algorithm

In this Appendix, evaluation of the Lagrange multipliers L1, L2 and �

involved in the general constrained learning framework of section 2 is carried out.

By multiplying both sides of equation (12) byGT and by taking into account

equation (6) we obtain:

ÆQ = �
L1

2L2

I
GG

�
1

2L2

�T

IGF (49)

S. J. Perantonis / Neural networks and constrained optimization 19

Solving for L1 readily yields equation (21), which evaluates L1 in terms of L2 and

�.

By left multiplication of both sides of equation (12) by F and taking into

account equations (7) and (21), we obtain

�1+
ÆQIGF

I
GG

=
R�

2L2

(50)

where the matrix R is de�ned by equation (17). Solving equation (50) for �

yields

� = 2L2�R
�11+

2L2ÆQ

I
GG

R
�1
IGF (51)

By substituting this equation into equation (13) we arrive at:

� = �
1 + 2L2ÆQ

IGG
1TR�1

IGF

2L2(R
�1)

a

(52)

We can now substitute this equation into equation (51) to obtain equation (20)

which evaluates � in terms of L2.

To evaluate L2, we must substitute our expression for dw into equation (5).

To make the algebra easier, we note that on account of equation (21), equation

(12) can be written as:

dw =
ÆQ

I
GG

G+
1

2L2

A (53)

where

A =
�T

IGF

I
GG

G� F T� (54)

From the de�nition of A we can readily derive the following properties:

jjAjj2 = �T

R�; A
T

G = 0 (55)

Substituting equation (53) into equation (5) and taking into account equation

(55), we can obtain a relation involving only L2 and �:

L2 = �
1

2

"
I
GG

(�T

R�)

I
GG

(ÆP)2 � (ÆQ)2

#1=2
(56)

where the negative square root sign has been selected on account of inequality

(11).

20 S. J. Perantonis / Neural networks and constrained optimization

By substituting equation (20) into equation (56) and solving for L2, equa-

tion (19) is obtained, with Z given by equation (18). Evaluation of all Lagrange

multipliers in terms of known quantities is now complete.

As a �nal note, let us discuss our choice for ÆQ. This choice is dictated

by the demand that the quantity under the square root in equation (56) be

positive. It can readily be seen by the �rst of equation (55) that �T

R� � 0.

Since I
GG

= G
T

G � 0, it follows from equation (56) that care must be taken

to ensure that I
GG

(ÆP)2 > (ÆQ)2. The simplest way to achieve this is to set

ÆQ = ��ÆP
p
I
GG

with 0 < � < 1.

References

[1] D. E. Rumelhart, J. E. Hinton and R. J. Williams, Learning internal representations by

error propagation, in: Parallel Distributed Processing: Explorations in the Microstructures

of Cognition, vol. 1, Foundations, eds. D. E. Rumelhart and J. L. McLelland, MIT Press,

1986, pp. 318-362.

[2] D. Barber and D. Saad, Does extra knowledge necessarily improve generalization?, Neural

Computation 8 (1996) 202-214.

[3] Y. le Cun, L. D. Jackel, B. E. Boser, J. S. Denker, H-P. Graf, I. Guyon, D. Henderson, R. E.

Howard and W. Hubbard, Handwritten digit recognition: Applications of neural network

chips and automatic learning, IEEE Communications Magazine (Nov. 1989) pp. 41{46.

[4] P. Simard, Y. le Cun and J. Denker, EÆcient pattern recognition using a new transforma-

tion distance, in: Advances in Neural Processing Systems, eds. S. J. Hanson, J. D. Cowan

and C. L. Giles, Morgan Kaufmann, 1993, pp. 50-58.

[5] S. Gold, A. Rangarajan and E. Mjolsness, Learning with preknowledge: clustering with

point and graph matching distance, Neural Computation 8 (1996) 787-804.

[6] S. J. Perantonis and D. A. Karras, An eÆcient learning algorithm with momentum accel-

eration, Neural Networks 8 (1995) 237-249.

[7] R. Rohwer, The `moving targets' training algorithm, in: Advances in Neural Information

Processing Systems, ed. D. S. Touretzky, Morgan Kaufmann, 1990, pp. 558-565.

[8] T. Grossman, The CHIR algorithm for feed forward networks with binary weights, The

`moving targets' training algorithm, in: Advances in Neural Information Processing Sys-

tems, ed. D. S. Touretzky, Morgan Kaufmann, 1990, pp. 516-523.

[9] T. B. Trafalis and N. P Couellan, Neural network training via an aÆne scaling quadratic

optimization algorithm, Neural Networks 9 (1996) 475-481.

[10] A. S. Weigend, D. E. Rumelhart and B. A. Huberman, Generalization by weight elimination

with application to forecasting, in: Advances in Neural Information Processing Systems,

ed. D. S. Touretzky, Morgan Kaufmann, 1991, pp. 875-882.

[11] A. Krogh, G. I. Thorbergsson and J. A. Hertz, A cost function for internal representations,

in: Advances in Neural Information Processing Systems, ed. D. S. Touretzky, Morgan

S. J. Perantonis / Neural networks and constrained optimization 21

Kaufmann, 1990, pp. 733-740.

[12] N. Ampazis, S. J. Perantonis and J. Taylor, Dynamics of multilayer networks in the vicinity

of temporary minima, Neural Networks 12 (1999) 43-58.

[13] S. J. Perantonis, N. Ampazis, S. Varoufakis and G. Antoniou, Constrained learning in

neural networks: Application to stable factorization of 2-D polynomials, Neural Proc. Lett.

7 (1998) 5-14.

[14] A. E. Bryson and W. F. Denham, A steepest ascent method for solving optimum program-

ming problems, Journal App. Mech. 29 (1962) 247-257.

[15] S. S. Rao, Optimization Theory and Applications, New Delhi, Wiley Eastern, 1984.

[16] J. Hertz, A Krogh and R. G. Palmer, Introduction to the Theory of Neural Computation,

Addison-Wesley, 1991.

[17] R. A. Jacobs, Increased rates of convergence through learning rate adaptation, Neural

Networks 1 (1988) 295-307.

[18] S. E. Fahlman, Faster learning variations on back-propagation: An empirical study, in:

Proceedings of the Connectionist Models Summer School, eds. D. Touretzky, G. Hinton and

T. Sejnowski, Morgan Kaufmann, 1988, pp. 29-37.

[19] M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation learning:

The RPROP algorithm. Proceedings of the International Conference on Neural Networks,

San Francisco 1 (1993) 586-591.

[20] E. M. Johansson, F. U. Dowla and D. M. Goodman, Backpropagation learning for multi-

layer feedforward networks using the conjugate gradient method. International Journal of

Neural Systems 2 (1992) 291-301.

[21] R. Yager and D. Filev, Generation of fuzzy rules by mountain clustering. Journal of Intel-

ligent and Fuzzy Systems 2 (1994) 209-219.

[22] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, New York,

Plenum, 1981.

[23] L. Prechelt, PROBEN1-A set of neural network benchmark problems and benchmarking

rules, Technical Report 21/94, Universit�at Karlsruhe, Germany, 1994.

